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§1. Introduction.

Kato [1, 2] studied the Cauchy problem for a linear evolution equation of
hyperbolic type in a Banach space X:

(d/dDu®+AQut)=0, u(s)=yeY, 0=s=i=T<o,

where Y is a Banach space dense in X and —A(¢) is the generator of a (Cy)
semigroup of bounded linear operators on X for each t. He proved a basic ex-
istence theorem (Theorem 4.1 of [1]) of the solution for the Cauchy problem
when the family A={A(@t)} is stable (see P. 244 of [I]) and A(-) is (Y, X) norm-
continuous, i.e., A(t) belongs to B(Y, X) and it is continuous in the norm of
B, X). Here B(Y, X) denotes the set of all bounded linear operators on Y to
X. Though he used Cauchy’s method in the proof, the author gave another
proof by means of the Yosida approximation in [6] Kato also proposed to solve
the Cauchy problem when A(:) is (¥, X) strongly continuous.

In this paper we prove an existence theorem (Theorem 2.1) directly by the
Yosida approximation method for a case where A(-) is (Y, X) strongly uniform-
measurable. Since our method involves no process of step function approxima-
tions of time-dependent operators, it is distinguished from Cauchy’s method as
well as from the usual Yosida approximation method for evolution equations
(see [7, 8]). Some additional assumption ((A4) (c) in §2) is needed for the proof
but we hope it is not so restrictive. We remark that Kobayasi [9] obtained a
similar result by Cauchy’s method with no additional assumptions when A(-) is
(Y, X) strongly continuous but it seems difficult to extend his result to a case
where A(:) is (Y, X) strongly measurable.

The author would like to express his hearty thanks to Professors H. Suno-
uchi, T. Kato and the referee for their kind and valuable advices.

§2. Theorem.

In this section we state our theorem with some preliminary considerations.
Our assumptions are the following.
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Let 0={=<T <oo. Further assume (Al) to (A4).

(Al) Y is a Banach space densely and continuously embedded in a real
Banach space X.

(A2) —A() is the generator of a (C,) semigroup on X for a.e. t. A is
quasi-stable with index {M, B(-)}:

-2 AG) - (T+ B A | M TTA—286),

for 0=, < - =t, =T, 1>2;5t), 1=7=k, k€N, where M is a constant, 8 is a
real-valued upper-integrable function (in the Lebesgue sense) on [0, 7] and |- | x
denotes the norm of B(X)=B(X, X).

(A3) YCD(A®)a.e,sothat A)eB(Y, X) a.e. |A(-)|y. x is upper-integrable
on [0, T] and A(-) is (Y, X) strongly uniform-measurable on [0, T, i.e., there
is a sequence of finite partitions {I,;: k=1, ---, k(n)}, n=1, 2, ---, of [0, T] into
subintervals and Riemann step functions A,, such that A, takes a constant
value A(t,:) on [,, for some {,,E,4, sgpllnk!—»O, and A,()— A(t) strongly
for a.e. 1.

(A4) There is a family {S()} of isomorphisms from Y onto X such that:

@ SHOADSEH =AM+ B, Bt)e B(X) for a.e. t, where B(-) is (X) strong-
ly measurable with |B(:)|x upper-integrable on [0, 7.

(b) There is a strongly measurable function S:[0, T1—B(Y, X) a.e., with
1S()lly. x upper-integrable on [0, T, such that S is equal to an indefinite strong
integral of S, where ||-|y,x denotes the norm of B(Y, X).

(¢) U+aSE)! is uniformly bounded in B(X) for 0=Z(=T, 0<a=Za, where
a, is some positive constant.

REMARK 2.1. If D(A®) is equal to Y for all ¢ with the graph norm and
A(+) is (Y, X) strongly continuously differentiable, then A(3) and A(4) are satis-
fied by taking S(¢)=I-+aA() for some a>0.

Next we state the definition of evolution operators.
DEFINITION 2.1. A family U={U(t, s):0=s=<t=T} of bounded linear opera-

tors in B(X) is called an evolution operator for A if the following conditions
are satisfied.

(a) U(-, ) is (X) strongly continuous.

(b)y U, s)U(s, nN=U{, r), U(s, s)=1I, 0=r<s<t<T.
(¢) U, s)YCY and U(-, +) is (Y) strongly continuous.
(d For each yeVY, U(-, -)y satisfies the following :

U, 9y—y=—| A0, 9y do,

Ut, )y— y:——S:U(t, DAYy do .
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So that U(-, -)y is strongly absolutely continuous in X and satisfies

%—U(t, s)y=—A@WU{, s)y a.e. t,

—;S—U(t, s)y=U(t, s)A(s)y a.e. s,

which exist in the strong sense in X.

