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Let $k_{1}$ and $k_{2}$ be algebraic number fields of finite degrees. Let $\Omega_{1}$ and $\Omega_{2}$

be solvably closed Galois extensions of $k_{1}$ and $k_{2}$ , respectively. Let $G_{1}=G(\Omega_{1}/k_{1})$

and $G_{2}=G(\Omega_{2}/k_{2})$ be their Galois groups. If $G_{1}$ and $G_{2}$ are isomorphic as topol-
ogical groups, it is known that $\Omega_{1}$ and $\Omega_{2}$ are isomorphic fields, more precisely:

THEOREM [3]. Let $\sigma:G_{1}\rightarrow G_{2}$ be an isomorphism of topological groups. Then
there correspOnds a unique isomorphism $\tau;\Omega_{2}\rightarrow\Omega_{1}$ such that $\tau\cdot\sigma(g_{1})=g_{1}\tau$ for any
$g_{1}\in G_{1}$ .

Looking at the statement above, it is natural to ask if the isomorphism a
can be replaced by a homomorphism.

CONJECTURE. Let $\sigma:G_{1}\rightarrow G_{2}$ be a continuous homomorphism such that $\sigma(G_{1})$

is open in $G_{2}$ . Then there corresPonds a unique injection $\tau:\Omega_{2}\rightarrow\Omega_{1}$ of fields such
that $\tau\cdot\sigma(g_{1})=g_{1}\tau$ for any $g_{1}\in G_{1}$ .

This conjecture means $\tau(\Omega_{2})$ is $G_{1}$-invariant, $\tau(k_{2})\subset k_{1}$ and $\Lambda_{1}=k_{1}\cdot\tau(\Omega_{2})$ is a
Galois extension of $k_{1}$ which corresponds to the kernel of $\sigma$ . The Galois group
$G(\Lambda_{1}/k_{1})$ is isomorphic to an open subgroup of $G_{2}$ . Then our conjecture may
also be regarded as an extension of the theorem above to a non-solvably-closed
extension $\Lambda_{1}/k_{1}$ .

In the following, let $k_{1},$ $k_{2},$ $\Omega_{1},$ $\Omega_{2},$ $G_{1}$ and $G_{2}$ be as above, though we do
not assume $k_{2}$ is of finite degree in the corollary of Theorem 2. Let $\sigma$ : $G_{1}\rightarrow G_{Z}$

be a homomorphism as in the conjecture, except in Theorem 2 where we do
not assume $\sigma(G_{1})$ is open. Let $\Lambda_{1}$ be the subfield of $\Omega_{1}$ corresponding to the
kernel of $\sigma$ . Let $E_{2}$ be an extension of $k_{2}$ contained in $\Omega_{2}$ , and let $U_{2}$ be the
corresponding subgroup of $G_{2}$ . Let $E_{1}$ be the subfield of $\Omega_{1}$ corresponding to
$\sigma^{-1}(U_{2})$ . We call $E_{1}$ is the field corresponding to $E_{2}$ by $\sigma$ .

1. Let $\mathfrak{p}_{1}$ be a finite prime of $k_{1}$ . Let $G_{\mathfrak{p}_{1}}$ be a decomposition subgroup of
$\mathfrak{p}_{1}$ in $G_{1}$ . If $\sigma(G_{\mathfrak{p}_{1}})\neq(e)$ and if $\sigma(G_{\mathfrak{p}_{1}})$ is contained in some decomposition sub-
group of a finite prime $\mathfrak{p}_{2}$ of $k_{2},$

$\mathfrak{p}_{2}$ is uniquely determined by $\mathfrak{p}_{1}$ . Thus we get
a mapping $\phi:\mathfrak{p}_{1}-\mathfrak{p}_{2}$ from a set of finite primes of $k_{1}$ into a set of finite primes
of $k_{2}$ . We will see below that almost all primes of $k_{2}$ are in the image of $\phi$ .
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We fix a prime number $l$ . Let $\mathfrak{p}_{1}$ be not above $l$ . Then a Sylow l-subgroup
$G_{\mathfrak{p}_{1},l}$ of $G_{\mathfrak{p}_{1}}$ is non-abelian and given by the extension

$1\rightarrow T_{l}\rightarrow G_{\mathfrak{p}_{1}.l}\rightarrow Z_{l}\rightarrow 1$ ,

where $Z_{l}$ is the additive group of l-adic integers and $T_{l}\cong Z_{l}$ is the inertia sub-
group of $G_{\mathfrak{p}_{1}.\iota}$ . All the continuous homomorphic images of such a group are
classified as below:

i) Trivial group, $Z_{l}$ .
ii) $G_{\mathfrak{p}_{1},\iota}$ .

iii) Groups containing non-trivial elements of Pnite orders.
We note that every non-trivial closed normal subgroup of $G_{\mathfrak{p}_{1}.\iota}$ contains an open
subgroup of $T_{l}$ . This classification is the same as the classification by the co-
homological dimensions. In the third case, centers of such groups contain ele-
ments of order $l$ . We now aPply the above for $\sigma(G_{\mathfrak{p}_{1}.l})$ .

i) If cd $\sigma(G_{\mathfrak{p}_{1},l})\leqq 1$ , the kernel of $\sigma$ contains $T_{l}$ . Then the ramification
index of $\mathfrak{p}_{1}$ in the extension $\Lambda_{1}/k_{1}$ is not a multiple of 1.

ii) If cd $\sigma(G_{\mathfrak{p}_{1},l})=2$ , $\sigma$ is an isomorphism on $G_{\mathfrak{p}_{1},l}$ . Let $N=Ker\sigma\cap G_{\mathfrak{p}_{1}}$ .
Then

