Homomorphisms of Galois groups of solvably closed Galois extensions

By Kôji UCHIDA

(Received Jan. 7, 1980)

Let k_{1} and k_{2} be algebraic number fields of finite degrees. Let Ω_{1} and Ω_{2} be solvably closed Galois extensions of k_{1} and k_{2}, respectively. Let $G_{1}=G\left(\Omega_{1} / k_{1}\right)$ and $G_{2}=G\left(\Omega_{2} / k_{2}\right)$ be their Galois groups. If G_{1} and G_{2} are isomorphic as topological groups, it is known that Ω_{1} and Ω_{2} are isomorphic fields, more precisely:

Theorem [3]. Let $\sigma: G_{1} \rightarrow G_{2}$ be an isomorphism of topological groups. Then there corresponds a unique isomorphism $\tau: \Omega_{2} \rightarrow \Omega_{1}$ such that $\tau \cdot \sigma\left(g_{1}\right)=g_{1} \tau$ for any $g_{1} \in G_{1}$.

Looking at the statement above, it is natural to ask if the isomorphism σ can be replaced by a homomorphism.

Conjecture. Let $\sigma: G_{1} \rightarrow G_{2}$ be a continuous homomorphism such that $\sigma\left(G_{1}\right)$ is open in G_{2}. Then there corresponds a unique injection $\tau: \Omega_{2} \rightarrow \Omega_{1}$ of fields such that $\tau \cdot \sigma\left(g_{1}\right)=g_{1} \tau$ for any $g_{1} \in G_{1}$.

This conjecture means $\tau\left(\Omega_{2}\right)$ is G_{1}-invariant, $\tau\left(k_{2}\right) \subset k_{1}$ and $\Lambda_{1}=k_{1} \cdot \tau\left(\Omega_{2}\right)$ is a Galois extension of k_{1} which corresponds to the kernel of σ. The Galois group $G\left(\Lambda_{1} / k_{1}\right)$ is isomorphic to an open subgroup of G_{2}. Then our conjecture may also be regarded as an extension of the theorem above to a non-solvably-closed extension Λ_{1} / k_{1}.

In the following, let $k_{1}, k_{2}, \Omega_{1}, \Omega_{2}, G_{1}$ and G_{2} be as above, though we do not assume k_{2} is of finite degree in the corollary of Theorem 2. Let $\sigma: G_{1} \rightarrow G_{2}$ be a homomorphism as in the conjecture, except in Theorem 2 where we do not assume $\sigma\left(G_{1}\right)$ is open. Let Λ_{1} be the subfield of Ω_{1} corresponding to the kernel of σ. Let E_{2} be an extension of k_{2} contained in Ω_{2}, and let U_{2} be the corresponding subgroup of G_{2}. Let E_{1} be the subfield of Ω_{1} corresponding to $\sigma^{-1}\left(U_{2}\right)$. We call E_{1} is the field corresponding to E_{2} by σ.

1. Let \mathfrak{p}_{1} be a finite prime of k_{1}. Let $G_{\mathfrak{p}_{1}}$ be a decomposition subgroup of \mathfrak{p}_{1} in G_{1}. If $\sigma\left(G_{\mathfrak{p}_{1}}\right) \neq(e)$ and if $\sigma\left(G_{\mathfrak{p}_{1}}\right)$ is contained in some decomposition subgroup of a finite prime \mathfrak{p}_{2} of k_{2}, \mathfrak{p}_{2} is uniquely determined by \mathfrak{p}_{1}. Thus we get a mapping $\phi: \mathfrak{p}_{1} \mapsto \mathfrak{p}_{2}$ from a set of finite primes of k_{1} into a set of finite primes of k_{2}. We will see below that almost all primes of k_{2} are in the image of ϕ.

We fix a prime number l. Let p_{1} be not above l. Then a Sylow l-subgroup $G_{p_{1}, l}$ of $G_{p_{1}}$ is non-abelian and given by the extension

$$
1 \longrightarrow T_{l} \longrightarrow G_{p_{1}, l} \longrightarrow Z_{l} \longrightarrow 1
$$

where Z_{l} is the additive group of l-adic integers and $T_{l} \cong Z_{l}$ is the inertia subgroup of $G_{\eta_{1}, l}$. All the continuous homomorphic images of such a group are classified as below :
i) Trivial group, Z_{l}.
ii) $G_{p_{1}, l}$.
iii) Groups containing non-trivial elements of finite orders.

We note that every non-trivial closed normal subgroup of $G_{p_{1}, l}$ contains an open subgroup of T_{l}. This classification is the same as the classification by the cohomological dimensions. In the third case, centers of such groups contain elements of order l. We now apply the above for $\sigma\left(G_{p_{1}, l}\right)$.
i) If $\operatorname{cd} \sigma\left(G_{\mathfrak{p}_{1}, l}\right) \leqq 1$, the kernel of σ contains T_{l}. Then the ramification index of \mathfrak{p}_{1} in the extension Λ_{1} / k_{1} is not a multiple of l.
ii) If $\operatorname{cd} \sigma\left(G_{p_{1}, l}\right)=2, \sigma$ is an isomorphism on $G_{p_{1}, l}$. Let $N=\operatorname{Ker} \sigma \cap G_{p_{1}}$. Then

