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§1. Introduction.

Let A be a uniform algebra on a compact Hausdorff space X and m a
complex homomorphism of A. We suppose that m has a unique representing
measure p, on X and that the Gleason part P(m) containing m consists of
more than one point. We denote by H*(m) the w* closure of A in L*(dpm),
and by I~ the ideal {feH>(m): ¢(f)=0 for all p=P(m)} of H=(m). In [10],
Merrill proved that H*(m) is maximal as a w* closed subalgebra of L*(dynm)
if and only if /*={0}. In this paper we shall deal with the case when I*+ {0}.

In §2 we shall state some preliminaries and two lemmas. In §3 we shall
study some properties of the maximal ideal space of the Banach algebra H®(m)
with I+ {0}. In §4 we shall study some properties of a Gleason part P(m)
such that A|P(m)=H=(D) (for the precise meaning see §4). In §5 we shall
give some examples relating to §3 and §4.

§2. Preliminaries and lemmas.

For a complex commutative Banach algebra B, let B™! be the set of all
invertible elements of B. Let M(B) be the maximal ideal space of B endowed
with the Gelfand topology, let / and B be the Gelfand transforms of f (€B)
and B respectively, and let I'(B) be the Silov boundary of B.

Let X be a compact Hausdorff space, and let C(X)(Cr(X)) be the complex
(real) Banach algebra of all complex (real) valued continuous functions on X.
Let A be a uniform algebra on X, i.e., A is a uniformly closed subalgebra of
C(X) which contains the function 1 and separates the points of X. A repre-
senting measure for ¢ € M(A) is a probability measure ¢ on X such that ¢(f)

:Sfdy for all fe A. We denote by supp p the closed support of a measure p.

When ¢ = M(A) has a unique representing measure, sometimes we use the same
symbol ¢ to denote its representing measure. Given ¢ and ¢ in M(A), we set

dle, ¢)=sup {{o(f)|: fEA, |fll=sup | fI=<1, ¢(f)=0}
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and
Glo, )=sup {lo()—d(N]: fEA, |AI=1},

and write ¢~¢ if and only if d(p, ¢)<1 (or, equivalently, G(p, ¢) <2). Then
~is an equivalence relation in M(A), and an equivalence class P(m)={p= M(A):
m~@} (2 {m}) is called the (nontrivial) Gleason part for A which contains m.

Henceforth we suppose that m (€ M(A)) has a unique representing measure m
and that the Gleason part P=P(m) containing m is nontrivial. Then it is known
that ¢=P(m) has a unique representing measure ¢ and that representing
measures m and ¢ are mutually absolutely continuous.

We denote by A, the kernel of a complex homomorphism meM(A). Let
H>*(m) and H; be the w* closures in L*(dm) of A and A,, respectively, and for
1=p<co let H?(m) and HZ be the closures in L?(dm) norm of A and A, re-
spectively. If we denote by H= the restriction of H=(m) to X (=M(L7(dm)), then
H=is a logmodular algebra on X, ie, log ](ﬁ“’)'llch()?) (cf. Hoffman [5]).
Sometimes we shall identify H=(m) with A=. A function he H"(m) with |r|=1
a.e. (dm) is called an inner function.

THEOREM 2.1 (WERMER’S EMBEDDING THEOREM). Let A be a uniform
algebra on a compact space X. Suppose that me M(A) has a unique representing
measure m on X, and that the Gleason part P(m) containing m is nontrivial.
Then there is an inner function Z known as Wermer's embedding function such

that ZH"(m)=H,;, and ¢ Hf((p)zSZ do is a one-to-one map of the part P(m)

onto the open unit disk D. The inverse map t of 7 is a one-to-one continuous
map of D onto P(m), and for every f in A, the composite function for is analytic
on D. (Cf. Leibowitz [9], p. 143).

Given ¢ P(m), we define ¢ by ¢(f):Sfdgo for fe H*(m), and set
2.1) P={¢: peP(m)}.

Then  is the nontrivial Gleason part for H®(m) which contains 7, and we
have P={peM(H"(m)): |p(Z)| <1} for the Wermer’s embedding function Z.
Thus @ is an open set in the space M(H>(m)), which is homeomorphic to the
open unit disk D (cf. Kishi [7], [8].

