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The aim of this paper is the study of those states of a convex cone $F(X)$

of bounded functions on some set $X$ which behave similar to the points of
a Bauer simplex. These states are called Dirichlet states. The main results
of the paper can be found in \S 3, where those Dirichlet states which admit an
integral representation on $X$ are completely characterized by order properties.
These results contain among others Choquet’s theorem and the authors integraI
representation theorem [4].

The suitable Hahn-Banach methods and decomposition methods for linear
functional which are necessary for treating Dirichlet states are gathered in
\S 1. In \S 2 the Dirichlet states are completely characterized in terms of support
properties and extension properties. \S 3 and \S 4 give individual integral repre-
sentations for Dirichlet states and related states. And in \S 5 problems–which
seem to the author of some importance–are mentioned.

\S 1. Preliminaries.

Let $X$ be a set and $F=F(X)$ a convex cone of bounded real-valued func-
tions on $X$. Throughout this paper we assume that $F$ contains all constant
functions, or in other terms that $F\supset R$. $R^{F}$ is equipped with the pointwise order
on $F$, this order relation is denoted by $\leqq$ . $\rho\in R^{F}$ is said to be Y-monotone if
$\rho(f)\geqq\rho(g)$ whenever $f,$ $g\in F$ such that $f(y)\geqq g(y)\forall y\in Y$. If $Y\subset X$ then $\sup_{Y}$

denotes the sublinear functional on $F$ given by $f\rightarrow\sup_{y\in Y}f(y)$ .
A linear (additive and positive-homogeneous) $\nu;F\rightarrow R$ is called state of $F$

if $\nu$ is X-monotone and $\nu\leqq\sup_{X}$ ; this is equivalent to $\nu$ being X-monotone with
$\nu(1)=1$ .

LEMMA 1. Assume that $\rho$ : $F\rightarrow R$ is linear and X-monotone and that $X=$

$X_{1}\cup\cdots\cup X_{n}$ . Then $\rho=\sum_{i=1}^{n}\rho_{i}$ , where the $\rho_{i}$ are linear and $X_{i}$-monotone.

PROOF. We may assume that all $ X_{i}\neq\emptyset$ because $0$ is the only $\emptyset$-monotone
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linear functional. $\rho$ can be extended to a linear X-monotone $\hat{\rho}$ on the vector

space $E=F-F$. By [5, finite decomposition theorem] $\hat{\rho}$ is equal to $\sum_{i=1}^{n}\hat{\rho}_{i}$ , where

the $\hat{\rho}_{i}$ are linear and $\leqq\lambda_{i}\sup_{x_{i}}$ on $E$ for some $\lambda_{i}\geqq 0$ . This means that the $\hat{\rho}_{i}$

are $X_{i}$-monotone because $E$ is a vector space. $q$ . $e$ . $d$ .
The letters $\mu,$

$\nu$ will always stand for states and $\tau,$ $\rho$ for linear monotone
maps. Face $(\mu)$ is the face generated by $\mu$ in the state space, the means Face$(\mu)$

is the set of all those $\nu\wedge$ such that there are $\nu$ and $1\geqq\lambda>0$ with $\mu=\lambda^{\wedge}\nu+(1-\lambda)\nu$ .
By Cone$(\mu)=\{\lambda\nu|\lambda\geqq 0, \nu\in Face(\mu)\}$ we denote the convex cone generated by

Face$(\mu)$ .
We shall say that $\mu$ is a simplicial state if for $\rho_{i},$ $\tau_{i}\in Cone(\mu)(i=1,2)$ with

$\rho_{1}+\rho_{2}=\tau_{1}+\tau_{2}$ there are always $\rho_{ik}\in Cone(\mu)(i, k=1,2)$ such that $\sum_{k=1}^{2}\rho_{ik}=\tau_{i}$

and $\sum_{k=1}^{2}\rho_{ki}=\rho_{i}(i=1,2)$ . A simple inductive argument [1, p. 85] shows that

this property goes over to converging sums:
LEMMA 2. Let $\mu$ be simPlicial and let $\rho_{n},$ $\tau_{n}$ be in Cone $(\mu)$ such that

$\sum_{n\in N}\rho_{n}=\sum_{n\in N}\tau_{n}$ and $\sum_{n\in N}\tau_{n}(1)<\infty$ . Then there are $\rho_{n,m}\in Cone(\mu)$ with:

$\sum_{n\in N}\rho_{n,m}=\rho_{m}$ and $\sum_{n\in N}\rho_{m,n}=\tau_{m}$
$\forall m\in N$ .