$$
1 \longrightarrow N \longrightarrow G_{p_{1}} \longrightarrow \sigma\left(G_{p_{1}}\right) \longrightarrow 1
$$

is exact, and a Sylow l-subgroup of N is trivial. Let U be any open subgroup of $\sigma\left(G_{\mathfrak{p}_{1}}\right)$ and let V be the inverse image of U in $G_{\mathfrak{p}_{1}}$. As

$$
1 \longrightarrow N \longrightarrow V \longrightarrow U \longrightarrow 1
$$

is exact, and as $H^{i}(N, Z / l Z)=0, i=1,2, \cdots$, we have isomorphisms

$$
H^{i}(U, Z / l Z) \cong H^{i}(V, Z / l Z), \quad i=1,2, \cdots
$$

As V is an open subgroup of $G_{p_{1}}, H^{2}(V, Z / l Z) \cong Z / l Z$. Then $H^{2}(U, Z / l Z) \cong$ $Z / l Z$ shows that the field corresponding to $\sigma\left(G_{p_{1}}\right)$ is Ω_{2}-Henselian by [2, Lemma 2]. Hence there exists a prime \mathfrak{p}_{2} of k_{2} such that $\phi\left(\mathfrak{p}_{1}\right)=\mathfrak{p}_{2}$. As $\sigma\left(G_{\mathfrak{p}_{1}}\right)$ is infinite, \mathfrak{p}_{2} is a finite prime. As cd $\sigma\left(G_{\mathfrak{p}_{1}, l}\right)=2, \sigma\left(G_{\mathfrak{p}_{1}, l}\right)$ must be an open subgroup of $G_{p_{2}, l}$. Then we see that \mathfrak{p}_{2} is not above l. As $G_{p_{1}, l}$ maps isomorphically onto an open subgroup of $G_{p_{2}, l}$, the inertia subgroup T_{l} maps into the inertia subgroup of $G_{\mathfrak{p}_{2}, l}$. Let E_{2} be a finite Galois extension of k_{2} contained in Ω_{2}. Let E_{1} be the corresponding extension of k_{1} by σ. If the ramification index of \mathfrak{p}_{2} in the extension E_{2} / k_{2} is not a multiple of l, the ramification index of \mathfrak{p}_{1} in E_{1} / k_{1} cannot be a multiple of l, as shown by the argument above.
iii) If $\operatorname{cd} \sigma\left(G_{p_{1}, l}\right)=\infty, l$ must be 2 because $\operatorname{cd}_{l} G_{2}=2$ for $l \neq 2$. As noted above, the center of $\sigma\left(G_{p_{1}, 2}\right)$ contains a subgronp M of order 2 . The field corresponding to M has a unique real prime. Let v be the restriction of this
prime onto the field corresponding to $\sigma\left(G_{p_{1}, 2}\right)$. Let w_{1}, w_{2}, \cdots be the extension of v in Ω_{2}. As decomposition subgroups are conjugate, all of them coincide with M. Then it must be $w_{1}=w_{2}=\cdots$, and the field corresponding to $\sigma\left(G_{\mathfrak{p}_{1}, 2}\right)$ is $\Omega_{2^{-}}$ Henselian by a real prime. This shows $\sigma\left(G_{\mathfrak{\eta}_{1}, 2}\right)=M$ is of order 2 .

Proposition 1. Almost all finite primes of k_{2} are in the image of ϕ. More precisely, every finite prime \mathfrak{p}_{2} of k_{2} except finite number of primes is the image of a finite prime \mathfrak{p}_{1} of k_{1} such that $\operatorname{cd} \sigma\left(G_{\mathfrak{p}_{1}}, l\right)=2$.