$1\rightarrow N\rightarrow G_{\mathfrak{p}_{1}}\rightarrow\sigma(G_{\mathfrak{p}_{1}})\rightarrow 1$

is exact, and a Sylow l-subgroup of $N$ is trivial. Let $U$ be any open subgroup
of $\sigma(G_{\mathfrak{p}_{1}})$ and let $V$ be the inverse image of $U$ in $G_{\mathfrak{p}_{1}}$ . As

$1\rightarrow N\rightarrow V\rightarrow U\rightarrow 1$

is exact, and as $H^{i}(N, Z/lZ)=0,$ $i=1,2,$ $\cdots$ , we have isomorphisms

$H^{i}(U, Z/lZ)\cong H^{i}(V, Z/lZ)$ , $i=1,2,$ $\cdots$

As $V$ is an open subgroup of $G_{\mathfrak{p}_{1}},$ $H^{2}(V, Z/lZ)\cong Z/lZ$ . Then $ H^{2}(U, Z/lZ)\cong$

$Z/lZ$ shows that the field corresponding to $\sigma(G_{\mathfrak{p}_{1}})$ is $\Omega_{2}$-Henselian by [2, Lemma
2]. Hence there exists a prime $\mathfrak{p}_{2}$ of $k_{2}$ such that $\phi(\mathfrak{p}_{1})=\mathfrak{p}_{2}$ . As $\sigma(G_{\mathfrak{p}_{1}})$ is in-
finite, $\mathfrak{p}_{2}$ is a Pnite prime. As cd $\sigma(G_{\mathfrak{p}_{1},l})=2$, $\sigma(G_{\mathfrak{p}_{1}.l})$ must be an open
subgroup of $G_{\mathfrak{p}_{2}.l}$ . Then we see that $\mathfrak{p}_{2}$ is not above $l$ . As $G_{\mathfrak{p}_{1},l}$ maps
isomorphically onto an open subgroup of $G_{\mathfrak{p}_{2},l}$ , the inertia subgroup $T_{l}$ maps
into the inertia subgroup of $G_{\mathfrak{p}_{2},\iota}$ . Let $E_{2}$ be a finite Galois extension of $k_{2}$

contained in $\Omega_{2}$ . Let $E_{1}$ be the corresponding extension of $k_{1}$ by $\sigma$ . If the
ramification index of $\mathfrak{p}_{2}$ in the extension $E_{2}/k_{2}$ is not a multiple of $l$ , the rami-
fication index of $\mathfrak{p}_{1}$ in $E_{1}/k_{1}$ cannot be a multiple of $l$ , as shown by the argu-
ment above.

iii) If cd $\sigma(G_{\mathfrak{p}_{1}.l})=\infty,$
$l$ must be 2 because $cd_{l}G_{2}=2$ for $l\neq 2$ . As noted

above, the center of $\sigma(G_{\mathfrak{p}_{1}.2})$ contains a subgronp $M$ of order 2. The field cor-
responding to $M$ has a unique real prime. Let $v$ be the restriction of this
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prime onto the field corresponding to $\sigma(G_{\mathfrak{p}_{1}.2})$ . Let $w_{1},$ $w_{2},$
$\cdots$ be the extension

of $v$ in $\Omega_{2}$ . As decomposition subgroups are conjugate, all of them coincide with
$M$. Then it must be $ w_{1}=w_{2}=\ldots$ , and the field corresponding to $\sigma(G_{\mathfrak{p}_{1}2})$ is $\Omega_{2^{-}}$

Henselian by a real prime. This shows $\sigma(G_{\mathfrak{p}_{1^{2}}},)=M$ is of order 2.
PROPOSITION 1. Almost all finite primes of $k_{2}$ are in the image of $\phi$ . More

Precisely, every finite prime $\mathfrak{p}_{2}$ of $k_{2}$ except finite number of primes is the image
of a finite prime $\mathfrak{p}_{1}$ of $k_{1}$ such that cd $\sigma(G_{\mathfrak{p}_{1},l})=2$ .

PROOF. First we show that we can replace $k_{2}$ by any finite extension $E_{2}$

contained in $\Omega_{2}$ . Let $E_{1}$ be the extension of $k_{1}$ corresponding to $E_{2}$ by $\sigma$ . We
assume our assertion is true for $E_{2}$ . For every finite prime $P_{2}$ of $E_{2}$ except
finite number of primes, there exists a prime $P_{1}$ of $E_{1}$ such that $\phi(P_{1})=P_{2}$ and
cd $\sigma(G_{P_{1},l})=2$ . Let $\mathfrak{p}_{1}$ be the restriction of $P_{1}$ onto $k_{1}$ . As $G_{P_{1}}$ is an open sub-
group of $G_{\mathfrak{p}_{1}},$ $\sigma(G_{\mathfrak{p}_{1}.l})$ is a non-abelian infinite group. This shows cd $\sigma(G_{\mathfrak{p}_{1},l})=2$ .
Then $\mathfrak{p}_{1}$ maps to the restriction of $P_{2}$ . Then our assertion is also true for $k_{2}$ .
Now we can assume that $k_{2}$ contains the l-th roots of unity and that $k_{2}$ is
totally imaginary if $1=2$ . Then $cd_{2}G_{2}=2$ and the case iii) cannot happen. We
assume that there exist infinitely many finite primes $q_{1},$ $q_{2},$

$\cdots$ in some ideal
class such that they are not images of primes of $k_{1}$ as in our assertion. Let
$q_{1}/q_{j}=(\alpha_{j})$ . Then the extension $k_{2}(\sqrt[\iota]{\alpha_{2}}, \sqrt[4]{\alpha_{3}}, )$ is an infinite abelian extension
of type $(l, l, )$ . Only prime divisors of $l$ and $q_{1},$ $q_{2},$

$\cdots$ are ramified in this exten-
sion. Let $E_{1}$ be the corresponding extension of $k_{1}$ . Then $E_{1}$ is an infinite abelian
extension of $k_{1}$ of type $(l, l, \cdots)$ . As we don’t have the case iii), every finite
prime of $k_{1}$ except the divisors of $l$ is not ramified in this extension. But this
is a contradiction because such an extension must be of finite rank.