REMARK 1. [1, p. 84] If Cone$(\mu)-Cone(\mu)=V$ is a vector lattice with
respect to the order relation given by $V_{+}=Cone(\mu)$ then $\mu$ is simplicial.

$\mu$ is said to have the suPport Property if whenever $\nu\in Face(\mu)$ is Y-monotone
$(Y\subset X)$ then all elements of Face(v) (face generated by $\nu$ instead of $\mu$ !) are
Y-monotone. Of course, all elements of Face $(\mu)$ have the support property when
$\mu$ has it.

One may guess that the support property implies that a state is simplicial,
but this is not so. In [2, example 1.9] is given an example of a compact con-
vex set $K$ such that for every $k\in K$ the measures representing $k$ and living on
$X=\overline{ex(K)}$ (closure of the extreme points) do have equal support without $K$

being a simplex. Hence every state of $F(X)=A(K)_{1X}$ (affine continuous func-
tions restricted to $X$ ) has the support property. But there must be non-simpli-
cial states, otherwise $K$ would be a simplex (cf. next chapter).

We call $\mu$ semidispersable, if whenever
(1) $\mu\leqq\lambda$ $supx_{1}+(1-\lambda)\sup_{X_{2}}$ , $0\leqq\lambda\leqq 1$ , $X_{1},$ $X_{2}\subset X$ ,

then there are states $\mu_{i}\leqq\sup_{x_{i}}(i=1,2)$ such that $\mu=\lambda\mu_{1}+(1-\lambda)\mu_{2}$ . If in addi-
tion the $\mu_{i}$ can be assumed to be $X_{i}$-monotone $(i=1,2)$ then $\mu$ is said to be
monotone semidispersable. Finally, $\mu$ is said to be (monotone) disPersable if all
$\nu\in Face(\mu)$ are (monotone) semidispersable.

REMARK 2. Every maximal $\mu(i. e. \mu\leqq\nu\Rightarrow\nu=\mu)$ is monotone dispersable.
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This is a consequence of [5, sum theorem] and the facts that for a maximal $\mu$

all elements of Face $(\mu)$ are maximal, and that when $\mu\leqq sup_{Y}(Y\subset X)$ is maximal
then $\mu$ has to be Y-monotone (sandwich theorem). Hence, $\mu$ is dispersable
whenever $F(X)$ is a vector space.

With almost the same proof as in [3, theorem 3] one obtains a more general
result:

LEMMA 3. Inequality (1) implies the existence of states $\mu_{i}\leqq\sup_{x_{i}}(i=1,2)$

with $\mu=\lambda\mu_{1}+(1-\lambda)\mu_{2}$ if and only if
\langle 2) $\mu(f)\leqq\mu(g)+\lambda\sup_{X_{1}}(f_{1})+(1-\lambda)\sup_{X_{2}}(f_{2})$

whenever $f,$ $g,$ $f_{1},$ $f_{2}\in F$ such that $f(x)\leqq g(x)+f_{i}(x)\forall x\in X(i=1,2)$ . The states
$\mu_{i}(i=1,2)$ can be assumed to be $X_{i}$-monotone if and only if (2) holds whenever
$f,$ $g,$ $f_{1},$ $f_{2}\in F$ such that $f(x)\leqq g(x)+f_{i}(x)\forall x\in X_{i}(i=1,2)$ .

\S 2. Dirichlet states.

DEFINITION 1. A simplicial state with support property is defined to be a
Dirichlet state.

The reason for choosing this name becomes quite obvious from the follow-
ing examples.

EXAMPLE 1. (i) Let $K$ be a Choquet simplex then every state of $A(K)$

(affine continuous functions) is simplicial ([1, Proposition II. 3.3.]). (ii) Let $K$ be
a Bauer simplex and $X=ex(K)$ (extreme points) then every state of $F(X)=$

$A(K)_{1X}$ (restrictions to $X$ ) is a Dirichlet state. (This is a consequence of the fol-
lowing lemma and [1, Theorem II. 4.3]).

LEMMA 4. If $F(X)$ is a vector lattice with respect to pOintwise order then
every state of $F(X)$ is a Dirichlet state.