Proof. First we show that we can replace k_{2} by any finite extension E_{2} contained in Ω_{2}. Let E_{1} be the extension of k_{1} corresponding to E_{2} by σ. We assume our assertion is true for E_{2}. For every finite prime P_{2} of E_{2} except finite number of primes, there exists a prime P_{1} of E_{1} such that $\phi\left(P_{1}\right)=P_{2}$ and $\operatorname{cd} \sigma\left(G_{P_{1}, l}\right)=2$. Let \mathfrak{p}_{1} be the restriction of P_{1} onto k_{1}. As $G_{P_{1}}$ is an open subgroup of $G_{p_{1}}, \sigma\left(G_{p_{1}, l}\right)$ is a non-abelian infinite group. This shows $\operatorname{cd} \sigma\left(G_{p_{1}, l}\right)=2$. Then \mathfrak{p}_{1} maps to the restriction of P_{2}. Then our assertion is also true for k_{2}. Now we can assume that k_{2} contains the l-th roots of unity and that k_{2} is totally imaginary if $l=2$. Then $\mathrm{cd}_{2} G_{2}=2$ and the case iii) cannot happen. We assume that there exist infinitely many finite primes $\mathfrak{q}_{1}, \mathfrak{q}_{2}, \cdots$ in some ideal class such that they are not images of primes of k_{1} as in our assertion. Let $\mathfrak{q}_{1} / \mathfrak{q}_{j}=\left(\alpha_{j}\right)$. Then the extension $k_{2}\left(\sqrt[4]{\alpha_{2}}, \sqrt[2]{\alpha_{3}}, \cdots\right)$ is an infinite abelian extension of type (l, l, \cdots). Only prime divisors of l and $\mathfrak{q}_{1}, \mathfrak{q}_{2}, \cdots$ are ramified in this extension. Let E_{1} be the corresponding extension of k_{1}. Then E_{1} is an infinite abelian extension of k_{1} of type (l, l, \cdots). As we don't have the case iii), every finite prime of k_{1} except the divisors of l is not ramified in this extension. But this is a contradiction because such an extension must be of finite rank.
2. Let k be an algebraic number field of finite degree. Let p be a prime number, and let Z_{p} be the additive group of the p-adic integers. Let Z_{p}^{s} denote the direct sum of s copies of Z_{p}. A Galois extension of k is called a Z_{p}^{s}-extension if the Galois group is isomorphic to Z_{p}^{s}. We say k has Z_{p}-rank s if k has a Z_{p}^{s}-extension and does not have any Z_{p}^{s+1}-extension. It is known that $s \geqq r_{2}+1$ where r_{2} is the number of complex primes of k. Let F_{2} be the finite extension of k_{2} which corresponds to $\sigma\left(G_{1}\right)$. Let E_{2} be a totally imaginary quadratic extension of F_{2}. Let E_{1} be a quadratic extension of k_{1} corresponding to E_{2} by σ. As $G\left(\Omega_{2} / E_{2}\right)$ is a homomorphic image of $G\left(\Omega_{1} / E_{1}\right)$, the Z_{p}-rank of E_{1} is not less than the Z_{p}-rank of E_{2}. As E_{2} is totally imaginary, the $Z_{p^{-}}$ rank of E_{2} is not less than $\left[F_{2}: Q\right]+1$. If Leopoldt conjecture is true in E_{1} for a prime number p, i. e., if $s=r_{2}+1$ in E_{1}, the above shows $\left[k_{1}: Q\right] \geqq\left[F_{2}: Q\right]$.

From now on we assume $k_{1}=Q$. As E_{1} is a quadratic field in this case, the Z_{p}-rank of E_{1} is 1 or 2 . This shows $\left[F_{2}: Q\right]=1$, i.e., σ is surjective and $k_{2}=Q$. We now put $l=2$, and apply the argument of Section 1 in our case.

As Q has a unique Z_{2}-extension, the Z_{2}-extension corresponds to itself by σ. Let p be any odd prime number. As the decomposition group of p in this extension is infinite, $\sigma\left(G_{p, 2}\right)$ is infinite. Thus the case iii) does not occur when $k_{1}=Q$.

Lemma 1. The field K_{m} of the 2^{m}-th roots of unity corresponds to itself by σ for $m \geqq 3$. If it has Z_{p}-rank s, the Z_{p}^{s}-extension of K_{m} corresponds to itself by σ.

Proof. As 2 is the only prime which is ramified in the extension $Q(\sqrt{-1}$, $\sqrt{2}$) of $k_{2}=Q$, i) and ii) show that every prime except 2 is not ramified in the corresponding extension of $k_{1}=Q$. As this extension has the abelian Galois group of type (2, 2), it must be $Q(\sqrt{-1}, \sqrt{2})$. That is, $Q(\sqrt{-1}, \sqrt{2})$ corresponds to itself by σ. The Z_{2}-extension of Q corresponds to itself, as shown above. Then K_{m} must correspond to itself for any $m \geqq 3$. As it has a unique Z_{p}^{s}-extension, and as a Z_{p}^{s}-extension corresponds to a Z_{p}^{s}-extension, the $Z_{p^{-}}^{\mathrm{s}}$ extension must correspond to itself.

Lemma 2. The mapping ϕ is defined for every odd prime number, and ϕ is the identity.

Proof. Let q be any odd prime number. The field corresponding to $Q(\sqrt{q})$ by σ is not contained in $Q(\sqrt{-1}, \sqrt{2})$ by Lemma 1. Then an odd prime p is ramified in the corresponding field. As the case iii) does not occur, the argument in Section 1 shows the case ii) occurs for p, i. e., $\operatorname{cd} \sigma\left(G_{p, 2}\right)=2$. Then there corresponds an odd prime r such that $\phi(p)=r$. As ii) shows, r must be ramified in $Q(\sqrt{ } \bar{q})$. This shows $r=q$, i. e., every odd prime number q is in the image of ϕ. Now let p be an odd prime such that $\phi(p)$ is defined. We choose m large enough as p does not split completely in K_{m}. Let s be the Z_{p}-rank of K_{m}. The number of the prime divisors of p in K_{m} is at most the half of the degree of K_{m}. Hence s is greater than the number of the prime divisors. We consider inertia subgroups of the prime divisors of p in the Z_{p}^{s}-extension. If all of them are of rank at most one, K_{m} has an unramified Z_{p}-extension, which is a contradiction. Hence at least one of them contains a subgroup isomorphic to Z_{p}^{2}. Then a decomposition group of a prime divisor of $\phi(p)$ in the Z_{p}^{s}-extension contains a subgroup isomorphic to Z_{p}^{2}. If $\phi(p)=r \neq p$, the decomposition group of r does not contain such a subgroup. This shows $\phi(p)=p$. Let p be any odd prime number. There exists an odd prime number r such that $\phi(r)=p$. Then the above shows $p=\phi(r)=r$. That is, ϕ is defined for every prime p and $\phi(p)=p$.