Let %? be the closure in L?(dm) norm of the polynomials in Z, and let L?
be the closure in L?(dm) norm of the polynomials in Z and Z. (For p=oo, the
closure is taken in the w* topology.) Let ¢ be the normalized Lebesgue measure
on the unit circle C in the complex plane, and let H?(do)=H?(D) be the classical
Hardy space. For 1=p=<co, the correspondence

(2.2) T: Z—>e"



Maximal ideal space 485

induces an isometric *-isomorphism (i.e., taking complex conjugates into complex
conjugates) of £? onto LP(de)=LP(C). This map is also an isometric isomor-
phism of 4~ onto H*(D). Therefore the adjoint T* of T is a homeomorphism
of M(L>(C)) and M(H>(D)) onto M(.L~) and M(4*) respectively. It is easily
seen that log |(#>)"!|=_%, where L3 is the set of all real valued functions in
L=. By Fatou’s theorem, H*(D) is identified with the Banach algebra of all
bounded analytic functions on D. (Cf. Merrill-Lal [11].)
For 1=p=oo, if we set

I*={fe H?(m): SZ_"fdm:O, n=0,1, 2, -}

and

Mr={fe Lo(dm): SZ"f dm=0 for all integers n},
then we have
(2.3) H*(m)=4?PHI? and L*(dm)=LPPM?,
where @ denotes algebraic direct sum. It is known that f=I? if and only if
f(go):S f dp=0 for all pP(m). Further it is known that | 2r\L‘”(a!m).:Ioo and

I~ is dense in I2. (Cf. Merrill-Lal [11].)
We prove here two lemmas which will be needed in § 3.
LEMMA 2.2. rL=[°=]",

ProOOF. If feI=, then we have Z"f<I> for all integers n (cf. Merrill-Lal
[11], Lemma 1). For feI~ and g= S a,Z €4 we have
n=0

(lr2— 5@z slam=171|§1 = 2 anz17am]| "~ 0

as k— co. Hence we obtain 42/°CJ%. We obtain similarly 42I°CI? where
IHn={fcI?: Sf dm=0}. Since L*=4*P 42, we have L2]*C]? and therefore
LI, g.e.d.

LEMMA 2.3. I'(4*) can be identified with M(L"), and a complex homomor-
phism @ of K> belongs to I'(H™) if and only if |@(h)|=1 for every inner func-
tion h in 9=,

PrROOF. Let T* be the adjoint of the map T defined in Since
T*('(H*(D))=1I"(9¢*) and I'(H*(D))=M(L=(C)), we have I'(H~)=M(L~). It is
easily seen that 7T carries all inner functions in 4> onto all inner functions in
H>(D). Therefore we see that ¢ belongs to I'(4) if and only if [(T*)"(@)(h)I
=1 for every inner function s in H*(D) (cf. Hoffman [4], p. 179) if and only
if [o(h)|=1 for every inner function A in J*. g.e. d.
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§3. The maximal ideal space of H>(m).

For an ideal I in a complex commutative Banach algebra B we denote the
hull of I by hull(J) i.e., hull(I)={p=sM(B): ¢o(f)=0 for all f=I}. We denote
the closure of a subset E of M(B) by E.

THEOREM 3.1. (i) The quotienl Banach algebra H*(m)/I® is isometrically
isomorphic to K=, and under certain identification we have hull (I°)=M(9~)= P
and M(I=)=M(H*(m)\ &.

(ii) H=(m) is maximal as a w* closed subalgebra of L™(dm) if and only if
M(H=(m))= .

Proor. (i) By (2.3) and Lemma 2.2, for every function f=g+he H*(m),
geH>, hel” and for every positive integer n, we have f"=g"+h,, g"€X",
h,=I~. Hence we have

17 1mam=(1 g1#mdm+ {1 ha12am={ 1 gl 27,

. . 1/2n . 1/2n
S0 we obtain IIfIIZEE(S[ﬂ“dm) glnlgloqlg]“dm) =|gll. Hence we have

lg+I7|=inf {lg+hl: hel~}=|gll for g™ and g+I~=H=(m)/I°. Therefore,
by the quotient algebra H>(m)/I~ is isometrically isomorphic to %#>. Thus,
under natural identification, we have hull (/*)=M(H>(m)/I*)=M(%>) and M(I*)
= M(H=(m))\hull (I*) (cf. Stout [12], pp. 27-28).

Let T* be the adjoint of the map T: %~ — H=(D) defined in [2.2). Since
the open unit disk D is dense in M(H>(D))(cf. Carleson [2]) and T*(D)=2, we
have T*(M(H=(D)))=®. Therefore we have M(4*)=2.