PROOF. By the Stone-Kakutani theorem [1, p. 76] there is a lattice isomor-
phism from $F(X)$ onto a dense subspace of $C(\overline{X})$ , where $\overline{X}$ is compact and can
be identified with the set of lattice-preserving states of $F(X)$ . So, the vector
space generated by the states of $F(X)$ is order isomorphic to the dual of $C(\overline{X})$

and therefore a vector lattice. Hence, remark 1 implies that every state of
$F(X)$ is simplicial. According to the Riesz-representation theorem every state $\mu$

has a unique representing measure $m_{\mu}$ on $\overline{X}$. Furthermore the uniqueness of
$m_{\mu}$ implies that $\mu\rightarrow m_{\mu}$ is affine. Again by the Riesz-representation theorem $\nu$

is Y-monotone if and only if $m_{\nu}$ has its support in the closure of $\beta(Y)$ , where
$\beta:X\rightarrow\overline{X}$ is the canonical embedding. Now, if $\nu=\lambda\nu_{1}+(1-\lambda)\nu_{2}$ then $m_{\nu}=\lambda m_{\nu_{1}}+$

$(1-\lambda)m_{\nu_{2}}$ and the support of $m_{\nu_{1}}$ is contained in the support of $m_{\nu}$ . Hence, $\nu_{1}$ is
Y-monotone if $\nu$ is. $q.e$ . $d$ .

By $VF$ we denote the max-stable cone generated by $F$, that is the smallest
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convex cone $\supset F$ such that $f\vee g\in VF$ whenever $f,$ $g\in VF$. $VF-VF$ is then the
vector lattice generated by $F$.

THEOREM 1. $\mu$ is a Dirichlet state of $F$ if and only if $\mu$ has a unique
extension to a state of $VF$.

PROOF. Let $\mu$ have a unique extension. Then $\mu$ has a unique extension to
a state $\hat{\mu}$ of $E=VF-VF$ ; and every $\rho\in Cone(\mu)$ has to have a unique extension
to an element $\hat{\rho}\in Cone(\hat{\mu})$ and the map $\rho\rightarrow\hat{\rho}$ must be a bijective linear map
from Cone $(\mu)$ to Cone $(\hat{\mu})$ . Using lemma 4 we may conclude that $\mu$ is simplicial.
Now, consider $\nu_{1}\in Face(\nu)$ and let $\nu\in Face(\mu)$ be Y-monotone. Then by [4,

lemma 2] $\nu\wedge$ must be Y-monotone on $E$ and again from lemma 4 we obtain that
$\nu_{1}\wedge\in Face(\nu\wedge)$ is Y-monotone. Hence $\nu_{1}$ (restriction of $\nu_{1}\wedge$ to $F$ ) is Y-monotone and
$\mu$ has the support property.

If $\mu$ is a Dirichlet state then we consider arbitrary extensions $\hat{\mu}_{1},\hat{\mu}_{2}$ to
states of $VF$. For $\varphi\in VF$ we show $\hat{\mu}_{1}(\varphi)\geqq\hat{\mu}_{2}(\varphi)$ . This clearly proves the theo-
rem. $\varphi$ can be written as $f_{1}\vee f_{2}\vee\cdots\vee f_{m}$ , where $f_{1},$

$\cdots,$ $f_{m}\in F$. Let $X_{i}=$

$\{x|f_{i}(x)\geqq\varphi(x)\}(i=1, \cdots , m)$ , then according to lemma 1 we may decompose

$\rho_{1}=\sum_{i=1}^{m}\hat{\rho}_{1t}$ and $p_{2}=\sum_{i=1}^{m}\hat{\rho}_{2i}$ ,

where $\hat{\rho}_{1,i}$ and $\hat{\rho}_{2,i}$ are $X_{i}$-monotone. Then $\rho_{ki}\in Cone(\mu)$ (restriction of $\hat{\rho}_{ki}$ to
$F)$ is $X_{i}$-monotone and we can find $\tau_{ij}\in Cone(\mu)$ such that

$\sum_{j=1}^{m}\tau_{ji}=\rho_{1i}$ and $\sum_{j=1}^{m}\tau_{ij}=\rho_{2i}$

because $\mu$ is simplicial. Furthermore the support property of $\mu$ implies that $\tau_{ji}$

is $X_{i}$-monotone. This clearly implies $\tau_{ji}(f_{i})\geqq\tau_{ji}(f_{j})$ and from this we obtain:

$\beta_{1}(\varphi)=\sum_{i=1}^{m}\hat{\rho}_{1i}(f_{i})=\sum_{i=1}^{m}\rho_{1i}(f_{i})=\sum_{f,i=1}^{m}\tau_{ji}(f_{i})\geqq\sum_{j.i=1}^{m}\tau_{ji}(f_{j})$

$=\sum_{j=1}^{m}\rho_{2j}(f_{j})=\sum_{j=1}^{m}\hat{\rho}_{2j}(f_{j})=\beta_{2}(\varphi)$ . $q.e.d$ .

