Note on γ -dimension and products of real projective spaces

By Teiichi KOBAYASHI

(Received Oct. 11, 1980) (Revised Jan. 19, 1981)

1. Introduction.

Let α be the stable class of a vector bundle over a complex X. The γ -dimension, $\dim_{\gamma} \alpha$, of α is defined as follows (cf. [6]):

$$\dim_{r}\alpha = \sup\{i \in N | \gamma^{i}(\alpha) \neq 0\}$$
,

where N is the set of positive integers and γ^i is the i-th Grothendieck γ -operation (cf. [2]). Let $\tau_0(M)$ denote the stable class of the tangent bundle $\tau(M)$ of a differentiable manifold M. H. Suzuki [5] investigated $\dim_{\gamma} \tau_0(P^m \times P^n)$ and $\dim_{\gamma} (-\tau_0(P^m \times P^n))$, where P^n is the n-dimensional real projective space, and applied them to the problem of vector fields on $P^m \times P^n$ and to the problem of immersions and embeddings of $P^m \times P^n$ in Euclidean spaces. The purpose of this note is to improve Suzuki's results.

Let $\varphi(n)$ be the number of integers s such that $0 < s \le n$ and s = 0, 1, 2 or $4 \mod 8$, $\lceil a \rceil$ be the integral part of a real number a, and $\binom{k}{i}$ be a binomial coefficient k!/(k-i)!i!. Define integers $\delta(n)$ and $\delta(m, n)$ as follows:

$$\delta(n) = \max\left\{i > 0 \mid 2^{i-1} {n+1 \choose i} \not\equiv 0 \bmod 2^{\varphi(n)}\right\},$$

$$\delta(m, n) = \max \left\{ i > 1 \mid 2^{i-2} \left\{ \binom{m+n+2}{i} - \binom{m+1}{i} - \binom{n+1}{i} \right\} \not\equiv 0 \mod 2^{\lceil l/2 \rceil} \right\},$$

where $l=\min\{m, n\}$. Then we prove

THEOREM 1. $\dim_{\tau} \tau_0(P^m \times P^n) \ge \delta(m, n)$.

If $m=n=2^r-2$ $(r \ge 3)$, then $\delta(m, n)=2^{r-1}=\delta(n)+1>\delta(n)$. Therefore Theorem 1 is a partial improvement of [5, (4.2)]. But if $m=2^r-2$ and $n \le 2^{r-1}-2$ $(r \ge 3)$ then $\delta(m, n) \le 2^{r-2} < 2^{r-1}-1=\delta(m)$ and hence in this case [5, (4.2)] is better than the theorem. Combining [5, (4.2)] and Theorem 1, we obtain

This research was partially supported by Grant-in-Aid for Scientific Research (No. C-55408), Ministry of Education.

COROLLARY 2. $\dim_{\gamma} \tau_0(P^m \times P^n) \ge \max \{\delta(m), \delta(n), \delta(m, n)\}$. Define other integers $\sigma(n)$ and $\sigma(m, n)$ as follows:

$$\sigma(n) = \max\left\{i > 0 \mid 2^{i-1} \binom{n+i}{i} \not\equiv 0 \mod 2^{\varphi(n)}\right\}$$
,

$$\sigma(m, n) = \max \left\{ i > 1 \mid 2^{i-2} \left\{ \binom{m+n+1+i}{i} - \binom{m+i}{i} - \binom{n+i}{i} \right\} \not\equiv 0 \mod 2^{\lceil l/2 \rceil} \right\}.$$

Then we have

Theorem 3. $\dim_{\tau}(-\tau_0(P^m \times P^n)) \ge \sigma(m, n)$.

If $m=n=2^r+6$ $(r \ge 4)$, then $\sigma(m, n)=2^{r-1}+2=\sigma(n)+1>\sigma(n)$. Thus Theorem 3 is also a partial improvement of [5, (6.2)]. But if $m=2^r$ and $n \le 2^{r-1}$ $(r \ge 3)$ then $\sigma(m, n) \le 2^{r-2}+1<2^{r-1}=\sigma(m)$ and hence in this case [5, (6.2)] is better than the theorem. Combining [5, (6.2)] and Theorem 3, we obtain

COROLLARY 4. $\dim_{\tau}(-\tau_0(P^m \times P^n)) \ge \max\{\sigma(m), \sigma(n), \sigma(m, n)\}.$