2. Let $k$ be an algebraic number field of finite degree. Let $p$ be a prime
number, and let $Z_{p}$ be the additive group of the $p$ -adic integers. Let $Z_{p}^{s}$ denote
the direct sum of $s$ copies of $Z_{p}$ . A Galois extension of $k$ is called a $Z_{p}^{s}$-exten-
sion if the Galois group is isomorphic to $Z_{p}^{s}$ . We say $k$ has $Z_{p}$-rank $s$ if $k$

has a $Z_{p}^{s}$-extension and does not have any $Z_{p}^{s+1}$ -extension. It is known that
$s\geqq r_{2}+1$ where $r_{2}$ is the number of complex primes of $k$ . Let $F_{2}$ be the finite
extension of $k_{2}$ which corresponds to $\sigma(G_{1})$ . Let $E_{2}$ be a totally imaginary
quadratic extension of $F_{2}$ . Let $E_{1}$ be a quadratic extension of $k_{1}$ corresponding
to $E_{2}$ by $\sigma$ . As $G(\Omega_{2}/E_{2})$ is a homomorphic image of $G(\Omega_{1}/E_{1})$ , the $Z_{p}$-rank
of $E_{1}$ is not less than the $Z_{p}$-rank of $E_{2}$ . As $E_{2}$ is totally imaginary, the $Z_{p^{-}}$

rank of $E_{2}$ is not less than $[F_{2} : Q]+1$ . If Leopoldt conjecture is true in $E_{1}$

for a prime number $p,$
$i$ . $e.$ , if $s=r_{2}+1$ in $E_{1}$ , the above shows $[k_{1} : Q]\geqq[F_{2} : Q]$ .

From now on we assume $k_{1}=Q$ . As $E_{1}$ is a quadratic field in this case,
the $Z_{p}$-rank of $E_{1}$ is 1 or 2. This shows $[F_{2} : Q]=1,$ $i$ . $e.,$ $\sigma$ is surjective and
$k_{2}=Q$ . We now put $l=2$ , and apply the argument of Section 1 in our case.
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As $Q$ has a unique $Z_{2}$-extension, the $Z_{2}$-extension corresponds to itself by $\sigma$ .
Let $p$ be any odd prime number. As the decomposition group of $p$ in this
extension is infinite, $\sigma(G_{p,2})$ is infinite. Thus the case iii) does not occur when
$k_{1}=Q$ .

LEMMA 1. The field $K_{m}$ of the $2^{m}$-th roots of unity corresponds to itself by
$\sigma$ for $m\geqq 3$ . If it has $Z_{p}$-rank $s$ , the $Z_{p}^{s}$-extension of $K_{m}$ corresponds to itself
by $\sigma$ .

PROOF. As 2 is the only prime which is ramified in the extension $Q(\sqrt{-1}$,
$\sqrt{2})$ of $k_{2}=Q,$ $i$ ) and ii) show that every prime except 2 is not ramiPed in the
corresponding extension of $k_{1}=Q$ . As this extension has the abelian Galois
group of type $(2, 2)$ , it must be $Q(\sqrt{-1}, \sqrt{2})$ . That is, $Q(\sqrt{-1}, \sqrt{2})$ corre-
sponds to itself by $\sigma$ . The $Z_{2}$-extension of $Q$ corresponds to itself, as shown
above. Then $K_{m}$ must correspond to itself for any $m\geqq 3$ . As it has a unique
$Z_{p}^{s}$-extension, and as a $Z_{p}^{s}$-extension corresponds to a $Z_{p}^{s}$-extension, the $Z_{p^{-}}^{s}$

extension must correspond to itself.
LEMMA 2. The mapping $\phi$ is defined for every odd Pnme number, and $\phi$ is

the identity.
PROOF. Let $q$ be any odd prime number. The Peld corresponding to $Q(\sqrt{q})$

by $\sigma$ is not contained in $Q(\sqrt{-1}, \sqrt{}^{-}2^{-})$ by Lemma 1. Then an odd prime $P$ is
ramified in the corresponding field. As the case iii) does not occur, the argu-
ment in Section 1 shows the case ii) occurs for $p,$

$i$ . $e.$ , cd $\sigma(G_{p.2})=2$ . Then
there corresponds an odd prime $r$ such that $\phi(p)=r$ . As ii) shows, $r$ must be
ramified in $Q(\sqrt{}\overline{q})$ . This shows $r=q,$

$i$ . $e.$ , every odd prime number $q$ is in the
image of $\phi$ . Now let $P$ be an odd prime such that $\phi(p)$ is defined. We choose
$m$ large enough as $p$ does not split completely in $K_{m}$ . Let $s$ be the $Z_{p}$-rank of
$K_{m}$ . The number of the prime divisors of $p$ in $K_{m}$ is at most the half of the
degree of $K_{m}$ . Hence $s$ is greater than the number of the prime divisors. We
consider inertia subgroups of the prime divisors of $p$ in the $Z_{p}^{s}$-extension. If
all of them are of rank at most one, $K_{m}$ has an unramified $Z_{p}$-extension, which
is a contradiction. Hence at least one of them contains a subgroup isomorphic
to $Z_{p}^{2}$ . Then a decomposition group of a prime divisor of $\phi(P)$ in the $Z_{p}^{s}$-exten-
sion contains a subgroup isomorphic to $Z_{p}^{2}$ . If $\phi(p)=r\neq p$ , the decomposition
group of $r$ does not contain such a subgroup. This shows $\phi(p)=p$ . Let $P$ be
any odd prime number. There exists an odd prime number $r$ such that $\phi(r)=P$ .
Then the above shows $p=\phi(r)=r$ . That is, $\phi$ is defined for every prime $p$ and
$\phi(p)=p$ .