COROLLARY 1. If $F$ is max-stable then every state is Dirichlet.
COROLLARY 2. Let YcX be compact such that $F$ separates the points of $Y$

and every $f\in F$ is continuous on Y. Then the following are equivalent:
(i) Every state $\leqq\sup_{Y}$ is Dirichlet.
(ii) $F(X)-F(X)$ restricted to $Y$ is a dense subspace of $C(Y)$ (continuous real-

valued functions on $Y$ ).

PROOF. Theorem 1 together with Hahn-Banach and Stone-Weierstrass.
$q.e.d$ .
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\S 3. Representation by integrals.

We fix $Z\subset X$ and we say that $\mu$ is partially decomp0sable on $Z$ if for $Z_{n}\subset Z$

with $\bigcup_{n=1}^{\infty}Z_{n}=Z$ there are always $\lambda_{0},$ $\lambda_{n}\geqq 0$ with $0\leqq\lambda_{0}<1$ and $1=\lambda_{0}+\sum_{n=1}^{\infty}\lambda_{n}$ such

that

$\mu\leqq\lambda_{0}\sup_{Z}+\sum_{n--1}^{\infty}\lambda_{n}\sup_{z_{n}}$

$\mu$ is said to be decomposable on $Z$ if we can always have $\lambda_{0}=0$ . Here, of course,
we define $0\cdot\sup_{g}=0$ . It is useful to consider decompositions (with respect to
$(Z_{n})_{n\in N})$ of the form:

$\mu=\sum_{n=1}^{\infty}\lambda_{n}\mu_{n}+\lambda_{0}\mu_{0}$

where $\mu_{0}\leqq\sup_{X}$ and $\mu_{n}\leqq\sup_{z_{n}}$ are states and the $\lambda_{0},$ $\lambda_{n}\geqq 0$ are such that

$\sum_{k=0}^{\infty}\lambda_{k}=1$ . If, in addition, the $\mu_{n}$ are $Z_{n}$-monotone $(n=1, 2, )$ then this decom-

position is called monotone (with respect to $(Z_{n})_{n\in N}$ , of course). Such a decom-

position is said to be maximal if we have for all $N$ that, whenever $\beta_{N}=(1-\sum_{n=1}^{N}\lambda_{n})$

$>0$ , then $\lambda_{N+1}$ is $\beta_{N}$ times the maximum of those $0\leqq\lambda\leqq 1$ such that $\nu_{N+1}\leqq$

$\lambda\sup_{Z_{N+1}}+(1-\lambda)\sup_{X}$ , where $\nu_{N+1}$ is the state

$\nu_{N+1}=\frac{1}{\beta_{N}}(\mu-\sum_{n=1}^{N}\lambda_{n}\mu_{n})=\frac{1}{\beta_{N}}(\sum_{N+1}^{\infty}\lambda_{n}\mu_{n}+\lambda_{0}\mu_{0})$ .

A trivial inductive argument shows that for a (monotone) dispersable $\mu$ there
is always such a (monotone) maximal decomposition.

LEMMA 5. Let $\mu$ be dispersable. Then the following are equivalent:
(i) Every $\nu\in Face(\mu)$ is decomposable on $X$.
(ii) Every $\nu\in Face(\mu)$ is partially decomposable on $X$ .
(iii) For all $\nu\in Face(\mu)$ we have $\sum_{n=1}^{\infty}\nu(f_{n})=-\infty$ whenever $0\geqq f_{n}\in F$ such that

$\sum_{n=1}^{\infty}f_{n}(x)=-\infty\forall x\in X$.

In case that $F$ is such that $f\vee r\in F$ whenever $f\in F$ and $r\in R$ then all this is
equivalent to
(iv) For every sequence $f_{n}\geqq 0$ in $F$ which is pointwise decreasing to zero we do
have $\inf_{n\in N}\mu(f_{n})=0$ .