Now we can state our theorem.

THEOREM 2.1. Under the assumptions (Al) to (A4) there is a unique evolution
operator U for A.

In the proof of we often use the following lemmas.

LEMMA 2.1. 1) Let P()eB(X,) and Q(t)= B(X,) be uniformly bounded for
tH<t<t, where X, X, ave Banach spaces with X, continuously embedded in X,.
If Q()y, yeX,, is strongly absolutely continuous in X, and P(-) is strongly
absolutely continuous in B(X,, X,)-norm, then P(-)Q(-)y is strongly absolutely
continuous in X;.

2) Let X, be a Banach space. If P(-), Q(-)=B(X,) are strongly absolutely
continuous in B(X))-norm, then P()Q(-)eB(X,) is also strongly absolutely con-
tinuous in B(X,)-norm.

3) Let f(t) be strongly absolutely continuous in X, for t,=t=t,, where X, is
a Banach space. If f(-) is a.e. differentiable and (d/dt)f(¢) is strongly integrable,
then
te_df(t)
ty dt

ProofF. 1) It suffices to note the following.
1P(a)Q(a)y—P®)Q®) ¥l x,
=1P(a)—PD) x, 2,1 Q) x, |yl x, H [P (D) ¢, 1 Q(a) y— Q) ¥ | x,
=Const (| P(a)—P Bl x, x, 1y x,H1Q(a)y— Q) ¥l x,),

h=a=b<t,, yeX,.

f<t2>—f<t1>:§ d.

The proof of 2) and 3) is straightforward.

LEMMA 2.2. Let P(-)eB(X,, X,) and Q(-)e B(X,, X,) be strongly measurable,
where X, X, and X, are Banach spaces. Then Q(-)P(-)eB(X., X;) is strongly
measurable [2: Lemma A4].

Hereafter we assume, without loss of generality, that 3 is Lebesgue integra-
ble with some positive constant §,<S(f) a.e., if necessary, by replacing B with
a dominating integrable function. Then we define the Yosida approximation Aj;
of A by the relation:

2.1) A:O=U—-L®)/20), a.e t,
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where
(2.2) L@O=U+iHA), a.et,
2.3) A=21/(B@)+Mb)), a.e. t, 0<A<I,

and b(-) is a Lebesgue integrable function such that |B®)|x=<b() a.e.

LEMMA 2.3. Let 0=t=T and 0<a<a, Under the assumptions above we have
the following.

(Bl) For each yeY, (d/dt)St)y=S®)y a.e.
(B2) S(@) is strongly absolutely continuous in B(Y, X)-norm. Hence |S®)|y. x
s uniformly bounded in t.

(B3) S(-)~* s strongly absolutely continuous in B(X, Y)-norm. Hence |S(t) ' x, v
is uniformly bounded in t.

(B4) I+aS(:))* is strongly absolutely continuous in B(X, Y)-norm for each «.
(T+aS®)™ ! is uniformly bounded for t, a both in B(X) and in B(Y).

(B5) Ja()=St)"I+AA) 1S  a.e. t,
where A;,—=A-+B.

M
iOlr=— =7 @et, 0<i<L.

IOl e sup IS@)  ,y sup ISOlly. x, a.e. 1, 0<2<L.

(B6) Ji(+) is (X) strongly measurable for 0<A<1 and (Y') strongly measurable
Jor 0<2<1/2.

(B7) A: is quasi-stable with index {M, B(-)+M|B()lx}. Since A,(t)=
SHABS@H) ™, Y is At)-admissible (a.e. ), i.e., the semi-group generated by — A(t)
leaves Y invariant and forms a (C,) semi-group on Y.

M
1—2
B9 T+AC)A() is (X) strongly measurable for 0<A<1/2.

(B10) A;(+) is (X) strongly measurable for 0<A<1 and (V) strongly measurable
for 0<2<1/2.

B8) [+10AM) =

a.e. t, 0<A<LI.

1 M
B |AOl =5 BO+MO(1+55) @et, 0<2<L.

A0 = 280+ MbO)(1+ 2 sup 1S x.v 50D | SOl x)

M
1-2
a.e. t, 0<a<1.