THEOREM 1. The conjecture is true for $k_{1}=Q$ .
PROOF. Let $L_{2}$ be any finite Galois extension of $k_{2}=Q$ contained in $\Omega_{2}$ .

Let $L_{1}$ be a finite Galois extension of $k_{1}=Q$ corresponding to $L_{2}$ by $\sigma$ . Let $P$

be any odd prime which splits completely in $L_{2}$ . As $\phi$ is dePned at $p,$ $P$ also
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splits completely in $L_{1}$ . This shows $L_{1}\subset L_{2}$ . As they have the same degree,
it must be $L_{1}=L_{2}$ . Then $A_{1}$ coincides with $\Omega_{2}$ , and $\sigma$ is induced from an auto-
morphism of $G_{2}$ . Then there exists a unique isomorphism

$\tau;\Omega_{2}\rightarrow\Omega_{2}=\Lambda_{1}\subset\Omega_{1}$

such that $\tau\cdot\sigma(g_{1})=g_{1}\tau$ for any $g_{1}\in G_{1}$ .
COROLLARY 1. Let $\Omega$ be a solvably closed Galois extension of Q. Let $\Lambda$ be

a Galois extension of Q. If $G(\Lambda/Q)\cong G(\Omega/Q)$ , it must be $\Lambda=\Omega$ .
PROOF. Let $\Omega_{1}$ be a solvably closed Galois extension of $Q$ which contains

$\Lambda$ . Then the isomorphism above induces a surjective homomorphism $ G(\Omega_{1}/Q)\rightarrow$

$G(\Omega/Q)$ . We note that $\Lambda$ is the field corresponding to the kernel of this homo-
morphism. Then Theorem 1 shows $\Lambda=\Omega$ .

3. We will now prove uniqueness in our conjecture.
LEMMA 3. If $\Omega_{1}$ is not contained in $\Omega_{2},$ $\Omega_{1}\Omega_{2}$ is an infinite extension of $\Omega_{2}$ .
PROOF. A finite extension of $k_{1}$ in $\Omega_{1}$ is not contained in $\Omega_{2}$ . Hence we

may assume $k_{1}$ is not contained in $\Omega_{2}$ . Let $K$ be a Galois extension of $Q$ of
finite degree which contains both $k_{1}$ and $k_{2}$ . Let $H=G(K/Q)$ . Let $p$ be any
prime number, and let $F_{p}$ be a prime field with $p$ elements. We put $A=F_{p}H$

and let
$1\rightarrow A\rightarrow E\rightarrow H\rightarrow 1$

be a split group extension with the natural operation of $H$ on $A$ . Let $L$ be a
Galois extension of $Q$ containing $K$ with Galois group $E$ . Let $M$ be the maximal
abelian p-extension of $k_{1}$ contained in $L$ . Let $H_{1}$ be a subgroup of $H$ corre-
sponding to $k_{1}$ . Then the field $MK$ corresponds to a subgroup

$B=\sum_{h_{1}\in H_{1}}(h_{1}-1)A$

of $A$ . Let $k_{2}^{\prime}=k_{1}k_{2}\cap\Omega_{2}$ and let $H_{2}$ be a subgroup of $H$ corresponding to $k_{2}^{\prime}$ .
By our assumption, $k_{1}$ is not contained in $k_{2}^{\prime},$ $i$ . $e.,$ $H_{1}$ does not contain $H_{2}$ . Then
$B$ does not contain $\sum_{h_{2}\in H_{2}}(h_{2}-1)A$ . This shows $MK$ cannot be obtained as a

composition of $K$ and an abelian extension of $k_{2}^{\prime}$ . As $M$ is a subPeId of $\Omega_{1},$ $M\Omega_{2}$

is contained in $\Omega_{1}\Omega_{2}$ . We now show that $M\Omega_{2}$ is not contained in $k_{1}\Omega_{2}$ . There
exists a natural isomorphism

$G(k_{1}\Omega_{2}/k_{1}k_{2})\cong G(\Omega_{2}/k_{2}^{\prime})$ .

If $M\Omega_{2}$ is contained in $k_{1}\Omega_{2},$ $Mk_{2}/k_{1}k_{2}$ is an abelian extension contained in $k_{1}\Omega_{2}$ .
The above isomorphism shows that there exists an abelian extension $F$ of $k_{2}^{\prime}$

contained in $\Omega_{2}$ such that $Mk_{2}=Fk_{1}$ . Then $MK=FK$ is a composition of $K$

and an abelian extension $F$ of $k_{2}^{\prime}$ , which is a contradiction. As $M\Omega_{2}$ is not
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contained in $k_{1}\Omega_{2}$ , and as $M$ is a $p$ -extension of $k_{1},$ $[M\Omega_{2} : k_{1}\Omega_{2}]$ is a multiple
of $p$ . Then $\Omega_{1}\Omega_{2}$ contains a subfield whose degree is a multiple of $P$ over $\Omega_{2}$