PROOF. $(i)\Rightarrow(ii)$ is trivial, (ii)e(iii) is a direct consequence of [5, partial
decomposition theorem] and (ii)o(iv) follows with the same argument as in [5,

theorem 1].
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$(ii)\Rightarrow(i)$ : Let $Z.\subset X$ be arbitrary such that $\bigcup_{n=1}^{\infty}Z_{n}=X$, and let

$\nu=\sum_{n-1}^{\infty}\lambda_{n}\nu_{n}+\lambda_{0}\nu_{0}$

be a maximal decomposition of $\nu\in Face(\mu)$ . If $\lambda_{0}=0$ then we are done. For
$\lambda_{0}>0$ we consider a maximal decomposition

$\nu_{0}=\sum_{n=1}^{\infty}\overline{\lambda}_{n}D_{n}+\tilde{\lambda}_{0}D_{0}$

of $\nu_{0}\in Face(\mu)$ . Since $\nu_{0}$ is partially decomposable on $X$, we know that $\sum_{n=1}^{\infty}\lambda_{n}$

$>0$ . This is in contradiction to the maximality of the decomposition for $\nu$

because this gives the following decomposition:

$\nu=\sum_{n=1}^{\infty}(\lambda_{n}\nu_{n}+\lambda_{0}\overline{\lambda}_{n}\tilde{\nu}_{n})+\lambda_{0}\tilde{\lambda}_{0}\tilde{\nu}_{0}$ . $q$ . $e$ . $d$ .

LEMMA 6. Let $\mu$ be monotone dispersable, and let all $\nu\in Face(\mu)$ be partially
decomposable. Then the unique extension of $\mu$ to the vector space $F-F$ is mono-
tone decomposable.

PROOF. Let $Z_{n}\subset X$ be arbitrary such that $ n=1UZ_{n}=X\infty$, and let

$\mu=\sum_{n=1}^{\infty}\lambda_{n}\nu_{n}+\lambda_{0}\nu_{0}$

be a suitable monotone and maximal decomposition. As in lemma 5 we draw
the conclusion that $\lambda_{0}=0$ because otherwise $\nu_{0}$ is partially decomposable. Now,
the unique extensions $\tilde{\nu}_{n}$ of $\nu_{n}$ to $F-F$ are $Z_{n}$ -monotone [4, lemma 2]; hence
we have for $/\ell\sim$ (unique extension of $\mu$ to $F-F$ ) that

$p=\sum_{n=1}^{\infty}\lambda_{n}D_{n}$ . $q.e$ . $d$ .

A positive measure $m$ on $X$ with respect to $\Sigma_{F}$ , the $\sigma$ -algebra generated by $F$,
is called a strict representing measure for $\tau$ if

$\tau(f)=\int_{X}fdm$ $\forall f\in F$ .

The next theorem can be considered as a local version of [4, theorem 1].

THEOREM 2. Let $F$ be a vector space and let $\mu$ be a Dirichlet state. Then
the following are equivalent:
(i) Every $\nu\in Face(\mu)$ has a unique strict representing measure $m_{\nu}$ .
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(ii) Erery $\nu\in Face(\mu)$ is decomPosable on $X$ .
(iii) For every $\nu\in Face(\mu)$ we have $\sum_{n=1}^{\infty}\nu(f_{n})=-\infty$ whenever $0\geqq f_{n}\in F$ such that

$\sum_{n=1}^{\infty}f_{\eta}(x)=-\infty\forall x\in X$.

PROOF. The state space $\Omega=$ {$\omega|\omega$ state of $F$} is compact under the coarsest
topologv which makes the functions $\omega\rightarrow\hat{f}(\omega)=\omega(f),$ $f\in F$ continuous. $\beta$ : $ X\rightarrow\Omega$

shall denote the canonical map $\beta(x)(f)=f(x)\forall f\in F$.
$(i)\Rightarrow(ii)$ : $\hat{m}_{\nu}(\Omega_{1})=m_{\nu}(\beta^{-1}(\Omega_{1})),$ $\Omega_{1}\subset\Omega$ , defines a Baire probability measure on $\Omega$ .

Let $\overline{m}_{\nu}$ denote the corresponding regular Borel measure. Then we have $\int_{\Omega}fd\overline{m}_{\nu}=$

$\nu(f)\forall f\in F$. Now, we consider for $X_{n}\subset X$ with $\bigcup_{n\in N}X_{n}=X$ the sets $\overline{X}_{n}=closure$

$(\beta(X_{n}))$ and we put $\lambda_{n}=\overline{m}_{\nu}(\overline{X}_{n}\backslash \bigcup_{k<n}\overline{X}_{k})$ . Then we have $\sum_{n\in N}\lambda_{n}=1$ and $\nu\leqq$

$\sum_{n\in N}\lambda_{n}\sup_{x_{n}}$ . Hence, $\nu$ must be decomposable.