Theorem 1. The conjecture is true for $k_{1}=Q$.
Proof. Let L_{2} be any finite Galois extension of $k_{2}=Q$ contained in Ω_{2}. Let L_{1} be a finite Galois extension of $k_{1}=Q$ corresponding to L_{2} by σ. Let p be any odd prime which splits completely in L_{2}. As ϕ is defined at p, p also
splits completely in L_{1}. This shows $L_{1} \subset L_{2}$. As they have the same degree, it must be $L_{1}=L_{2}$. Then Λ_{1} coincides with Ω_{2}, and σ is induced from an automorphism of G_{2}. Then there exists a unique isomorphism

$$
\tau: \Omega_{2} \longrightarrow \Omega_{2}=\Lambda_{1} \subset \Omega_{1}
$$

such that $\tau \cdot \sigma\left(g_{1}\right)=g_{1} \tau$ for any $g_{1} \in G_{1}$.
Corollary 1. Let Ω be a solvably closed Galois extension of Q. Let Λ be a Galois extension of Q. If $G(\Lambda / Q) \cong G(\Omega / Q)$, it must be $\Lambda=\Omega$.

Proof. Let Ω_{1} be a solvably closed Galois extension of Q which contains 1. Then the isomorphism above induces a surjective homomorphism $G\left(\Omega_{1} / Q\right) \rightarrow$ $G(\Omega / Q)$. We note that Λ is the field corresponding to the kernel of this homomorphism. Then Theorem 1 shows $\Lambda=\Omega$.
3. We will now prove uniqueness in our conjecture.

Lemma 3. If Ω_{1} is not contained in $\Omega_{2}, \Omega_{1} \Omega_{2}$ is an infinite extension of Ω_{2}.
Proof. A finite extension of k_{1} in Ω_{1} is not contained in Ω_{2}. Hence we may assume k_{1} is not contained in Ω_{2}. Let K be a Galois extension of Q of finite degree which contains both k_{1} and k_{2}. Let $H=G(K / Q)$. Let p be any prime number, and let F_{p} be a prime field with p elements. We put $A=F_{p} H$ and let

$$
1 \longrightarrow A \longrightarrow E \longrightarrow H \longrightarrow 1
$$

be a split group extension with the natural operation of H on A. Let L be a Galois extension of Q containing K with Galois group E. Let M be the maximal abelian p-extension of k_{1} contained in L. Let H_{1} be a subgroup of H corresponding to k_{1}. Then the field $M K$ corresponds to a subgroup

$$
B=\sum_{h_{1} \in H_{1}}\left(h_{1}-1\right) A
$$

of A. Let $k_{2}^{\prime}=k_{1} k_{2} \cap \Omega_{2}$ and let H_{2} be a subgroup of H corresponding to k_{2}^{\prime}. By our assumption, k_{1} is not contained in k_{2}^{\prime}, i. e., H_{1} does not contain H_{2}. Then B does not contain $\sum_{h_{2} \in H_{2}}\left(h_{2}-1\right) A$. This shows $M K$ cannot be obtained as a composition of K and an abelian extension of k_{2}^{\prime}. As M is a subfield of $\Omega_{1}, M \Omega_{2}$ is contained in $\Omega_{1} \Omega_{2}$. We now show that $M \Omega_{2}$ is not contained in $k_{1} \Omega_{2}$. There exists a natural isomorphism

$$
G\left(k_{1} \Omega_{2} / k_{1} k_{2}\right) \cong G\left(\Omega_{2} / k_{2}^{\prime}\right)
$$

If $M \Omega_{2}$ is contained in $k_{1} \Omega_{2}, M k_{2} / k_{1} k_{2}$ is an abelian extension contained in $k_{1} \Omega_{2}$. The above isomorphism shows that there exists an abelian extension F of k_{2}^{\prime} contained in Ω_{2} such that $M k_{2}=F k_{1}$. Then $M K=F K$ is a composition of K and an abelian extension F of k_{2}^{\prime}, which is a contradiction. As $M \Omega_{2}$ is not
contained in $k_{1} \Omega_{2}$, and as M is a p-extension of k_{1}, $\left[M \Omega_{2}: k_{1} \Omega_{2}\right]$ is a multiple of p. Then $\Omega_{1} \Omega_{2}$ contains a subfield whose degree is a multiple of p over Ω_{2} for any p. Then $\Omega_{1} \Omega_{2}$ must be an infinite extension of Ω_{2}.

Corollary. If there exists an algebraic number field E of finite degree such that $E \Omega_{1}=E \Omega_{2}, \Omega_{1}$ must be equal to Ω_{2}.

Proof. As $\Omega_{1} \Omega_{2}$ is contained in $E \Omega_{1}$ by our assumption, $\Omega_{1} \Omega_{2}$ is a finite extension of Ω_{1}. Similarly $\Omega_{1} \Omega_{2}$ is a finite extension of Ω_{2}. Then Ω_{1} and Ω_{2} are the same by Lemma 3.