for any $p$ . Then $\Omega_{1}\Omega_{2}$ must be an inPnite extension of $\Omega_{2}$ .
COROLLARY. If there exists an algebraic number field $E$ of finite degree

such that $E\Omega_{1}=E\Omega_{2},$ $\Omega_{1}$ must be equal to $\Omega_{2}$ .
PROOF. As $\Omega_{1}\Omega_{2}$ is contained in $E\Omega_{1}$ by our assumption, $\Omega_{1}\Omega_{2}$ is a finite

extension of $\Omega_{1}$ . Similarly $\Omega_{1}\Omega_{2}$ is a finite extension of $\Omega_{2}$ . Then $\Omega_{1}$ and $\Omega_{2}$

are the same by Lemma 3.
PROPOSITION 2. An injection $\tau$ in our conjecture is unique if it exists.
PROOF. Let $\tau$ and $\rho$ be injections from $\Omega_{2}$ into $\Omega_{1}$ such that

$\tau\cdot\sigma(g_{1})=g_{1}\tau$ and $\rho\cdot\sigma(g_{1})=g_{1}\rho$

for any $g_{1}\in G_{1}$ . Then $k_{1}\cdot\tau(\Omega_{2})=k_{1}\cdot\rho(\Omega_{2})$ , because both of them correspond to
the kernel of $\sigma$ . As $\tau(\Omega_{2})/\tau(k_{2})$ and $\rho(\Omega_{2})/\rho(k_{2})$ are solvably closed, the above
shows $\tau(\Omega_{2})=\rho(\Omega_{2})$ . That is, $\rho\cdot\tau^{-1}$ is an automorphism of $\tau(\Omega_{2})$ . It holds

$g_{1}\cdot\rho\cdot\tau^{-1}=\rho\cdot\sigma(g_{1})\cdot\tau^{-1}=\rho\cdot\tau^{-1}\cdot g_{1}$

on $\tau(\Omega_{2}),$ $i$ . $e.,$ $\rho\cdot\tau^{-1}$ commutes with $G_{1}$ on $\tau(\Omega_{2})$ . As $ G_{1}/Ker\sigma$ is naturally iso-
morphic with the Galois group of $\tau(\Omega_{2})/k_{1}\cap\tau(\Omega_{2}),$ $\rho\cdot\tau^{-1}$ commutes with the
Galois group. Then [2, Lemma 3] shows $\rho\cdot\tau^{-1}=1,$ $i$ . $e.,$ $\rho=\tau$ .

4. We will now prove our conjecture when $\sigma$ has good local behavior.
THEOREM 2. Let $\sigma$ : $G_{1}\rightarrow G_{2}$ be a continuous homomorphism such that $\phi$ is

defined everywhere, $i$ . $e.,$ $\sigma(G_{\mathfrak{p}_{1}})\neq(e)$ for every finite prime $\mathfrak{p}_{1}$ of $k_{1}$ , and there
exists a finite prime $\mathfrak{p}_{2}$ of $k_{2}$ such that $\sigma(G_{\mathfrak{p}_{1}})\subset G_{\mathfrak{p}_{2}}$ . We further assume that
every $\sigma(G_{\mathfrak{p}_{1}})$ is open in $G_{\mathfrak{p}_{2}}$ . Then $\sigma(G_{1})$ is open in $G_{2}$ , and there corresp0nds a
unique injection $\tau;\Omega_{2}\rightarrow\Omega_{1}$ such that $\tau\cdot\sigma(g_{1})=g_{1}\tau$ for any $g_{1}\in G_{1}$ .

Let $Q_{p}$ be the rational $p$ -adic numbers, and let $Q_{p}$ be its algebraic closure.
Let $D=G(\overline{Q}_{p}/Q_{p})$ be the Galois group.

LEMMA 4. Let $D_{1}$ and $D_{2}$ be open subgroups of D. Let $\sigma;D_{1}\rightarrow D_{2}$ be a
continuous surjection. Then fields correspondjng to $D_{1}$ and $D_{2}$ have the same
residue class field. The inertia subgroup of $D_{1}$ maps onto the inertia subgroup
of $D_{2}$ .

PROOF. Let $N$ be the kernel of $\sigma$ . Let $l$ be a prime number other than $p$ .
As shown by the argument of Section 1, $\sigma$ is an isomorphism on a Sylow 1-
subgroup of $D_{1}$ . This shows $H^{1}(N, Q_{l}/Z_{l})=0$ and

$H^{1}(D_{1}, Q_{l}/Z_{l})\cong H^{1}(D_{2}, Q_{l}/Z_{l})$ .
That is, Sylow l-subgroups of $D_{1}/[D_{1}, D_{1}]$ and $D_{2}/[D_{2}, D_{2}]$ are isomorphic. As
1 is any prime number other than $p$ , torsion parts of $D_{1}/[D_{1}, D_{1}]$ and $D_{2}/[D_{2}, D_{2}]$
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are isomorphic except p-primary parts. This shows corresponding residue class
fields have the same number of elements, and they are the same. Let $T_{2}$ be
the inertia subgroup of $D_{2}$ , and let $T_{1}=\sigma^{-1}(T_{2})$ . The above argument for open
subgroups of $D_{1}$ and $D_{2}$ shows that the field corresponding to $T_{1}$ is unramified,
As $D_{1}/T_{1}\cong D_{2}/T_{2}\cong\hat{Z},$ $T_{1}$ must be the inertia subgroup of $D_{1}$