$(ii)\xi\Rightarrow(iii)$ remark 2 and lemma 5 (iii).
$(ii)\Rightarrow(i)$ : All the $\tilde{\nu}\in Face(\mu)$ have unique extensions to the vector lattice

$VF-VF$ (theorem 1) and this vector lattice is vector-lattice-isomorphic to the
vector lattice on $\overline{X}=closure(\beta(X))$ generated by the functions $\hat{f}_{1X},$ $f\in F$. So, if
$v\leqq\sup_{Y}$ then the Riesz representation theorem tells us that there is a unique

Borel probability measure mor on $\overline{Y}=closure(\beta(Y))\subset\overline{X}$ with $\int_{\overline{Y}}fd\overline{m}_{\nu}\sim=\tilde{\nu}(f)$

$\forall f\in F$. Let $\nu\in Face(\mu)$ be arbitrary. For compact $Z_{n}\subset\overline{X}$ with $\bigcup_{n\in N}Z_{n}\supset\beta X$ we

consider $X_{n}=\beta^{-1}(Z_{n})\subset X$. Then $\bigcup_{n\in N}X_{n}=X$, and since $\nu$ is decomposable on $X$

we obtain with [5, sum theorem] that $\nu=\sum_{n\in N}\lambda_{n}\nu_{n}$ , where $\nu_{n}\leqq\sup_{X_{n}}$ .

According to the preceding statement there are for the $\nu_{n}$ and $\nu$ Borel

probability measures $\overline{m}_{\nu_{n}}$ on $Z_{?\iota}$ and $\overline{m}_{\nu}$ on $\overline{X}$ such that $\int_{z_{n}}fd\overline{m}_{\nu_{n}}=\nu_{n}(f)$ and

$\int_{\overline{X}}fd\overline{m},=\nu(f)\forall f\in F$. This implies $\overline{m}_{\nu}(\bigcup_{n\in N}Z_{n})=1$ because of $\overline{m}_{\nu}=\sum_{n\in N}\lambda_{n}\overline{m}_{\nu_{n}}$ .

Since the $Z_{n}$ have been arbitrarily chosen, $\overline{m}_{\nu}$ is supported by every $F_{\sigma}$ -set
containing $\beta X$. Therefore we may conclude from regularity that $\overline{m}_{\nu}(B)=0$ for
every Baire set $B$ with $ B\cap\beta X=\emptyset$ . Now, because of $\Sigma_{F}=\{\beta^{-1}(B)|B$ Baire set
$\subset\overline{X}\}$ we get the desired strict representing measure $m_{\nu}$ for $\nu$ by $m_{\nu}(\beta^{-1}(B))=$

$\overline{m}_{\nu}(B)\forall B$ Baire set $\subset\overline{X}$ . The uniqueness of $m_{\nu}$ follows from theorem 1.
$q$ . $e$ . $d$ .

EXAMPLE 2. Consider a compact convex set $K$ with point separating $A(K)$ .
And let $k$ be a Dirichlet p0int in $K$, which shall mean that $h\rightarrow h(k)$ is a
Dirichlet state of $A(K)_{1ex(K)}$ . If $Y\subset ex(K)$ we may ask when the (unique !)

boundary measure $m$ representing $k$ is Pseudo-carried by $Y(i$ . $e$ . $m(B)=0$
$\forall$ Baire sets $B$ with $ B\cap Y=\emptyset$). Theorem 2 tells us that this is the case if and
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only if $\sum_{n=1}^{\infty}h_{n}(x)=-\infty\forall x\in Face(k)$ whenever $0\geqq h_{n}\in A(K)$ with $\sum_{n=1}^{\infty}h_{n}(y)=-\infty$

$\forall y\in Y$.
It is quite easy to reformulate theorem 2 such that it can be applied to

convex cones of functions. From lemma 6 we immediately obtain:
COROLLARY 3. Let $\mu$ be a monotone dispersable Dirichlet state of the convex

cone $F=F(X)$ . Then the following are equivalent:
(i) Every $\nu\in Face(\mu)$ has a unique strict representing measure $m_{\nu}$ on $X$ .
(ii) Every $\nu\in Face(\mu)$ is decomposable on $X$.

(iii) For every $\nu\in Face(\mu)$ we have $\sum_{n=1}^{\infty}\nu(f_{n})=-\infty$ whenever $0\geqq f_{n}\in F$ such that

$\sum_{n=1}^{\infty}f_{n}(x)=-\infty\forall x\in X$.

(iv) Every $\nu\in Face(\mu)$ is Dini-continuous.
Here, Dini-continuous means that we do have for all pointwise decreasing

sequences $f_{n}$ in $F$ :
$\inf_{n\in N}\nu(f_{n})\leqq\sup_{x\in X}\inf_{n\in N}f_{n}(x)$ .