Proposition 2. An injection τ in our conjecture is unique if it exists.
Proof. Let τ and ρ be injections from Ω_{2} into Ω_{1} such that

$$
\tau \cdot \sigma\left(g_{1}\right)=g_{1} \tau \quad \text { and } \quad \rho \cdot \sigma\left(g_{1}\right)=g_{1} \rho
$$

for any $g_{1} \in G_{1}$. Then $k_{1} \cdot \tau\left(\Omega_{2}\right)=k_{1} \cdot \rho\left(\Omega_{2}\right)$, because both of them correspond to the kernel of σ. As $\tau\left(\Omega_{2}\right) / \tau\left(k_{2}\right)$ and $\rho\left(\Omega_{2}\right) / \rho\left(k_{2}\right)$ are solvably closed, the above shows $\tau\left(\Omega_{2}\right)=\rho\left(\Omega_{2}\right)$. That is, $\rho \cdot \tau^{-1}$ is an automorphism of $\tau\left(\Omega_{2}\right)$. It holds

$$
g_{1} \cdot \rho \cdot \tau^{-1}=\rho \cdot \sigma\left(g_{1}\right) \cdot \tau^{-1}=\rho \cdot \tau^{-1} \cdot g_{1}
$$

on $\tau\left(\Omega_{2}\right)$, i. e., $\rho \cdot \tau^{-1}$ commutes with G_{1} on $\tau\left(\Omega_{2}\right)$. As $G_{1} / \operatorname{Ker} \sigma$ is naturally isomorphic with the Galois group of $\tau\left(\Omega_{2}\right) / k_{1} \cap \tau\left(\Omega_{2}\right), \rho \cdot \tau^{-1}$ commutes with the Galois group. Then [2, Lemma 3] shows $\rho \cdot \tau^{-1}=1$, i. e., $\rho=\tau$.
4. We will now prove our conjecture when σ has good local behavior.

Theorem 2. Let $\sigma: G_{1} \rightarrow G_{2}$ be a continuous homomorphism such that ϕ is defined everywhere, i.e., $\sigma\left(G_{\mathfrak{p}_{1}}\right) \neq(e)$ for every finite prime \mathfrak{p}_{1} of k_{1}, and there exists a finite prime \mathfrak{p}_{2} of k_{2} such that $\sigma\left(G_{\mathfrak{p}_{1}}\right) \subset G_{p_{2}}$. We further assume that every $\sigma\left(G_{p_{1}}\right)$ is open in $G_{p_{2}}$. Then $\sigma\left(G_{1}\right)$ is open in G_{2}, and there corresponds a unique injection $\tau: \Omega_{2} \rightarrow \Omega_{1}$ such that $\tau \cdot \sigma\left(g_{1}\right)=g_{1} \tau$ for any $g_{1} \in G_{1}$.

Let Q_{p} be the rational p-adic numbers, and let \bar{Q}_{p} be its algebraic closure. Let $D=G\left(\bar{Q}_{p} / Q_{p}\right)$ be the Galois group.

Lemma 4. Let D_{1} and D_{2} be open subgroups of D. Let $\sigma: D_{1} \rightarrow D_{2}$ be a continuous surjection. Then fields corresponding to D_{1} and D_{2} have the same residue class field. The inertia subgroup of D_{1} maps onto the inertia subgroup of D_{2}.

Proof. Let N be the kernel of σ. Let l be a prime number other than p. As shown by the argument of Section 1, σ is an isomorphism on a Sylow l subgroup of D_{1}. This shows $H^{1}\left(N, Q_{l} / Z_{l}\right)=0$ and

$$
H^{1}\left(D_{1}, Q_{l} / Z_{l}\right) \cong H^{1}\left(D_{2}, Q_{l} / Z_{l}\right) .
$$

That is, Sylow l-subgroups of $D_{1} /\left[D_{1}, D_{1}\right]$ and $D_{2} /\left[D_{2}, D_{2}\right]$ are isomorphic. As l is any prime number other than p, torsion parts of $D_{1} /\left[D_{1}, D_{1}\right]$ and $D_{2} /\left[D_{2}, D_{2}\right]$
are isomorphic except p-primary parts. This shows corresponding residue class fields have the same number of elements, and they are the same. Let T_{2} be the inertia subgroup of D_{2}, and let $T_{1}=\sigma^{-1}\left(T_{2}\right)$. The above argument for open subgroups of D_{1} and D_{2} shows that the field corresponding to T_{1} is unramified, As $D_{1} / T_{1} \cong D_{2} / T_{2} \cong \hat{Z}, T_{1}$ must be the inertia subgroup of D_{1}