We first prove that $\sigma(G_{1})$ is open in $G_{2}$ in our theorem. Let $F_{2}$ be the
extension of $k_{2}$ corresponding to $\sigma(G_{1})$ . We have to prove $[F_{2} : k_{2}]$ is finite.
Let $\mathfrak{p}_{2}=\phi(\mathfrak{p}_{1})$ . As $\sigma(G_{\mathfrak{p}_{1}})$ is open in $G_{\mathfrak{p}_{2}}$ , it is clear that $\mathfrak{p}_{1}$ and $\mathfrak{p}_{2}$ lie above the
same prime number. Lemma 3 shows $N\mathfrak{p}_{1}$ is equal to the number of the residue
classes of the field corresponding to $\sigma(G_{\mathfrak{p}_{1}})$ . In particular, $N\mathfrak{p}_{1}\geqq N\mathfrak{p}_{2}$ holds. This
inequality is also valid when $k_{2}$ is replaced by a finite extension contained in
$F_{2}$ . Let $E_{2}$ be a Galois extension of $k_{2}$ contained in $\Omega_{2}$ . Let $E_{1}$ be the corre-
sponding extension of $k_{1}$ by $\sigma$ . $lf\mathfrak{p}_{2}$ is unramified in $E_{2},$

$\mathfrak{p}_{1}$ is unramified in
$E_{1}$ . Let $P_{1}$ and $P_{2}$ be the sets of the Pnite primes of $k_{1}$ and $k_{2}$ , respectively.
We want to show $P_{2}-\phi(P_{1})$ is finite. If it is infinite, there exist infinitely many
primes belonging to $P_{2}-\phi(P_{1})$ in some ideal class. Let $q_{1},$ $q_{2},$

$\cdots$ be such primes,
and let $q_{1}/q_{i}=(\alpha_{i})$ . Then $k_{2}(\wedge\alpha_{2}, \sqrt{\alpha_{3}}, \cdots)$ is an infinite abelian extension of $k_{2}$

contained in $\Omega_{2}$ . Any prime other than divisors of 2 is unramiPed in the field
corresponding to $k_{2}(\sqrt{}^{\prime}\overline{\alpha_{2}}, \wedge\alpha_{3}, \cdots)$ by $\sigma$ . Then it must be a finite extension of
$k_{1}$ . This shows $F_{2}$ contains an infinite abelian extension $E_{2}$ contained in
$k_{2}(\mathcal{F}\alpha_{2}, \sqrt{\alpha_{3}}, )$ . Let $\mathfrak{p}_{1}$ be a prime of $k_{1}$ of degree 1 which is not above 2.
Then $\mathfrak{p}_{2}=\phi(\mathfrak{p}_{1})$ must be of degree 1 and any extension of $\mathfrak{p}_{2}$ in $E_{2}$ must be also
of degree 1. As $\mathfrak{p}_{2}$ is unramified in $E_{2},$

$\mathfrak{p}_{2}$ splits completely in $E_{2}$ . As $N\mathfrak{p}_{1}=$

$N\mathfrak{p}_{2}$ , and as there exist at most $[k_{1} : Q]$ primes $\mathfrak{p}_{1}$ such that $\phi(\mathfrak{p}_{1})=\mathfrak{p}_{2}$ for a
fixed $\mathfrak{p}_{2}$ ,

$\varliminf_{s\rightarrow 1+0}\Sigma\frac{1}{N\mathfrak{p}_{2}^{s}}/\log\frac{1}{s-1}\geqq\frac{1}{[k_{1}:Q]}$

where the sum is taken over the primes $\mathfrak{p}_{2}$ of $k_{2}$ such that $\mathfrak{p}_{2}=\phi(\mathfrak{p}_{1})$ for some
prime $\mathfrak{p}_{1}$ of degree one. This is a contradiction because primes of density more
than $[k_{1} : Q]^{-1}$ split completely in an infinite Galois extension $E_{2}$ . Thus $P_{2}-\phi(P_{1})$

is finite. This shows that $\phi$ maps the primes above $P$ onto the primes above
$p$ for almost all $p$ . Then $N\mathfrak{p}_{1}\geqq N\mathfrak{p}_{2}$ shows $[k_{1} : Q]\geqq[k_{2} : Q]$ . As this is also
true for any finite extension of $k_{2}$ contained in $F_{2}$ , it must be $[k_{1} : Q]\geqq[F_{2} : Q]$ .
This shows $\sigma(G_{1})$ is open in $G_{2}$ . Uniqueness of $\tau$ is then proved by Proposition
2. We now show existence of $\tau$ . Let $K$ be a finite Galois extension of $Q$ which
contains both $k_{1}$ and $k_{2}$ . Let $H=G(K/Q)$ , and let $S_{1}$ and $S_{2}$ be subgroups of $H$

corresponding to $k_{1}$ and $k_{2}$ , respectively.
LEMMA 5. Every element of $S_{1}$ is conjugate to an element of $S_{2}$ in $H$.
PROOF. Let $s$ be any element of $S_{1}$ . There exists a prime number $P$ un-

ramified in $K$ such that $s$ is a Frobenius automorphism of a prime divisor $\mathfrak{P}_{1}$
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of $p$ in $K$. Then $\mathfrak{p}_{1}=\mathfrak{P}_{1}\cap k_{1}$ is a prime of degree 1 in $k_{1}$ . As shown above,
$\mathfrak{p}_{2}=\phi(\mathfrak{p}_{1})$ is of degree 1 in $k_{2}$ . Let $\mathfrak{P}_{2}$ be a prime divisor of $\mathfrak{p}_{2}$ in $K$. Let $h$ be
an element of $H$ such that $\mathfrak{P}_{z}=\mathfrak{P}_{1}^{h}$ Then $hsh^{-1}$ is in $S_{2}$ .