2. Preliminaries.

First, we recall the basic facts about the γ -operations γ^i in K_R -rings of the product space $P^m \times P^n$ according to [5]. Let ξ and η be the Hopf bundles over P^m and P^n respectively, let p_i be the projection of $P^m \times P^n$ on the i-th factor (i=1,2), and put $x=\xi-1$ $(\in \widetilde{K}_R(P^m))$ and $y=\eta-1$ $(\in \widetilde{K}_R(P^n))$. $\widetilde{K}_R(P^m)$ and $\widetilde{K}_R(P^n)$ are regarded as the direct summands of

$$(2.1) \widetilde{K}_R(P^m \times P^n) \cong \widetilde{K}_R(P^m) + \widetilde{K}_R(P^n) + \widetilde{K}_R(P^m \wedge P^n)$$

by the ring homomorphisms p_1^* and p_2^* respectively, and so we denote p_1^*x and p_2^*y simply by x and y respectively. Put $\tau_0 = \tau_0(P^m \times P^n)$. In [5, (4.1) and (6.1)], the values of γ^i on $\pm \tau_0$ are calculated as follows:

THEOREM (2.2) (H. Suzuki).

3. Proofs of theorems.

Let $c: K_R(X) \rightarrow K_C(X)$ be the complexification.

LEMMA (3.1). The order of the element $c(xy)=c(x)c(y) \in \widetilde{K}_{\mathcal{C}}(P^m \wedge P^n)$ is equal to $2^{\lfloor l/2 \rfloor}$, where $l=\min\{m, n\}$.

PROOF. From the Künneth formula (e.g. [4, Chapter IV, 3.27]) we have a short exact sequence:

$$0 \to \widetilde{K}_{C}(P^{m}) \otimes \widetilde{K}_{C}(P^{n}) + \widetilde{K}_{C}^{1}(P^{m}) \otimes \widetilde{K}_{C}^{1}(P^{n}) \to \widetilde{K}_{C}(P^{m} \wedge P^{n})$$

$$\to \operatorname{Tor}(\widetilde{K}_{C}^{1}(P^{m}), \ \widetilde{K}_{C}(P^{n})) + \operatorname{Tor}(\widetilde{K}_{C}(P^{m}), \ \widetilde{K}_{C}^{1}(P^{n})) \to 0.$$

Since $\widetilde{K}_{c}^{1}(P^{m})\cong Z$ or 0 according as m is odd or even, the homomorphism $\kappa:\widetilde{K}_{c}(P^{m})\otimes\widetilde{K}_{c}(P^{n})\to\widetilde{K}_{c}(P^{m}\wedge P^{n})$ defined by $\kappa(x\otimes y)=xy$ gives an isomorphism of $\widetilde{K}_{c}(P^{m})\otimes\widetilde{K}_{c}(P^{n})$ onto $\widetilde{K}_{c}(P^{m}\wedge P^{n})$ if m or n is even, and of $\widetilde{K}_{c}(P^{m})\otimes\widetilde{K}_{c}(P^{n})$ onto the torsion subgroup of $\widetilde{K}_{c}(P^{m}\wedge P^{n})$ if both m and n are odd. Therefore the order of c(x)c(y) $(\in\widetilde{K}_{c}(P^{m}\wedge P^{n}))$ is equal to the order of $c(x)\otimes c(y)$ $(\in\widetilde{K}_{c}(P^{m})\otimes\widetilde{K}_{c}(P^{n}))$, which is equal to $2^{\lfloor l/2 \rfloor}$ (cf. $\lfloor 1,7.3 \rfloor$).

PROOF OF THEOREM 1. If $\gamma^i(\tau_0)=0$, then

$$2^{i-2}\sum_{j=1}^{i-1} {m+1 \choose j} {n+1 \choose i-j} x y = 0$$
,

by the first formula of (2.2) and the direct sum decomposition (2.1). Applying the complexification $c: \widetilde{K}_R(P^m \wedge P^n) \to \widetilde{K}_C(P^m \wedge P^n)$ to the equality and using the identity

$$\sum_{j=0}^{i} {m+1 \choose j} {n+1 \choose i-j} = {m+n+2 \choose i},$$

we have, by Lemma (3.1),

$$2^{i-2}\!\left\{\!\left(\!\begin{array}{c} m\!+\!n\!+\!2 \\ i \end{array}\right)\!-\!\left(\!\begin{array}{c} m\!+\!1 \\ i \end{array}\right)\!-\!\left(\!\begin{array}{c} n\!+\!1 \\ i \end{array}\right)\!\right\}\!\equiv\! 0 \!\!\!\mod 2^{\lceil l/2 \rceil}.$$

Thus $\dim_{\tau} \tau_0 \geq \delta(m, n)$.