We first prove that $\sigma\left(G_{1}\right)$ is open in G_{2} in our theorem. Let F_{2} be the extension of k_{2} corresponding to $\sigma\left(G_{1}\right)$. We have to prove [$F_{2}: k_{2}$] is finite. Let $\mathfrak{p}_{2}=\phi\left(\mathfrak{p}_{1}\right)$. As $\sigma\left(G_{\mathfrak{p}_{1}}\right)$ is open in $G_{\mathfrak{p}_{2}}$, it is clear that \mathfrak{p}_{1} and \mathfrak{p}_{2} lie above the same prime number. Lemma 3 shows $N \mathfrak{p}_{1}$ is equal to the number of the residue classes of the field corresponding to $\sigma\left(G_{\mathfrak{p}_{1}}\right)$. In particular, $N \mathfrak{p}_{1} \geqq N p_{2}$ holds. This inequality is also valid when k_{2} is replaced by a finite extension contained in F_{2}. Let E_{2} be a Galois extension of k_{2} contained in Ω_{2}. Let E_{1} be the corresponding extension of k_{1} by σ. If p_{2} is unramified in E_{2}, \mathfrak{p}_{1} is unramified in E_{1}. Let P_{1} and P_{2} be the sets of the finite primes of k_{1} and k_{2}, respectively. We want to show $P_{2}-\phi\left(P_{1}\right)$ is finite. If it is infinite, there exist infinitely many primes belonging to $P_{2}-\phi\left(P_{1}\right)$ in some ideal class. Let $\mathfrak{q}_{1}, \mathfrak{q}_{2}, \cdots$ be such primes, and let $\mathfrak{q}_{1} / \mathfrak{q}_{i}=\left(\alpha_{i}\right)$. Then $k_{2}\left(\sqrt{\alpha_{2}}, \sqrt{\alpha_{3}}, \cdots\right)$ is an infinite abelian extension of k_{2} contained in Ω_{2}. Any prime other than divisors of 2 is unramified in the field corresponding to $k_{2}\left(\sqrt{\alpha_{2}}, \sqrt{\alpha_{3}}, \cdots\right)$ by σ. Then it must be a finite extension of k_{1}. This shows F_{2} contains an infinite abelian extension E_{2} contained in $k_{2}\left(\sqrt{\alpha_{2}}, \sqrt{\alpha_{3}}, \cdots\right)$. Let \mathfrak{p}_{1} be a prime of k_{1} of degree 1 which is not above 2 . Then $\mathfrak{p}_{2}=\phi\left(\mathfrak{p}_{1}\right)$ must be of degree 1 and any extension of \mathfrak{p}_{2} in E_{2} must be also of degree 1. As \mathfrak{p}_{2} is unramified in E_{2}, \mathfrak{p}_{2} splits completely in E_{2}. As $N \mathfrak{p}_{1}=$ $N \mathfrak{p}_{2}$, and as there exist at most $\left[k_{1}: Q\right]$ primes \mathfrak{p}_{1} such that $\phi\left(\mathfrak{p}_{1}\right)=\mathfrak{p}_{2}$ for a fixed \mathfrak{p}_{2},

$$
\lim _{s \rightarrow 1+0} \Sigma \frac{1}{N \mathfrak{p}_{2}^{s}} / \log \frac{1}{s-1} \geqq \frac{1}{\left[k_{1}: Q\right]}
$$

where the sum is taken over the primes \mathfrak{p}_{2} of k_{2} such that $\mathfrak{p}_{2}=\phi\left(\mathfrak{p}_{1}\right)$ for some prime \mathfrak{p}_{1} of degree one. This is a contradiction because primes of density more than $\left[k_{1}: Q\right]^{-1}$ split completely in an infinite Galois extension E_{2}. Thus $P_{2}-\phi\left(P_{1}\right)$ is finite. This shows that ϕ maps the primes above p onto the primes above p for almost all p. Then $N \mathfrak{p}_{1} \geqq N \mathfrak{p}_{2}$ shows $\left[k_{1}: Q\right] \geqq\left[k_{2}: Q\right]$. As this is also true for any finite extension of k_{2} contained in F_{2}, it must be $\left[k_{1}: Q\right] \geqq\left[F_{2}: Q\right]$. This shows $\sigma\left(G_{1}\right)$ is open in G_{2}. Uniqueness of τ is then proved by Proposition 2. We now show existence of τ. Let K be a finite Galois extension of Q which contains both k_{1} and k_{2}. Let $H=G(K / Q)$, and let S_{1} and S_{2} be subgroups of H corresponding to k_{1} and k_{2}, respectively.

Lemma 5. Every element of S_{1} is conjugate to an element of S_{2} in H.
Proof. Let s be any element of S_{1}. There exists a prime number p unramified in K such that s is a Frobenius automorphism of a prime divisor \mathfrak{P}_{1}
of p in K. Then $\mathfrak{p}_{1}=\mathfrak{F}_{1} \cap k_{1}$ is a prime of degree 1 in k_{1}. As shown above, $\mathfrak{p}_{2}=\phi\left(\mathfrak{p}_{1}\right)$ is of degree 1 in k_{2}. Let \mathfrak{p}_{2} be a prime divisor of \mathfrak{p}_{2} in K. Let h be an element of H such that $\mathfrak{B}_{2}=\Re_{1}^{h}$. Then $h s h^{-1}$ is in S_{2}.

Lemma 6. Let L be a finite Galois extension of Q. Let E_{2} be a finite Galois extension of k_{2} contained in Ω_{2}, and let E_{1} be the corresponding extension of k_{1} by σ. If L contains k_{1} and E_{2}, L also contains E_{1}.

Proof. Let p be any prime number such that all prime divisors of p in k_{2} are images of primes in k_{1} through ϕ. If p splits completely in L, every prime divisor of p in E_{2} has relative degree 1 over k_{2}. Then the correspondence ϕ shows every prime divisor of p in E_{1} has relative degree 1 over k_{1}. As every prime divisor of p in k_{1} is also of degree 1 , every prime divisor of p in E_{1} is of degree 1 . This shows $E_{1} \subset L$.

