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1. Introduction.

Let a« be the stable class of a vector bundle over a complex X. The
7-dimension, dim,a, of « is defined as follows (cf. [6]):

dimya=sup{fe N|r{(a)+0},

where N is the set of positive integers and 7* is the 7-th Grothendieck y-opera-
tion (cf. [2]). Let z,(M) denote the stable class of the tangent bundle z(M) of
a differentiable manifold M. H. Suzuki investigated dim,z,(P™XP™) and
dim,(—z(P™Xx P™)), where P™ is the n-dimensional real projective space, and
applied them to the problem of vector fields on P™XP™ and to the problem of
immersions and embeddings of P™XP™ in Euclidean spaces. The purpose of
this note is to improve Suzuki’s results.

Let ¢(n) be the number of integers s such that 0<s=<n and s=0, 1, 2 or 4

mod 8, [a] be the integral part of a real number a, and (f) be a binomial

coefficient & !/(k—i)!7!. Define integers d(n) and o(m, n) as follows:

2i—1< n+1 )__7;0 mod 2¢(n)} ,

5<n>=max{i>o .
1

2i_2{<m+?+2>_< m+1 )_( n;H >}$0 mod 2[1/21},

?

o(m, n)zmax{z’>1

where [=min{m, n}. Then we prove

THEOREM 1. dim,zo(P™XP™=0(m, n).

If m=n=2"—2 (r=3), then o(m, n)=2""*=0d(n)+1>d(n). Therefore Theo-
rem 1 is a partial improvement of [5, (4.2)]. But if m=2"—2 and n=<2""!'—2
(r=3) then d(m, n)<2"2<2"'—1=4(m) and hence in this case [5, (4.2)] is
better than the theorem. Combining [5, (4.2)] and [Theorem 1, we obtain
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COROLLARY 2. dim,z(P™XP")zmax{d(m), é(n), 6(m, n)}.
Define other integers o(n) and o(m, n) as follows:

a(n):max{z'>0

2f—1( nti )seo mod 2¢<n>} ,

i

o(m, n):max{i>1

ioff mEn+1+41 m-+i n-+z
2 2{( Z_ )—( Z, )=( Z. )}sgo mod 2[1/21}.
Then we have

THEOREM 3. dim,(—z(P™XP™)=a(m, n).

If m=n=2"+6 (r=4), then o(m, n)=2""4+2=g(n)+1>0(n). Thus
3 is also a partial improvement of [5, (6.2)]. But if m=2" and n=<2""! (r=3)
then o(m, n)<2"241<2"'=¢g(m) and hence in this case [5, (6.2)] is better
than the theorem. Combining [5, (6.2)] and we obtain

COROLLARY 4. dim(—z(P™XP™)=max {c(m), a(n), o(m, n)}.

2. Preliminaries.

First, we recall the basic facts about the y-operations y® in Kg-rings of the
product space P™XP™ according to [5]. Let & and » be the Hopf bundles over
P™ and P™ respectively, let p; be the projection of P™XP" on the i-th factor
(z=1, 2), and put x=£&—1 (E[%R(P”‘)) and y=pn—1 (EI?'R(P”)). K};(Pm) and
kR(P") are regarded as the direct summands of

(2.1) Ke(Pmx Pry= Kp(P™)+ Ra(P™)+-Ky(P™AP™

by the ring homomorphisms p¥ and p¥ respectively, and so we denote p¥x and
p¥y simply by x and y respectively. Put z,=7,(P™XxP"). In [5, (4.1) and
(6.1)], the values of 7* on +r7, are calculated as follows:

THEOREM (2.2) (H. Suzuki).

e IS e IS () (o

penim (e (e Y e

3. Proofs of theorems.

Let ¢: Kp(X)—>K:(X) be the complexification.

LEMMA (3.1). The order of the element c(xy):c(x)c(y)EkC(P"‘/\P“) is
equal to 2%/, where [=min{m, n}.