PROOF OF THEOREM 3. If $\gamma^{i}(-\tau_{0})=0$, then

$$2^{i-2}\sum_{j=1}^{i-1} {m+j \choose j} {n+i-j \choose i-j} x y = 0$$
,

by the second formula of (2.2) and the direct sum decomposition (2.1). In the way similar to the proof of Theorem 1, we have

$$2^{i-2}\left\{{m+n+1+i\choose i}-{m+i\choose i}-{n+i\choose i}
ight\}\equiv 0 \mod 2^{\lceil l/2 \rceil}$$
 ,

using this time the identity

$$\sum_{j=0}^{i} {m+j \choose j} {n+i-j \choose i-j} = {m+n+1+i \choose i}.$$

Therefore $\dim_r(-\tau_0) \ge \sigma(m, n)$.

4. Remarks.

Corollaries 2 and 4 can be easily extended to the case of a product space $P=\prod_{i=1}^r P^{n_i}$ of a finite number of real projective spaces P^{n_i} , $i=1, 2, \cdots, r$. Define

$$\delta = \max \{ \delta(n_i), \ \delta(n_j, n_k) | 1 \le i \le r, \ 1 \le j \le r, \ 1 \le k \le r \},$$

$$\sigma = \max \{ \sigma(n_i), \ \sigma(n_j, n_k) | 1 \le i \le r, \ 1 \le j \le r, \ 1 \le k \le r \}.$$

Then we obtain

Theorem (4.1). $\dim_{\tau} \tau_0(P) \geq \delta$.

Theorem (4.2). $\dim_{\tau}(-\tau_0(P)) \ge \sigma$.

The proofs of Theorems (4.1) and (4.2) are similar to those of Corollaries 2 and 4 respectively. So we omit the details.

5. Applications.

As applications we have some informations about the number, SpanP, of linearly independent vector fields on $P = \prod_{i=1}^r P^{n_i}$, and immersions and embeddings of P in Euclidean space R^k , by using Atiyah's method (cf. [2] and [5]). Recall the following useful properties of γ^i (cf. [2, (2.3), (3.3) and (4.3)]).

THEOREM (5.1) (M. F. Atiyah).

- (i) If $\alpha \in \widetilde{K}_R(X)$, then $\gamma^i(\alpha) = 0$ for $i > g.\dim \alpha$.
- (ii) Let M be a compact differentiable manifold of dimension m. If M is immersible in R^{m+k} , then $\gamma^i(-\tau_0(M))=0$ for i>k. If M is embeddable in R^{m+k} , then $\gamma^i(-\tau_0(M))=0$ for $i\geq k$.

Let δ and σ be the numbers defined in § 4 and put $\sum_{i=1}^r n_i = p$. Then we have

THEOREM (5.2). Span $P \leq p - \delta$.

PROOF. Suppose that $\operatorname{Span} P \geq p - \delta + 1$. Then there is a $(\delta - 1)$ -dimensional vector bundle ζ such that $\tau(P) \cong (p - \delta + 1) \oplus \zeta$. Thus $\operatorname{g.dim} \tau_0(P) \leq \delta - 1$. Hence, by (5.1), (i), $\gamma^i(\tau_0(P)) = 0$ for $i \geq \delta$, namely $\operatorname{dim}_{\gamma} \tau_0(P) \leq \delta - 1$. This contradicts (4.1).

THEOREM (5.3). P cannot be immersed in $R^{p+\sigma-1}$ and cannot be embedded in $R^{p+\sigma}$.

PROOF. Suppose that P is immersed in $R^{p+\sigma-1}$ or embedded in $R^{p+\sigma}$. Then $\gamma^i(-\tau_0(P))=0$ for $i \ge \sigma$, by (5.1), (ii), that is, $\dim_{\gamma}(-\tau_0(P)) \le \sigma-1$. This contradicts (4.2).

Y. Hayashi [3] and M. Yasuo [6] studied the non-immersibility and the non-embeddability of products of lens spaces by using Suzuki's technique.

References

- [1] J.F. Adams, Vector fields on spheres, Ann. of Math., 75 (1962), 603-632.
- [2] M.F. Atiyah, Immersions and embeddings of manifolds, Topology, 1 (1962), 125-132.
- [3] Y. Hayashi, Non-immersions of the products of lens spaces, Research Rep. Kushiro Tech. College, 8 (1974), 181-183.
- [4] M. Karoubi, K-Theory, Grundlehren der mathematischen Wissenschaften, 226, Springer-Verlag, Berlin-Heidelberg-New York, 1978.
- [5] H. Suzuki, Operations in KO-theory and products of real projective spaces, Mem. Fac. Sci. Kyushu Univ. Ser. A Math., 18 (1964), 140-153.
- [6] M. Yasuo, γ -dimension and products of lens spaces, Mem. Fac. Sci. Kyushu Univ. Ser. A Math., 31 (1977), 113-126.

Teiichi KOBAYASHI Department of Mathematics Faculty of Science Kochi University Akebono, Kochi 780 Japan