Let K_{2} be any finite Galois extension of k_{2} contained in Ω_{2}. Let K_{1} be the corresponding Galois extension of k_{1} by σ. Let $H_{i}=G\left(K_{i} / k_{i}\right)$. Then an injection $\sigma: H_{1} \rightarrow H_{2}$ is naturally induced. We will show that there exists an injection $\tau: K_{2} \rightarrow K_{1}$ such that $\tau \cdot \sigma\left(h_{1}\right)=h_{1} \tau$ on K_{2} for any $h_{1} \in H_{1}$. Then we can easily get a desiring injection $\tau: \Omega_{2} \rightarrow \Omega_{1}$. Most of the argument below is the same as in [3].

Let K be a finite Galois extension of Q which contains both K_{1} and K_{2}. Let $H=G(K / Q), S_{i}=G\left(K / k_{i}\right)$ and $N_{i}=G\left(K / K_{i}\right)$. Then $H_{i} \cong S_{i} / N_{i}$. Let h_{11}, \cdots, $h_{1 m}$ be a system of generators of H_{1} and let $h_{2 j}=\sigma\left(h_{1 j}\right)$. Let $s_{i j}$ be an element of S_{i} such that $s_{i j} N_{i}=h_{i j}$. Let $S_{i 0}$ be N_{i} and let $S_{i j}, j=1, \cdots, m$, be a subgroup of S_{i} which is generated by $s_{i j}$ and N_{i}. Let $F_{i j}$ be a subfield of K which corresponds to $S_{i j}$. Then $F_{1 j}$ corresponds to $F_{2 j}$ by σ. Let p be a prime number such that $p \equiv 1 \bmod |H|$ and let F_{p} be a prime field of characteristic p. Let $A=$ $F_{p} H u_{0}+\cdots+F_{p} H u_{m}$ be an H-module which is isomorphic to a direct sum of $m+1$ copies of $F_{p} H$. Let

$$
1 \longrightarrow A \longrightarrow E \longrightarrow H \longrightarrow 1
$$

be a split group extension. Let L be a Galois extension of Q which contains K and whose Galois group is isomorphic to E. Let L_{j} be a subfield of L which corresponds to $F_{p} H u_{0}+\cdots+F_{p} H u_{j-1}+F_{p} H u_{j+1}+\cdots+F_{p} H u_{m}$. Then L_{j} is a Galois extension of Q whose Galois group is isomorphic to a split extension of H by $F_{p} H u_{j}$. Let χ_{j} be a character of $S_{1 j} / N_{1}$ whose order is equal to the order of $S_{1 j} / N_{1}$. Values of χ_{j} are considered to be elements of F_{p}. As σ induces an isomorphism from $S_{1 j} / N_{1}$ onto $S_{2 j} / N_{2}, \chi_{j} \sigma^{-1}$ is a character of $S_{2 j} / N_{2}$ which is also denoted by χ_{j} by abuse of the notation. Let $M_{2 j}$ be the maximal abelian p-extension of K_{2} contained in L_{j} such that the operation of $S_{2 j} / N_{2}$ on the Galois group $G\left(M_{2 j} / K_{2}\right)$ coincides with the scalar multiplication of the values of χ_{j}. As $M_{2 j}$ is a subfield of Ω_{2}, there exists an extension $M_{1 j}$ of K_{1} correspond-
ing to $M_{2 j}$ by σ. Lemma 6 shows $M_{1 j}$ is contained in L_{j}. As the Galois group $G\left(M_{1 j} / F_{1 j}\right)$ is isomorphic to a subgroup of $G\left(M_{2 j} / F_{2 j}\right)$, the operation of $S_{1 j} / N_{1}$ on $G\left(M_{1 j} / K_{1}\right)$ is also the scalar multiplication of the values of χ_{j}. Let $B_{i j}$ be the subgroup of $F_{p} H u_{j}$ which corresponds to an intermediate field $K M_{i j}$. As $G\left(M_{i j} / K_{i}\right)$ and $F_{p} H u_{j} / B_{i j}$ are isomorphic as $S_{i j} / N_{i}$-modules, $\left(t_{i j}-\chi_{j}\left(t_{i j}\right)\right) F_{p} H u_{j}$ is contained in $B_{i j}$ for any $t_{i j} \in S_{i j}$. That is, $C_{i j}=\sum_{t_{i j} \in S_{i j}}\left(t_{i j}-\chi_{j}\left(t_{i j}\right)\right) F_{p} H u_{j}$ is contained in $B_{i j}$. As N_{2} operates trivially on $F_{p} H u_{j} / C_{2 j}$, the intermediate field corresponding to $C_{2 j}$ comes from some abelian p-extension of K_{2}. Then the maximality shows $B_{2 j}=C_{2 j}$. Let A_{i} be the subgroup of A corresponding to $K \prod_{j=0}^{m} M_{i j}$. We have shown

$$
A_{1} \supset \sum_{j} \sum_{t_{1 j} \in S_{1 j}}\left(t_{1 j}-\chi_{j}\left(t_{1 j}\right)\right) F_{p} H u_{j}
$$

and

$$
A_{2}=\sum_{j} \sum_{t_{2} \in \mathcal{N}_{2 j}}\left(t_{2 j}-\chi_{j}\left(t_{2 j}\right)\right) F_{p} H u_{j} .
$$