(il) H>=(m) is maximal as a w* closed subalgebra of L*(dm) if and only if
I7=1{0} (cf. Merrill [10], Theorem 1) if and only if M(H=(m))= . g.e.d.

THEOREM 3.2. (1) If oeMU*)(=MH=(m)\P), then ¢ is extendable to a
complex homomorphism of L.

(i) MIHNP is contained in M(L)(=I(9)).

(i) If e MI*)IM(L>), then for every f in L=, [ is a constant (=¢(f))
on the closed support (=supp ¢) of the representing measure for ¢.

Proor. (i) If peM(), there is hel” with ¢(h)=1. Define @ on H"(m)
by @(f)=w(hf) for all f& H*(m). Then, as we have stated already in
3.1, the map ¢— @ is a homeomorphism of M(I*) onto M(H*(m))\ @, and by
this homeomorphism M(I*) may be identified with M(H=“(m))\%. On the other
hand we define @’ on L= by @/(f)=¢(hf) for all fe£>. By Q' is
multiplicative on £, and we have @'|4~=0|.4~. Therefore ¢ is extendable
to a complex homomorphism on _L~.

(i) If goeM(]‘”)m@, there is a net {p,} in M(I*) converging to ¢. By (i),
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we have |po(h)|=1 for every inner function 2 in 4~, so we have |p(h)|=1.
Therefore, by Lemma 2.3, ¢ belongs to M(L~).

(iii) Let Q be the set of all functions of the form h,h, where h, is a finite
linear combination of inner functions in H*(D) and 4, is an inner function in
H*=(D). Then Q is norm-dense in L™(C) (cf. Douglas-Rudin [3], Theorem 2).
By using the map T defined in [(2.2), we see that the same holds for 4> and _£*.

If peM(I")\JM(L>) then, by (i) and we have |o(h)|=1 for

every inner function A in 4=. Thus we have Slﬁ—gp(h)lzdgozo, ) fz:go(h) a.e.

(dp). Given fe_£~ and any positive number ¢, there are g, and g, such that
| f—g1/g.ll<e/2, where g, is a finite linear combination of inner functions in 9
and g, is an inner function in 4. Then we have

i

so we have f:go(f) a.e. (dp). Since 7 belongs to c(X) and o(f) is constant,
we obtain f=¢(f) on supp ¢. A g.e.d.
It is known that oeM(H>(m)) belongs to X=M(L*(dm)) if and only if
lp(h)|=1 for every inner function h in H*(m) (cf. Douglas-Rudin [3], Theorem
4). Hence, if ¥ X then, by %|.9> belongs to M(.L™).
We define a continuous map 7 of )?:M(L“’(dm)) into M(.L~) by

(3.1) F®=%|9, =X,

(Nldp<e,

fI7=etnide=(i7

and for every o M(L™) we set
(3.2) Kp)={xeX: #(%)=0).

Then, by (iii), we see that #X)=M(L>) and supp ¢C K(p) for

every o € M(L®). It is not known whether supp ¢=K(p) holds for p=M(L>).
For a set E in the maximal ideal space M(H"(m)) of H*(m) the H*(m)-

convex hull of E is the closed set E={peM(H"(m)): Igo(f)lésgp | £ for all

feH>(m)}. It is easy to see that, for a compact subset E of )?, (pEE if and
only if ¢ has a (unique) representing measure which is supported on E.

THEOREM 3.3. (i) If ¢, = M(L™) and ¢+¢, then K(p) and K(¢) are disjoint.

(il) MI*)="I{K(p)\{p} : o M(L)}.

(iii) The map T of M(L™(dm)) onto M(L”) has a continuous cross section,
1.e., there is a homeomorphism S from M(L®) into M(L™(dm)) such that %-S is
the identity.

Proor. (i) Since 4~ separates the points of M(L*), there is a function f
in 4~ such that ¢(f)#¢(f). Hence K(go) and K(¢) are disjoint, and therefore
K(¢) and K(¢) are disjoint.

(ii) Let @ be any element in M([*). Then, by [Theorem 3.2, (iii), there is
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a unique ¢ < M(L") such that supp 0C K(¢). Thus we have M(I c"’)C\J{K(go)\ {o} :
oeEM(L)}.