Proor. (Bl) to (B3) is a simple consequence of (A4) (b). To prove (B4) we
note the following.
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IT+aSE)ly=sup |S® | x,¥ sup SO r. x sup [{+aSE) | x .
In fact,

I +aSE)*ylr=1S®SOUT+aSE)* ylr
=1SO Nz 2 [SOU+aSE) vl x
=[SO x.r|T+aSE) SOyl x
=1SO Mz r I +aSE) 2 ISOlly. [l ylly -

Hence (I+aS@®))™* is uniformly bounded for ¢, &« in B(Y) by (A4) (c), (B2) and
(B3). Similarly we have

[T+aS@)xr= —i— sup SO~ &, ¥(1+sup [(F+aSE) | x) -

Thus (/+aS(+))"! is strongly absolutely continuous in B(X, Y)-norm by (B2),
completing the proof of (B4).

For the proof of (B7) we refer to Proposition 24 of [IJ. Then (B5) and
(B8) are obtained from (A2) and (B7) since J;@)=S@)*-(I+A®)A,{)1S{®) a.e.

Now we prove the strong measurability of J,(:). Since A(-) is measurable
by definition we can take a sequence of Riemann step functions A,(-) such
that 4,(t)—A(t) a.e. A sequence of Riemann step functions (I+A,()A.®)y
strongly converges in X to (/+A(t)A(®)) ™'y by (B5) where yeY, 0<A<1land A4,
is defined in (A3). Thus J;(:)y is strongly measurable in X for each yeY and
0<A4<1, so that J;(-)x is strongly measurable in X by continuity for each x=X.

(B9) is verified as follows. First we note that (J-+A®)A() =T +2@)J()B@)™?*
< J2@) for a.e. t, 0<A<1 and (J+A(-)J;(\)B(-))"! is (X) strongly measurable for
0<A<1/2. The latter is obtained by development into series for 0<<A<1/2 since
ANJ2(DB(+) is (X) strongly measurable by with the estimate:

2 A
Iu(l‘)fz(f)B(t)HX_S_M WO BOlx= -2

Thus we complete the proof of (B9) by Hence we can also get (B6)
by J.()=S®) T+ A1) A(@))"1S() since J;(-) is (Y) strongly measurable for 0<A
<1/2.

(B10) and (B11) are simple results of (B5), (B6) since A(-)"! is measurable.

REMARK 2.2, If A(:) is (¥, X) strongly piecewise continuous, then it is
(Y, X) strongly uniform-measurable. In case X is separable (so that Y is also
separable by (A4)) or A(t) is uniformly bounded in B(X), strong measurability
of Ji(+) is implied by that of A(:) for small 2>0 (see Lemma A2 of [2]).

REMARK 2.3. If we assume (X) strong measurability of [,(:), A(-)is (¥, X)
strong measurable as the limit of strongly measurable function A;(-) in B(X).

But this assumption seems to be difficult to verify because of the complicated
structure of Ji(-), Ai(-).

a.e. t, 0<A<1.
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§3. Proof of Theorem 2.1.

We use the Yosida approximation method to construct an evolution operator
for A. We will show that a family of evolution operators U, for the Yosida
approximation A; of A has a unique strong limit U as A\,0, which corresponds
to a unique evolution operator for A.

Since J;(+) is (X) strongly measurable by (B6) and ||/;®)|x=M/(1—2) for
a.e. t and 0<A<1 by (B5), we can define an operator U, :

B Ui, s>=exp[—52%]

[ e ) ]

0=s=t=T, 0<AL1,

in the strong sense in B(X). Now we will show that U; is the evolution operator
for A;. First we note that this operator is estimated by (A2) as follows.

3.2) IU1, )| x<M-exp [-%Z—St pdz],  0<i<l.
By definition U;(-, ) satisfies the integral equations:

U;, s)x—x:——S:A;(‘:)U;(r, s)xdr,

U, s)x—x:—StU;(t, DA (Dxdr,  xeX,

so that U; is strongly absolutely continuous in B(X)-norm for a fixed 2 and in
B, X)-norm uniformly for 2 by (3.2) and (B11). It also satisfies the relation:

(3.3 *gt/Uz(t, sx=—A;OU;{, s)x a.e. t, xX,
0

{3.4) fa?Uz(t, s)x=U;(t, $)A(s)x a.e. s, xX,

and

Ui(s, s)=I  for 0=s=T.