LEMMA 6. Let $L$ be a finite Galois extension of Q. Let $E_{2}$ be a finite Galois
extension of $k_{2}$ contained in $\Omega_{2}$ , and let $E_{1}$ be the correspOnding extension of $k_{1}$

by $\sigma$ . If $L$ contains $k_{1}$ and $E_{2},$ $L$ also contains $E_{1}$ .
PROOF. Let $P$ be any prime number such that all prime divisors of $p$ in $k_{2}$

are images of primes in $k_{1}$ through $\phi$ . If $P$ splits completely in $L$ , every prime
divisor of $p$ in $E_{2}$ has relative degree 1 over $k_{2}$ . Then the correspondence $\phi$

shows every prime divisor of $p$ in $E_{1}$ has relative degree 1 over $k_{1}$ . As every
prime divisor of $p$ in $k_{1}$ is also of degree 1, every prime divisor of $P$ in $E_{1}$ is
of degree 1. This shows $E_{1}\subset L$ .

Let $K_{2}$ be any finite Galois extension of $k_{2}$ contained in $\Omega_{2}$ . Let $K_{1}$ be the
corresponding Galois extension of $k_{1}$ by $\sigma$ . Let $H_{i}=G(K_{i}/k_{i})$ . Then an injec-
tion $\sigma$ : $H_{1}\rightarrow H_{2}$ is naturally induced. We will show that there exists an injec-
tion $\tau;K_{2}\rightarrow K_{1}$ such that $\tau\cdot\sigma(h_{1})=h_{1}\tau$ on $K_{2}$ for any $h_{1}\in H_{1}$ . Then we can
easily get a desiring injection $\tau;\Omega_{2}\rightarrow\Omega_{1}$ . Most of the argument below is the
same as in [3].

Let $K$ be a finite Galois extension of $Q$ which contains both $K_{1}$ and $K_{2}$ .
Let $H=G(K/Q),$ $S_{i}=G(K/k_{i})$ and $N_{i}=G(K/K_{i})$ . Then $H_{i}\cong S_{i}/N_{i}$ . Let $h_{11},$ $\cdots$ ,
$h_{1m}$ be a system of generators of $H_{1}$ and let $h_{2j}=\sigma(h_{1j})$ . Let $s_{ij}$ be an element
of $S_{\ell}$ such that $s_{ij}N_{t}=h_{ij}$ . Let $S_{i0}$ be $N_{i}$ and let $S_{tj},$ $j=1,$ $\cdots$ , $m$ , be a subgroup
of $S_{\ell}$ which is generated by $s_{ij}$ and $N_{i}$ . Let $F_{ij}$ be a subfield of $K$ which cor-
responds to $S_{ij}$ . Then $F_{1j}$ corresponds to $F_{2j}$ by $\sigma$ . Let $p$ be a prime number
such that $p\equiv 1mod |H|$ and let $F_{p}$ be a prime field of characteristic $p$ . Let $A=$

$F_{p}Hu_{0}+\cdots+F_{p}Hu_{m}$ be an H-module which is isomorphic to a direct sum of
$m+1$ copies of $F_{p}H$. Let

$1\rightarrow A\rightarrow E\rightarrow H\rightarrow 1$

be a split group extension. Let $L$ be a Galois extension of $Q$ which contains
$K$ and whose Galois group is isomorphic to $E$ . Let $L_{j}$ be a subfield of $L$ which
corresponds to $F_{p}Hu_{0}+\cdots+F_{p}Hu_{j-1}+F_{p}Hu_{j+1}+$ $+F_{p}Hu_{m}$ . Then $L_{j}$ is a
Galois extension of $Q$ whose Galois group is isomorphic to a split extension of
$H$ by $F_{p}Hu_{j}$ . Let $\chi_{j}$ be a character of $S_{1j}/N_{1}$ whose order is equal to the order
of $S_{1j}/N_{1}$ . Values of $\chi_{j}$ are considered to be elements of $F_{p}$ . As $\sigma$ induces an
isomorphism from $S_{1j}/N_{1}$ onto $S_{2j}/N_{2},$ $x_{j}\sigma^{-1}$ is a character of $S_{2j}/N_{2}$ which is
also denoted by $\chi_{j}$ by abuse of the notation. Let $M_{2j}$ be the maximal abelian
p-extension of $K_{2}$ contained in $L_{j}$ such that the operation of $S_{2j}/N_{2}$ on the
Galois group $G(M_{2j}/K_{2})$ coincides with the scalar multiplication of the values of
$\chi_{j}$ . As $M_{2j}$ is a subfield of $\Omega_{2}$ , there exists an extension $M_{\wedge!}$ of $K_{1}$ correspond-
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ing to $M_{2j}$ by $\sigma$ . Lemma 6 shows $M_{1j}$ is contained in $L_{j}$ . As the Galois group
$G(M_{1j}/F_{1j})$ is isomorphic to a subgroup of $G(M_{2j}/F_{2j})$ , the operation of $S_{1j}/N_{1}$

on $G(M_{1j}/K_{1})$ is also the scalar multiplication of the values of $\chi_{j}$ . Let $B_{ij}$ be
the subgroup of $F_{p}Hu_{j}$ which corresponds to an intermediate field $KM_{ij}$ . As
$G(M_{ij}/K_{i})$ and $F_{p}Hu_{j}/B_{ij}$ are isomorphic as $S_{ij}/N_{i}$-modules, $(t_{ij}-\chi_{j}(t_{ij}))F_{p}Hu_{j}$

is contained in $B_{ij}$ for any $t_{ij}\in S_{ij}$ . That is, $C_{ij}=$
$\sum_{c_{ij\in S_{ij}}}$