Conversely if 8=\ {K(p)\{o} : ¢ M(L=)}, then there is a unique ¢ € M(L)
such that #=K(p)\{¢}. For every inner function  in %= we have ﬁ:go(h) on
K(¢), so we have also A=¢(h) on suppf. By we have |8(h)|=|o(h)|
=1, so # cannot belong to @P\M(L*). Thus  belongs to M(I*)\UM(L>). But,
by (i), & does not belong to M(.L*). Thus # belongs to M (™).

(iii) Since M(L™) is extremely disconnected and # is the continuous map
of a compact Hausdorff space M(L~(dm)) onto M(L™), so ¥ has a continuous
cross section (cf. Bade [I], Theorem 7.4). g.e.d.

We define a continuous map = of M (H>(m)) into M(A) by

3.3) r(P)=0D|A, O=M(H>(m)).

COROLLARY 34. If o € a(M(I*)\J M(L™)), then there is a ¥ & M(L™) such
that supp o Crn(K@)).

PrROOF. Suppose that ¢==(®) for some @ in MUI*)JIM(L"). Then, by
there is an element ¥ of M(L~) such that supp @CKW). There-
fore we obtain supp p=rn(supp D)z (KT)). g.e.d.

THEOREM 3.5. Let B=_LPI* be the algebraic direct sum of L= and I™.
Then we have the following. :

(i) B is a w* closed subalgebra of L>(dm).

(1) The quotient Banach algebra B/I” is isometrically isomorphic to L.

(iii)) M(B)=\J{K(p): o=M(L™)}, where K(p) is the H"(m)-convex hull of
Klp). If ¢, pcM(L) and ¢+¢, then K(go) and K’(g[)) are disjoint.

Proor. (i) For every function f=g-+h in B, where g=_£~ and hel~, we
have |gl+|h]=<3|g+hl (see the proof of [Theorem 31 and [Lemma 2.7). Then,
since £~ and [~ are w* closed subspaces of L>(dm), B is a w* closed subal-
gebra of L>(dm) (cf. Leibowitz [9], p. 203).

(ii) This is proved by the same argument as in the proof of [Theorem 3.1.

(iii) By (ii), we obtain hull (I®)={peM(B): ¢(f)=0 for all felI*}=M(L")
and M{I*)=M(B)\hull(/=). Therefore, by we have M(B)=
U{K(p): peM(L)}. g.e.d.

THEOREM 3.6. (i) P\M(L™) is a union of Gleason parts for H*(m).

(i) If o, 0= P, then we have sup{|p(/)—0(f)| : f€ H*(m), | fl<1} =sup{|o(f)
—0(Hl: fex, [fI=1}.

(iii) If ¢E§’\M(£w) and 0 M(I*)IM(L"), then we have p,(supp )=0 for
a (unique) representing measure p, on X for o.

Proor. () If ¢peM(L)JIM(I®) then, by and
(i), we have |¢(f)|=1 for any inner function f in &= If @E@\M(.E“’) then,
by we have |o(f,)|<1 for some inner function f, in 4. Hence,
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for an inner function F= ,fL__ﬁ@L in 4=, we have |J(F)|=1 and ¢(F)=0.

1_€D(fo)fo _
Thus we obtain d(p, $)=sup{l(f)| : feH(m), IfI=<], o(f)=0}=1, so P\M(L™)

is a union of Gleason parts for H=(m).

(i) If f=g+heH=(m), ge%=, hel~ and ||f|<1, then we obtain [g[|<|fI=1
(see the proof of [Theorem 3.1). And, for any ¢, =P, we have |p(f)—0(f)]
=|p(g)—0(g)|. Thus we have |o(f)—0(f)| =sup{lp(g)—0(g)| : g%~ |gl=1},
so we obtain sup {|o(f)—0(f)| : f€ H*(m), |fl=1}=sup{lep(g)—0(g)|: g=4~,
lgll=1}.

(iii) Since g is a logmodular algebra on Y=M(L"), goe§°\M(.L’°°) also has
a unique representing measure on Y for 4. The map 7 defined in is a
continuous map of X onto Y. Thus there is a natural linear transformation &
of the dual space HM(X) of C(X) onto the dual space HM(Y) of C(Y') which takes
pem()?) onto the measure (y) defined on the Borel set £ of ¥ by

) E)=p@ Y E)),
or, equivalently, on the function geC(Y) by

[,gden=1 g7 dn.