The relation U;(t, s)U (s, r)=U;@, r), 0Sr=s<t<T, is verified by
(3), if we use strong absolute continuity of U,(¢,:)-U,(-, ) in B(X)-norm and
the relation (0/0s)[U (¢, s)U (s, r)x]=0 a.e. s, x=X.
Moreover U; satisfies the following lemma as B(Y)-valued operator.
LEMMA 3.1. U;({, s) is uniformly bounded in B(Y) for 0<A<1/2, 0=s=<i=T,
and strongly absolutely continuous in B(Y)-norm for each A.
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REMARK 3.1. Since J;(+) is (Y) strongly measurable by (B6), the operator
U, in (8.1) is well defined also in B(Y), if we notice the stability of A restricted
in Y (see Proposition 4.4 of [T]). But we prove only by the essential
boundedness of J;(t) in B(Y) (see (Bb5)).

PrOOF OF LEMMA 3.1. Let 0=¢r=t<T. We note that U;{¢, )S(:)"U,(-, r)
islstrongly absolutely continuous in B(X)-norm for 0<2<1. Consider the relation:

2 Wt 9597 UsGs, 1]

—U,, s)[Al(s)S(s)‘l—S(s)‘lA;(s)+—C??S(s)‘l}U;(s, Nx, ae s, reX.

The right hand side of this equation is strongly integrable for s in X, so we get

(3.5 SO, nNx—U;, nSFr)'x

dS(s)

= Uit 9] A1) =S Aa(6)=S(9) 5 ()7 |Ua(s, xds

Omitting the argument s, we notice the following :

(3.6) A ST =S A =20 —=J)ST =S =)
=2 S =S
=L [UT+2A)S =S T+2A)1 ]z
=Ji(AST=5TA)

=ST'BJ;.
Hence from (3.5) we have
3.7 Vilt, Nx=S@7Us(t, Nx+| Vilt, C&Uas, rxds,
where
(3.8 V@, »)=U3, nSr),
dS(s) _ NN
3.9 Ca(s)= S(s)71—=S(s) J2(s)S(s)"1B(s) J(s) ,
with the estimate
. M M
IC2() x=1S()ly, xI1S() | x. rt{—1 HB(S)HX 1—1 0<a<1/2.

Since |C:(+)| x is upper-integrable and C;(-) is (X) strongly measurable, we can
define a family {I¥;} of bounded linear operators in X:

@.100 WL, N=Ua@, N+UCaUNE, n)+Uax(CUOKCUDE, )+ -,

where U x(PU,)t, r):StUl(t, S)P(s)U,(s, r)ds. By use of the estimate:
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Wi, = £ (1 166l ds) s 106 9100,

k
where S denotes upper-integral, we can conclude that W;(, ») is uniformly

bounded in B(X) for A, t, » and strongly absolutely continuous for i, » in B(X)-
norm as the limit of a uniformly convergent sequence since U;(-, ) is strongly
absolutely continuous. Moreover W; satisfies the following relation by definition.

(3.11) Wi, n=U;(t, r)—l—SiW;(t, S)C()U (s, r)ds .

Since the solution of is unique, we obtain (see [4, 5])
Vailt, x=SE)"'Wt, nx, xeX.

Thus by we have

(3.12) U;@, nNy=SEWt, nS@)y, yeY.

This relation implies that U,(t, ) is uniformly bounded in B(Y) for 4, ¢, » and
strongly absolutely continuous for ¢, » in B(Y)-norm. The lemma is pfoved.

By using this lemma, we can conclude that U 1 is a unique evolution operator
for A;.

To show that the family {U;({, s)x: A\,0} has a strong limit in X for each
x€X, we use the lemma.

LEMMA 3.2.

At
U, Py=Ust, )y =Clylly|at | adst 5 £ ], 5=,

where a(+) is a Lebesgue integrable function on [0, T] with |A(S)|ly, x=a(s) a.e.,
E={s:a(s)=07, 0=s<T} is a measurable set, B, is a constant with B,=p{) a.e.
and C is a constant independent of 0=r=t=T, ye¥, 0<a=Za,, 0<4, p<1/2and
0, B,>0.

PrROOF. We begin with the relation obtained from (34):

813) (U, DKLU s, M)

dS(s)

=U.(, s)[Al(s)Ka(s)—Ka<s>A,u(s)'—aKa(S> ds

Ka<s)]U,,<s, My,
a.e. s, where
(3.14) Kas)=U+aS(s)™,

yeY, 0<aZa,, 0<4, #<1/2, 0Sr<t<T. Since the right hand side of (3.13)is
strongly integrable for s in X and U;(t, -)K.(-)U,(:, )y is strongly absolutely
continuous in X, we have
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3.15) Uut, Ny—=Ualt, ny
==K (¢, ny—U,¢t, NI—Ka(r)1y

dS(s)

+{ U3 9] A K= Kal9) Al )=o) = K9 |

Uus, n)yds.