$(i_{ij}-\chi_{j}(t_{ij}))F_{p}Hu_{j}$ is

contained in $B_{ij}$ . As $N_{2}$ operates trivially on $F_{p}Hu_{j}/C_{2j}$ , the intermediate field
corresponding to $C_{2j}$ comes from some abelian $p$ -extension of $K_{2}$ . Then the
maximality shows $B_{2j}=C_{2j}$ . Let $A_{i}$ be the subgroup of $A$ corresponding to

$K\prod_{j=0}^{m}M_{ij}$ . We have shown

$A_{1}\supset\sum_{J^{t}1}\sum_{J^{\in S_{1j}}}(t_{1j}-\chi_{j}(t_{1j}))F_{p}Hu_{f}$

and
$A_{2}=\sum_{jt_{2}}\sum_{J^{\in S_{2j}}}(t_{2j}-\chi_{j}(t_{2j}))F_{p}Hu_{f}$ .

As $\prod M_{1j}$ corresponds to $\Pi M_{2j}$ by $\sigma$ , Lemma 5 shows every element of
$G(L/\prod M_{1j})$ is conjugate to an element of $G(L/\Pi M_{2j})$ in $E$ . As $G(L/K)$ is a
normal subgroup of $E$ , every element of $A_{1}=G(L/K\Pi M_{1j})$ is conjugate to an
element of $A_{2}=G(L/K\prod M_{2j})$ in $E$ . We put

$a=\sum_{n_{1}\in N_{1}}(n_{1}-1)u_{0}+\sum_{j\Rightarrow 1}^{m}(s_{1j}-\chi_{j}(s_{1j}))u_{j}\in A_{1}$ .

Then there exists an element $h\in H$ such that $ha\in A_{2},$ $i$ . $e.$ ,

$h\sum_{n_{1}}(n_{1}-1)\in\sum_{n_{2}}(n_{2}-1)F_{p}H$

and
$h(s_{1j}-\chi_{f}(s_{1j}))\in\sum_{t_{2j}}(t_{2j}-\chi_{j}(t_{2j}))F_{p}H$ , $j=1,$ $\cdots$ , $m$ .

This shows
$\sum_{n_{2}}n_{2}h\sum_{n_{1}}(n_{1}-1)=0$

and
$\sum_{t_{2j}}t_{2j}\chi_{j}(t_{2j})^{-1}h(s_{1j}-\chi_{j}(s_{1j}))=0$ .

Let $n_{1}$ be any element of $N_{1}$ . We calculate the coefficient of $hn_{1}$ in the first
equality. As the number of pairs ( $n_{2}$ , n\’i) such that $n_{2}hn_{1}^{\prime}=hn_{1}$ is smaller than
$p$ , there necessarily exists an element $n_{2}\in N_{2}$ such that $n_{2}h=hn_{1}$ . This shows
$hN_{1}h^{-1}\subset N_{2}$ . Then $h^{-1}$ induces an injection from $K_{2}$ into $K_{1}$ . As the coefficient
of $hs_{1j}$ is zero in the second equality, there exists an element $t_{2j}\in S_{2j}$ such that

$hs_{1j}=t_{2j}h$ and $\chi_{j}(t_{2j})=x_{j}(s_{1j})$ .
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Then $h_{2j}=s_{2j}N_{2}=t_{2j}N_{2}$ by the definition of $\chi_{j}$ . As $h^{-1}t_{2j}=s_{1j}h^{-1}$ , actions of $h^{-1}h_{2j}$

$=h^{-1}\sigma(h_{1j})$ and $h_{1j}h^{-1}$ are equal on $K_{2}$ . Then $\tau=h^{-1}$ is a desired element, be-
cause $H_{1}$ is generated by $h_{11},$ $\cdots$ , $h_{1m}$ . Thus we have shown the existence of
$\tau$ in our theorem.

COROLLARY. Let $k_{1}$ and $k_{2}$ be algebraic number fields. We assume that $k_{1}$

is of finite degree. Let $\Omega_{1}$ and $\Omega_{2}$ be solvably closed Galois extensions of $k_{1}$ and
$k_{2}$ , respectjvely. If their Galois groups $G(\Omega_{1}/k_{1})$ and $G(\Omega_{2}/k_{2})$ are isomorphjc,
$k_{2}$ is also of finite degree.

PROOF. Let $F_{2}$ be a subfield of $k_{2}$ of finite degree. Let $L_{2}$ be the maximaI
Galois extension of $F_{2}$ contained in $\Omega_{2}$ . Then $L_{2}$ is solvably closed. There
exists a natural homomorphism $\mu:G(\Omega_{2}/k_{2})\rightarrow G(L_{2}/F_{2})$ . Combining with the
given isomorphism $\sigma$ : $G(\Omega_{1}/k_{1})\rightarrow G(\Omega_{2}/k_{2})$ , a homomorphism

$\rho:G(\Omega_{1}/k_{1})\rightarrow G(L_{2}/F_{2})$

is induced. As $L_{2}$ is solvably closed, $\mu$ maps any decomposition subgroup of a
finite prime injectively into a decomposition subgroup. As shown in [1, Theorem
1], the isomorphism $\sigma$ induces isomorphisms of decomposition subgroups. Hence
$\rho$ maps any decomposition subgroup injectively into a decomposition subgroup.
Then the image must be open in a decomposition subgroup [1, Theorem 1].

Thus $\rho$ satisfies the condition of our theorem. Then it must be $[F_{2} : Q]<[k_{1} : Q]$

as shown in the proof $\mathfrak{a}f$ our theorem. As $F_{2}$ is arbitrary, $[k_{2} : Q]$ is not
greater than $[k_{1} : Q]$ .
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