It should be mentioned that $(iv)\Rightarrow(iii)$ is trivial and $(i)\Rightarrow(iv)$ follows from the
monotone convergence theorem.

COROLLARY 4. Let $\mu$ be a maximal state of the max-stable convex cone
$F=FtX)$ . Then the following are equivalent:
(i) Every $\nu\in Face(\mu)$ has a unique strict representing measure on $X$.
(ii) $\inf_{n\in N}\mu(f_{n})=0$ whenever $0\leqq f_{n}\in F$ is pOintwise decreasing to zero.

PROOF. Corollary 3 and lemma 5 together with remark 2 and Corollary 1.
$q$ . $e$ . $d$ .

EXAMPLE 3. Corollary 4 applied to VA$(K)_{1ex(K)}$ ($K=compact$ convex) leads
with the help of Dini’s lemma and Bauer’s maximum principle (for the upper-
semicontinuous convex functions) immediately to: Every maximal measure (in

the Choquet ordering) is pseudo-carried by $ex(K)$ (Choquet’s theorem) (cf. [1]).

\S 4. Localization of decomposable states.

In certain cases theorem 2 can be used for obtaining representing measures
for non-Dirichlet states. This is done via a localization of decomposability.

Let $Z\subset X$. We say that a state $\mu$ is disjoint from $Z$ if there are $Z_{n}$

$(n=1,2, \cdots)$ with $\bigcup_{n=1}^{\infty}Z_{n}=Z$ such that $\lambda=0$ whenever $1\geqq\lambda\geqq 0$ and there is some
$n$ with $\mu\leqq\lambda\sup_{z_{n}}+(1-\lambda)\sup_{X}$ . Of course, if $\mu$ is not partially decomposable
on $Z$, then it is disjoint from $Z$.

EXAMPLE 4. Let $Z_{n}\subset X$ and let $\mu$ be dispersable such that
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$\mu=\sum_{n=1}^{\infty}\lambda_{n}\mu_{n}+\lambda_{0}\mu_{0}$

is a maximal decomposition of $\mu$ with respect to $(Z_{n})_{n\in N}$ (in the sense of \S 3).

Then maximality implies that when $\lambda_{0}>0$ then $\mu_{0}$ is disjoint from $Z=\bigcup_{n=1}^{\infty}Z_{n}$ .
REMARK 3. When $\mu$ is disjoint from $Z$, then every $\nu\in Face(\mu)$ is disjoint

from $Z$.
LEMMA 7. Let $\mu$ be disjoint from $Z\subset X$ and decompOsable on $Y\subset X$. Then

$\mu$ is decomposable on $Y\backslash Z$.
PROOF. Let the $Z_{n}\subset Z$ be as in the definition above and consider $X_{n}\subset Y\backslash Z$

with $\bigcup_{n=1}^{\infty}X_{n}=Y\backslash Z$. Then we have

$\mu\leqq\sum_{n=1}^{\infty}\lambda_{n}\sup_{z_{n}}+\sum_{n=1}^{\infty}\tilde{\lambda}_{n}\sup_{x_{n}}$

because $\mu$ is decomposable on $Y$ . Now, all the $\lambda_{n}$ have to be equal to zero,
since $\mu\leqq\lambda_{n}\sup_{z_{n}}+(1-\lambda_{n})\sup_{X}$ . $q$ . $e$ . $d$ .

LEMMA 8. Let every $\nu\in Face(\mu)$ be dispersable and decomposable on $Y=$

$Y_{0}\cup Y_{1}$ . Then $\nu\in Face(\mu)$ is either decomp0sable on $Y_{1}$ or there are $1\geqq\lambda>0$ and
states $\nu_{t}(i=0,1)$ with $\nu=\lambda\nu_{0}+(1-\lambda)\nu_{1}$ such that $\nu_{0}$ is disjoint from $Y_{1}$ and
decompOsable on $Y_{0}$ .

PROOF. If $\nu\in Face(\mu)$ is not decomposable on $Y_{1}$ , then there are $Z_{n}\subset Y_{1}$

with $ n=1UZ_{n}=Y_{1}\infty$ such that $\lambda_{0}>0$ for every maximal decomposition

$\nu=\sum_{n=1}^{\infty}\lambda_{n}\nu_{n}+\lambda_{0}\nu_{0}$

of $\nu$ with respect to $(Z_{n})_{n\in N}$ . Now, example 4 shows that $\nu_{0}$ is disjoint from
$Y_{1}$ , and from lemma 7 we know that $\nu_{0}$ is decomposable on $Y_{0}$ . $q$ . $e$ . $d$ .