As $\Pi M_{1 j}$ corresponds to $\Pi M_{2 j}$ by σ, Lemma 5 shows every element of $G\left(L / \Pi M_{1 j}\right)$ is conjugate to an element of $G\left(L / \Pi M_{2 j}\right)$ in E. As $G(L / K)$ is a normal subgroup of E, every element of $A_{1}=G\left(L / K \Pi M_{1 j}\right)$ is conjugate to an element of $A_{2}=G\left(L / K \Pi M_{2 j}\right)$ in E. We put

$$
a=\sum_{n_{1} \in N_{1}}\left(n_{1}-1\right) u_{0}+\sum_{j=1}^{m}\left(s_{1 j}-\chi_{j}\left(s_{1 j}\right)\right) u_{j} \in A_{1} .
$$

Then there exists an element $h \in H$ such that $h a \in A_{2}$, i. e.,

$$
h \sum_{n_{1}}\left(n_{1}-1\right) \in \sum_{n_{2}}\left(n_{2}-1\right) F_{p} H
$$

and

$$
h\left(s_{1 j}-\chi_{j}\left(s_{1 j}\right)\right) \in \sum_{t_{2 j}}\left(t_{2 j}-\chi_{j}\left(t_{2 j}\right)\right) F_{p} H, \quad j=1, \cdots, m .
$$

This shows

$$
\sum_{n_{2}} n_{2} h \sum_{n_{1}}\left(n_{1}-1\right)=0
$$

and

$$
\sum_{t_{2 j}} t_{2 j} \chi_{j}\left(t_{2 j}\right)^{-1} h\left(s_{1 j}-\chi_{j}\left(s_{1 j}\right)\right)=0 .
$$

Let n_{1} be any element of N_{1}. We calculate the coefficient of $h n_{1}$ in the first equality. As the number of pairs (n_{2}, n_{1}^{\prime}) such that $n_{2} h n_{1}^{\prime}=h n_{1}$ is smaller than p, there necessarily exists an element $n_{2} \in N_{2}$ such that $n_{2} h=h n_{1}$. This shows $h N_{1} h^{-1} \subset N_{2}$. Then h^{-1} induces an injection from K_{2} into K_{1}. As the coefficient of $h s_{1 j}$ is zero in the second equality, there exists an element $t_{2 j} \in S_{2 j}$ such that

$$
h s_{1 j}=t_{2 j} h \quad \text { and } \quad \chi_{j}\left(t_{2 j}\right)=\chi_{j}\left(s_{1 j}\right) .
$$

Then $h_{2 j}=s_{2 j} N_{2}=t_{2 j} N_{2}$ by the definition of χ_{j}. As $h^{-1} t_{2 j}=s_{1 j} h^{-1}$, actions of $h^{-1} h_{2 j}$ $=h^{-1} \sigma\left(h_{1 j}\right)$ and $h_{1 j} h^{-1}$ are equal on K_{2}. Then $\tau=h^{-1}$ is a desired element, because H_{1} is generated by $h_{11}, \cdots, h_{1 m}$. Thus we have shown the existence of τ in our theorem.

Corollary. Let k_{1} and k_{2} be algebraic number fields. We assume that k_{1} is of finite degree. Let Ω_{1} and Ω_{2} be solvably closed Galois extensions of k_{1} and k_{2}, respectively. If their Galois groups $G\left(\Omega_{1} / k_{1}\right)$ and $G\left(\Omega_{2} / k_{2}\right)$ are isomorphic, k_{2} is also of finite degree.

Proof. Let F_{2} be a subfield of k_{2} of finite degree. Let L_{2} be the maximal Galois extension of F_{2} contained in Ω_{2}. Then L_{2} is solvably closed. There exists a natural homomorphism $\mu: G\left(\Omega_{2} / k_{2}\right) \rightarrow G\left(L_{2} / F_{2}\right)$. Combining with the given isomorphism $\sigma: G\left(\Omega_{1} / k_{1}\right) \rightarrow G\left(\Omega_{2} / k_{2}\right)$, a homomorphism

$$
\rho: G\left(\Omega_{1} / k_{1}\right) \longrightarrow G\left(L_{2} / F_{2}\right)
$$

is induced. As L_{2} is solvably closed, μ maps any decomposition subgroup of a finite prime injectively into a decomposition subgroup. As shown in [1, Theorem 1], the isomorphism σ induces isomorphisms of decomposition subgroups. Hence ρ maps any decomposition subgroup injectively into a decomposition subgroup. Then the image must be open in a decomposition subgroup [1, Theorem 1]. Thus ρ satisfies the condition of our theorem. Then it must be $\left[F_{2}: Q\right]<\left[k_{1}: Q\right]$ as shown in the proof of our theorem. As F_{2} is arbitrary, $\left[k_{2}: Q\right]$ is not greater than $\left[k_{1}: Q\right]$.

References

[1] J. Neukirch, Kennzeichnung der endlich-algebraischen Zahlkörper durch die Galoisgruppe der maximal aufösbaren Erweiterungen, J. für Math., 238 (1969).
[2] K. Uchida, Isomorphisms of Galois groups of algebraic function fields, Ann. of Math., 106 (1977).
[3] K. Uchida, Isomorphisms of Galois groups of solvably closed Galois extensions, Tôhoku Math. J., 31 (1979).

Kôji Uchida
Department of Mathematics
College of General Education
Tôhoku University
Sendai 980
Japan