Then, if u, is the representing measure on X of ¢€§\M(£w) for H=(m), then
d(p,) is the representing measure on Y of ¢ for 4. Thus, for any d€M(L>),
we have 0=d(u,)({0})=p(K(@). If dsM(L™), we have supp§CK(0), so we
obtain p,(supp #)=0. If M=), then, by (ii), we have supp@
CK(¢p) for some ¢p=M(L"), so we obtain p,(supp )=0. g.e.d.

COROLLARY 3.7. If o€ P\M(L>), then the closure of the Gleason part P(p)
for H™(m) which contains ¢ does not meet M(I)\M(L>). The union G of all
nontrivial Gleason parts for H*(m) which are contained in P\M(L™) is open in the
space M(H*(m)).

PrROOF. The map T defined in is an isometric isomorphism of %> onto
H>=(D), and thus the adjoint T* of T is a homeomorphism of M(H*(D)) onto
M=), If P is a nontrivial (trivial) Gleason part for H=(D) which is contained
in M(H*(D))\M(L>(C)), then, by T*(P) is also a nontrivial (trivial)
Gleason part for H*(m) which is contained in @\M(L>). Hence, for P(p) there
is a Gleason part P for H=(D) such that PA\M(L™(C))=0 and T*(P)=P(p).
Since P does not meet M(L*(C)) (cf. Hoffman p. 102), P(p) does not meet
M(L>). Hence, by [Theorem 3.1, we have P(p) \(MI*)\JM(L=))=0.

The union G, of all nontrivial Gleason parts for H*(D) is open in the sub-
space M(H=(D)\M (L*(C)) (cf. Hoffman [6], p. 89), so that G=T*(G, is open
in the subspace P\M(L=)=MH=m)N\MUI=)IM(L). But, by
(i), M(I®)IM(L™) is closed in M(H>(m)), so G is open in M(H"(m)). gq.e.d.
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§4. A Gleason part P satisfying A|P=H>(D).

By [Theorem 2.1, there is a one-to-one continuous map = of the open unit
disk D onto a nontrivial Gleason part P—=P(m) containing meM(A) such that,
for every f in A, the composition for belongs to H=(D). If we set

A|P={for: fe A},

then we have A|PCH=(D). When {fer: fe A}=H=(D) holds, we denote it by
A|P=H=(D). Note that H=(m)| @={fer: f€ H*(m)} is contained in H>(D) (cf.
Leibowitz [9], p. 142).

THEOREM 4.1. Let A be a uniform algebra on a compact space X. Suppose
that meM has a unique representing measure m on X, and that the part P
containing m consists of more than one point. If A|P=H>(D), then the map =
defined in (3.3) is a homeomorphism of the closure P of @ in M(H=(m)) onto the
closure P of P in M(A). Therefore P is homeomorphic to the maximal ideal
space of H”(D).

PROOF. By the continuity of = we have 7 PCrP= P, and clearly we have
T@D7P, so that we have z@=P. From H=(D)=A|P=A|PCH(m)| P=
9| PC H*(D) we obtain

(3.4) AlP=9"| P=H>(m)| P.

If ¢, 0,2 and @, #¢,, then there is a function fe4™ satisfying f(p,)
+ f(¢,). There is a function g€ A such that f=g on @ and thus /=g on &.
For such a function g we have 2(¢,)#28(¢,). Thus = is a homeomorphism of
2 onto P.

In the proof of we have shown that & is homeomorphic to
M(H=(D)), so that P is homeomorphic to M(H=(D)). g.e.d.

COROLLARY 4.2. If A|P=H=(D), then P is homeomorphic to the open unit
disk D.

A complex valued function f on P is called a bounded analytic function on
P if for is analytic on D for 7 in and sup {|(fez)(A)| : 2D} is
finite. We denote by H>=(P) the set of all bounded analytic functions on P,
then it is known that H=(P)={fer: fe H*(m)} (cf. Leibowitz [9], p. 155). By
we obtain the following corollary.

COROLLARY 4.3. If A|P=H>(D), then A|P=H>(P).

THEOREM 4.4. Let A, m and P be as in Theorem 4.1, and let I={f< A : o(f)
=0 for all o= P}. Then, if A|P=H=(D), we have M(A/I)=hull (I)=P. Therefore
M(A)2P if and only if I12{0}.