THEOREM 3. Let every $\nu\in Face(\mu)$ be dispersable and decomposable on $Y=$

$Y_{1}\cup Y_{2}$ ; $Y_{1},$ $ Y_{2}\neq\emptyset$ . Then there are states $\mu_{i}(i=1,2)$ and $1\geqq\lambda\geqq 0$ with $\mu=$

$\lambda\mu_{1}+(1-\lambda)\mu_{2}$ such that $\mu_{2}$ is decomp0sable on $Y_{2}$ and $\mu_{1}$ is disjoint from $Y_{2}$ and
decomp0sable on $Y_{1}$ .

PROOF. If $\mu$ is decomposable on $Y_{2}$ we put $\lambda=0$ , and we are done. In
case that $\mu$ is not decomposable on $Y_{2}$ we can write (according to lemma 8)
$\mu=\lambda\mu_{L}+(1-\lambda)\mu_{2}(1\geqq\lambda>0)$ where $\mu_{1}$ is disjoint from $Y_{2}$ . By Zorn’s lemma we
may assume that $\lambda\mu_{1}$ is “ maximal “ in the following sense:

whenever $\mu_{2}=\tilde{\lambda}\nu_{1}+(1-\tilde{\lambda})\nu_{2}(1\geqq\tilde{\lambda}\geqq 0)$ , where
$\nu_{1}$ is disjoint from $Y_{2}$ , then $\tilde{\lambda}=0$ .

Then, from lemma 8 (applied to $\mu_{2}$ ) we conclude that $\mu_{2}$ is decomposable on $Y_{2}$ .
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The assertion that $\mu_{1}$ is decomposable on $Y_{1}$ follows immediately from lemma 7.
$q.e$ . $d$ .

Induction leads immediately to:
COROLLARY 5. Let every $\nu\in Face(\mu)$ be dispersable and decompOsable on

$X=\bigcup_{n\approx 1}^{N}\}_{n}^{-}$ ; $Y_{1},$ $\cdots$ , $ Y_{N}\neq\emptyset$ . Then there are $\lambda_{n}\geqq 0$ and states $\mu_{n}$ with $\mu=$

$\sum_{n=1}^{N}\lambda_{n}\mu_{n}$ such that the $\mu_{n}$ are decompOsable on $Y_{n}$ .

This localization procedure leads–for example–to integral representations
in the following:

SITUATION. Let $X=\bigcup_{n=1}^{N}Y_{n},$ $Y_{1},$ $\cdots$ , $ Y_{N}\neq\emptyset$ , and let $F=F(X)$ be such that

the restrictions $F_{IY_{n}}=\{f_{1Yn}|f\in F\}$ are max-stable for $n=1,$ $\cdots$ , $N$. And assume
$\mu$ to be a maximal state of $F$.

THEOREM 4. Then the following are equivalent:
(i) $Ev^{\prime}e7^{\prime}2^{\prime}\nu\in Face(\mu)$ has a strict representing measure on $X$ .
(ii) For every $\nu\in Face(\mu)$ we have $\sum_{n\Leftarrow 1}^{\infty}\nu(f_{n})=-\infty$ whenever $0\geqq f_{n}\in F$ such that

$\sum_{n-1}^{\infty}f_{n}(x)=-\infty\forall x\in X$.
$P1_{\backslash }^{\supset}OOF$ . $(i)\Rightarrow(ii)$ is a consequence of the monotone convergence theorem.

$(ii)\Rightarrow(i)\mu$ is monotone dispersable (remark 2) and every $\nu\in Face(\mu)$ is decom-
posable (lemma 5). Now, we localize according to corollary 5. Corollary 3
together with corollary 1 gives the desired representing measure. $q$ . $e$ . $d$ .

\S 5. Problems.

$PROBLE\wedge\backslash f1$ . Under what kind of conditions does a countable analogon of
Corollarv 5 hold ?

An answer to this problem would certainly lead to very powerful integral
representation theorem.

PROBLEM 2. Do the results of \S 3 and 4 hold for the case that V-valued
states (I a Dedekind complete vector lattice) are considered 7

Some of the theorems may be true in this case (cf. [6]), but there will be
very many problems when $V$ is not weakly $\sigma$ -distributive [7].

PROBLEM 3. Which results of \S 3 remain true in case that the states under
consideration are not Dirichlet states ?

ACKNOWLEDGEMENT. I am indebted to Thomas Landes and the referee for
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