We notice the decomposition

T= 02, PLAOK—Ku(5) 4,900 (s, Ty ds

:(ngr,tﬁ&,,w)'"yds, yey.

Then each term of J is estimated as follows,

(3.16)

e yds| 5| 1 ylds=Clyl| a)ds

SEﬂ(r,t)

3.17) ]

S(r.t)\E yds” <CS( t E”Al(sﬂ{a(S) Ka(s)A Sy, xllylrds .

To estimate (3.17) we observe, with argument s omitted,
A K=K Ay=(Ar— ALK+ (A Ko — KAy
=A([i—J)Katp (Ko Ju— T Ko)
== DA A Ko+ KoL ] (I +aS)— (I +aS) u]1Ka
=(p—DAL J,AST SKetap  Ko(Ju.S—S] ) Ka

=(u—ANA; J,STA+B)SKo+a K. J,BS] K.
Thus we have

I A2()Ka($)—Ka(s)Au(S)ly, x

= %& [ A2() p()r, xISTH(S)A(S)+ B(sH iy o [T —Ka(s)lly

Fal| Ka(5)Ju($)B(s)S(5) ] u(8)Ka(S)y, x

A+p M? M2ab(s)
<Const |yt @0+ + |

where we used the estimate A(s)=24/(B(s)+Mb(s))=<2/B,. Hence (3.17) is estimated
as follows.

se(r, \E,

3.18) \

S(r.t)\E Y dSHX§C||yHy<a+ i—;go ) '

The lemma is verified by and [(3.18)|.
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implies that U;(¢, )y has a strong limit in X uniformly for ¢, 7,
if yeY, since 0<a=a,, 6>0 are arbitrary and the measure of E is not greater

r ,
than 5&0 a(s)ds. Then by continuity U;(, )y converges to some U(t, r)y strong-
ly in X uniformly in ¢, » for each yeX, so that U(¢, r)x is strongly continuous
in X,

Moreover U has the following properties as the limit of U;.

Ut H=I, UG, UG, r=U¢, ), 0sr<s<i<T,
UG, s)] x < M-exp [S @@df] .

U;(+, )y, y€Y, is strongly absolutely continuous in X uniformly for 1 and
so is U(-, *)y.

To check the regularity of U(t, s) we use the next lemma.

LEMMA 33. U(t, ») is uniformly bounded in B(Y) for t,v and it is (¥)
strongly continuous for t,r. Moreover U;(t, r) converges strongly to U(t, r) as
ANO in BY) uniformly for t, r.

Proor. We get the following from [3.7), (3.10) by the dominated convergence
theorem.

V@, r), Wit, v) converges strongly to V(t, r), W(t, r), respectively, as A\,0
in B(X) uniformly for ¢, », and following is satisfied:

Vi, Hx=S®1-UG, r)x—{—gt Ve, CEUG, Nxds, xeX,

W, r)=U(, r)+Ux(C-U)t, n)+UC-Ux(C-U)t, r)+ -,
where
Vi, n=U, r)S,

dS(s)
ds

Then we can conclude as in that

C(s)=

-S(s)"*—B(s).

Utt, =S~ W, nSr) in BY)

so U(t, r) is uniformly bounded in B(Y) for ¢, » and it is (¥) strongly continuous

for ¢, ». Thus U;(t, r) converges strongly to U(t, ) as AN\,0 in B(Y) uniformly
for ¢, ». Proof is completed.

Since U satisfies the following integral equations:

Ustt, )—I=—{ Ustt, 0)4x(0)do,

Uitt, 9—T=—{ 4000, 9do,
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we can prove by the dominated convergence theorem and Lemma 3.3:

U, s)y—yz——g:U(f, 0)Ale)yde, yeEY,

U, s)y-—y:—g:A(a)U(U, 9yde, yeY.

Thus U is an evolution operator for A and strongly absolutely continuous both
in B(Y, X)-norm and in B(X). U also satisfles the following:

%U(t, s)y=—A@®U{, s)y a.e. t, yel,

aa—sU(t, s)yy=U(t, s)A(s)y a.e.s, yeY,

which exist in the strong sense in X.

The uniqueness of the evolution operator is verified as follows. If U’ is
another evolution operator for A,

—%[U(t, U'(s, Nyl=UE, s)LAGS)—A()IU'(s, r)y
=0, yeY, a.e.s.

Since U(t, -)-U’(-, r)y is strongly absolutely continuous in X, U’(¢, r)x=U(t, »)x
for each x<X by continuity. This completes the proef of [Theorem 2.1l
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