Proor. As we have shown in the proof of [Theorem 4.1, if A|P=H=(D)
then A|®=H*(m)|?. Hence if we consider A as a subset of H*(m), we have
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{f+I: feH*m)}={f+1~: f€A}. Therefore, if we set A/I[°={f+I: fe A},
then we have A/I*=H>(m)/I”. Since I=I"NA, we have (f+I*)"A=f+I for
every f€A. The correspondence f+I[”— f+41I, which is defined for fe A,
induces an algebra isomorphism 2 of H*(m)/I*=A/I* onto A/I. Therefore the
adjoint 2* of Y is a homeomorphism of M(A/I) onto M(H=(m)/I*). We set
o=(2*)"1 If o(@)=¢ for @=M(H>(m)/I*), then we have

o(f+D=(c(®) (f +D=D(f+I7)

for every f<A.

If p is the natural homomorphism of H®(m) onto H*(m)/I~, then the adjoint
p* of p is a homeomorphism of M(H>*(m)/I*) onto hull (/*). Similarly if p,
is the natural homomorphism of A onto A/I, then the adjoint p% of p, is a
homeomorphism of M(A/I) onto hull (/). We then have

M(A/T)={(c°(p*)"*}®P): ®<hull (I*)=P}
and, by [Theorem 4.1, we have
P={z(D): O=F}.

And, for every f€A and @ =P, we have

(o @) f)=0(f)=(a > (p*) D) f+I).
Therefore, by using the identification map p%, we have
M(A/D=P,

and thus we have hull (/)=2P. g.e.d.

COROLLARY 4.5. Suppose that A|P=H=(D) and the closure P of P in M(A)
is disjoint from X. If we put A;={f€A: fot is a constant} for t in Theorem
2.1, then A, is a uniform algebra on X.

§5. Examples.

1. Let A=A(T?) be the Dirichlet algebra of continuous functions on the
torus T°={(z, w): |z|=|w|=1} which are uniform limits of the polynomials in
Z'w’, where

(1, NpES={G, ): >0V {G, 0): 1=0}.

Then the maximal ideal space of A can be identified with
{(z, w): lzl=1, [w|=1}\Y{(z 0): |z[<1}

with the normalized Haar measure m identified with z=w=0. The Gleason
part P(m) containing m is {(z, 0): |z| <1} and the closure of P(m) does not
meet T2 The Wermer’s embedding function for P(m) is given by Z=z (cf.
Merrill-Lal [1I].)
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Let H=(m) be the w* closure in L=(dm) of A. Then H>(m) is not maximal
as a w* closed subalgebra of L>(dm). 4= and I> are the w* closure in L=(dm)
of the polynomials in 2%, 1=0, 1, 2, --- and the w* closure in L*(dm) of the
polynomials in z'w’ for i=0, =1, -2, --- and j=1 respectively. By using an
inner function f=zw we see that the closure of the Gleason part & for H>(m)
does not meet the Silov boundary M(L=(dm)) for H=(m) (see (21). L= is the
w* closure in L=(dm) of the polynomials in z* for =0, +£1, +2, --- and the
Banach algebra B defined in is the w* closure in L>(dm) of the
polynomials in z'w’ for (=0, +1, +2--- and ;=0, 1, 2, ---.

2. Let H*=H=(D) be the algebra of all bounded analytic functions on the
open unit disk D. For |a|=1 let M, be the fiber of M(H=) over a, i.e., M,
={peM(H=): ¢(2)=a} and let X,=M,M(L*(C)). Then A,=HO%|M, is a
uniform algebra on M, and the Silov boundary of A, is X.. Evidently we have

Ca(X)Dlog| Az'| DUog| (A=) )| X o= CalM(L*(C))| Xa=Cr(X)

so we obtain log|Az!|=Cgr(X,). Therefore A, is a logmodular algebra on X,.
As we have stated already in the proof of if P is any nontrivial
Gleason part for A, then there is an inner function f such that /=0 on P (cf.
Hoffman [6], p. 102). Therefore if meP and H>(m) is the w* closure of A,
in L=(dm), then H>(m) is not maximal as a w* closed subalgebra of L=(dm).
There is a nontrivial Gleason part P for A, such that A,|P=H>(D) (cf.

Hoffman [4], p. 106). By we see that if A,|P=H=(D), then P
is homeomorphic to the open unit disk. But there is an example such that P
is not homeomorphic to D (cf. Hoffman [6], p. 109), and for such a Gleason
part we have A,| P+ H>=(D).
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