PrROOF. From the Kiinneth formula (e.g. [4, Chapter IV, 3.27]) we have a
short exact sequence:
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0 Ko(P™QK(P™+KHP™RKLP™)—K(P™AP™)
—Tor(K5(P™), Ko(P™)+Tor(K(P™), Ki(P™)—0.

Since K! P™=Z or 0 according as m is odd or even, the homomorphism
K. KC(P’")(X)KC(P")—»KC(PmAP") defined by #(x@Qy)=xy gives an isomorphism
of Ko(PMRK(P™) onto K,(P™AP™ if m or n is even, and of Ko(P™QK(P™)
onto the torsion subgroup of I?C(Pm/\P") if both m and n are odd. Therefore
the order of c¢(x)c(y) (EKC(P"‘/\P”)) is equal to the order of c¢(x)Qc(y)
(EIZ'C(P’”)(X)I?C(P")), which is equal to 2021 (cf. [1, 7.3]).

ProorF or THEOREM 1. If 7i(z,)=0, then

22]21< 771;}-1 X ’Zf]l )xy=0,

by the first formula of (2.2) and the direct sum decomposition [2.1). Applying
the complexification ¢: Keg(P™AP™)— K., (P™AP™) to the equality and using the
identity

d 1 1 2
BT =TT,
we have, by (3.1),

2i—2{< m+in+2>~_< m;rl )_( n;'H )}EO mod 204/

Thus dim,z,=0(m, n).
PROOF OF THEOREM 3. If y{(—r7y)=0, then

oi- j:z)i( m;rj )( é;}i;]’)xyzo’

by the second formula of (2.2) and the direct sum decomposition In the
way similar to the proof of [Theorem 1, we have

2"‘2{( m+niH+z' )”(mj_ld_( n;H >}EO mod 20/

z

using this time the identity

SCTOCE=.

Therefore dim/(—zy)=a(m, n).



504 T. KOBAYASHI

4. Remarks.

Corollaries 2 and 4 can be easily extended to the case of a product space
P=TI;_.,P" of a finite number of real projective spaces P"i, i=1, 2, ---, r.
Define

o=max{0(ny), 6(n;, n)|1=i=r, 1=7=r, 1Sk =1},

o=max{o(n:), o(n;, ny)|1=i<r, 1575y, 1Sk<7}.

Then we obtain

THEOREM (4.1). dim,zy(P)=0.

THEOREM (4.2). dim,(—74(P))=o0.

The proofs of Theorems (4.1) and (4.2) are similar to those of Corollaries 2
and 4 respectively. So we omit the details.

5. Applications.

As applications we have some informations about the number, SpanP, of
linearly independent vector fields on P=T]}-,P™¢, and immersions and embeddings
of P in Euclidean space R*, by using Atiyah’s method (cf. and [5]). Recall
the following useful properties of y* (cf. [2, (2.3), (3.3) and (4.3)]).

THEOREM (5.1) (M. F. Atiyah).

(i) If asKx(X), then 1{(@)=0 for i>g.dim a.

(i) Let M be a compact differentiable manifold of dimension m. If M is
immersible in R™*%, then y{(—zo(M))=0 for i>k. If M is embeddable in R™**,
then 7y (—to(M))=0 for i=k.

Let 0 and ¢ be the numbers defined in §4 and put X7.,n;=p. Then we
have '

THEOREM (5.2). SpanP=<p—ad.

PROOF. Suppose that SpanP=p—d+1. Then there is a (6 —1)-dimensional
vector bundle { such that (P)=(p—d6+1)PL. Thus g.dimz,(P)<d—1. Hence,
by (5.1), (i), 7Y(zo(P)=0 for i=4d, namely dim,z((P)<d—1. This contradicts
4.1).

THEOREM (5.3). P cannot be immersed in R?*°~! and cannot be embedded in
R?to,

PROOF. Suppose that P is immersed in R?*’~! or embedded in R?*?. Then
7 (—7o(P))=0 for /=0, by (5.1), (ii), that is, dim,(—zo(P))<o—1. This contra-
dicts (4.2).

Y. Hayashi [3] and M. Yasuo studied the non-immersibility and the
non-embeddability of products of lens spaces by using Suzuki’s technique.
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