The maximal ideal space of certain algebra $H^{\infty}(m)$

By Kazuo KISHI

(Received Feb. 28, 1977) (Revised Oct. 1, 1977)

§ 1. Introduction.

Let A be a uniform algebra on a compact Hausdorff space X and m a complex homomorphism of A. We suppose that m has a unique representing measure μ_m on X and that the Gleason part P(m) containing m consists of more than one point. We denote by $H^{\infty}(m)$ the w^* closure of A in $L^{\infty}(d\mu_m)$, and by I^{∞} the ideal $\{f \in H^{\infty}(m) : \varphi(f) = 0 \text{ for all } \varphi \in P(m) \}$ of $H^{\infty}(m)$. In [10], Merrill proved that $H^{\infty}(m)$ is maximal as a w^* closed subalgebra of $L^{\infty}(d\mu_m)$ if and only if $I^{\infty} = \{0\}$. In this paper we shall deal with the case when $I^{\infty} \neq \{0\}$.

In § 2 we shall state some preliminaries and two lemmas. In § 3 we shall study some properties of the maximal ideal space of the Banach algebra $H^{\infty}(m)$ with $I^{\infty} \neq \{0\}$. In § 4 we shall study some properties of a Gleason part P(m) such that $A \mid P(m) = H^{\infty}(D)$ (for the precise meaning see § 4). In § 5 we shall give some examples relating to § 3 and § 4.

§2. Preliminaries and lemmas.

For a complex commutative Banach algebra B, let B^{-1} be the set of all invertible elements of B. Let M(B) be the maximal ideal space of B endowed with the Gelfand topology, let \hat{f} and \hat{B} be the Gelfand transforms of f ($\in B$) and B respectively, and let $\Gamma(B)$ be the Šilov boundary of B.

Let X be a compact Hausdorff space, and let $C(X)(C_R(X))$ be the complex (real) Banach algebra of all complex (real) valued continuous functions on X. Let A be a uniform algebra on X, i.e., A is a uniformly closed subalgebra of C(X) which contains the function 1 and separates the points of X. A representing measure for $\varphi \in M(A)$ is a probability measure μ on X such that $\varphi(f) = \int f d\mu$ for all $f \in A$. We denote by supp μ the closed support of a measure μ . When $\varphi \in M(A)$ has a unique representing measure, sometimes we use the same symbol φ to denote its representing measure. Given φ and φ in M(A), we set

$$d(\varphi, \psi) = \sup \{ |\varphi(f)| : f \in A, \|f\| = \sup |f| \le 1, \psi(f) = 0 \}$$

484 K. Kishi

and

$$G(\varphi, \phi) = \sup \{ |\varphi(f) - \psi(f)| : f \in A, \|f\| \le 1 \},$$

and write $\varphi \sim \psi$ if and only if $d(\varphi, \psi) < 1$ (or, equivalently, $G(\varphi, \psi) < 2$). Then \sim is an equivalence relation in M(A), and an equivalence class $P(m) = \{\varphi \in M(A) : m \sim \varphi\}$ ($\supseteq \{m\}$) is called the (nontrivial) Gleason part for A which contains m.

Henceforth we suppose that $m \in M(A)$ has a unique representing measure m and that the Gleason part P=P(m) containing m is nontrivial. Then it is known that $\varphi \in P(m)$ has a unique representing measure φ and that representing measures m and φ are mutually absolutely continuous.

We denote by A_m the kernel of a complex homomorphism $m \in M(A)$. Let $H^{\infty}(m)$ and H^{∞}_m be the w^* closures in $L^{\infty}(dm)$ of A and A_m respectively, and for $1 \leq p < \infty$ let $H^p(m)$ and H^p_m be the closures in $L^p(dm)$ norm of A and A_m respectively. If we denote by \widetilde{H}^{∞} the restriction of $\widehat{H}^{\infty}(m)$ to \widetilde{X} ($=M(L^{\infty}(dm))$), then \widetilde{H}^{∞} is a logmodular algebra on \widetilde{X} , i. e., $\log |(\widetilde{H}^{\infty})^{-1}| = C_R(\widetilde{X})$ (cf. Hoffman [5]). Sometimes we shall identify $H^{\infty}(m)$ with \widetilde{H}^{∞} . A function $h \in H^{\infty}(m)$ with |h| = 1 a. e. (dm) is called an inner function.

Theorem 2.1 (Wermer's Embedding Theorem). Let A be a uniform algebra on a compact space X. Suppose that $m \in M(A)$ has a unique representing measure m on X, and that the Gleason part P(m) containing m is nontrivial. Then there is an inner function Z known as Wermer's embedding function such that $ZH^{\infty}(m)=H_m^{\infty}$ and $\varphi\mapsto \hat{Z}(\varphi)=\int Z\,d\varphi$ is a one-to-one map of the part P(m) onto the open unit disk D. The inverse map τ of \hat{Z} is a one-to-one continuous map of D onto P(m), and for every f in A, the composite function $\hat{f}\circ\tau$ is analytic on D. (Cf. Leibowitz [9], p. 143).

Given
$$\varphi \in P(m)$$
, we define $\tilde{\varphi}$ by $\tilde{\varphi}(f) = \int f d\varphi$ for $f \in H^{\infty}(m)$, and set (2.1)
$$\mathcal{L} = \{ \tilde{\varphi} : \varphi \in P(m) \}.$$

Then \mathcal{P} is the nontrivial Gleason part for $H^{\infty}(m)$ which contains \tilde{m} , and we have $\mathcal{P} = \{ \varphi \in M(H^{\infty}(m)) : |\varphi(Z)| < 1 \}$ for the Wermer's embedding function Z. Thus \mathcal{P} is an open set in the space $M(H^{\infty}(m))$, which is homeomorphic to the open unit disk D (cf. Kishi [7], [8]).

Let \mathcal{H}^p be the closure in $L^p(dm)$ norm of the polynomials in Z, and let \mathcal{L}^p be the closure in $L^p(dm)$ norm of the polynomials in Z and \overline{Z} . (For $p=\infty$, the closure is taken in the w^* topology.) Let σ be the normalized Lebesgue measure on the unit circle C in the complex plane, and let $H^p(d\sigma)=H^p(D)$ be the classical Hardy space. For $1 \leq p \leq \infty$, the correspondence

$$(2.2) T: Z \longmapsto e^{i\theta}$$

induces an isometric *-isomorphism (i. e., taking complex conjugates into complex conjugates) of \mathcal{L}^p onto $L^p(d\sigma)=L^p(C)$. This map is also an isometric isomorphism of \mathcal{H}^∞ onto $H^\infty(D)$. Therefore the adjoint T^* of T is a homeomorphism of $M(L^\infty(C))$ and $M(H^\infty(D))$ onto $M(\mathcal{L}^\infty)$ and $M(\mathcal{H}^\infty)$ respectively. It is easily seen that $\log |(\mathcal{H}^\infty)^{-1}| = \mathcal{L}^\infty_R$, where \mathcal{L}^∞_R is the set of all real valued functions in \mathcal{L}^∞ . By Fatou's theorem, $H^\infty(D)$ is identified with the Banach algebra of all bounded analytic functions on D. (Cf. Merrill-Lal [11].)

For $1 \leq p \leq \infty$, if we set

$$I^p = \{ f \in H^p(m) : \int \bar{Z}^n f \ dm = 0, \ n = 0, 1, 2, \dots \}$$

and

$$M^p = \{ f \in L^p(dm) : \int Z^n f dm = 0 \text{ for all integers } n \},$$

then we have

$$(2.3) H^p(m) = \mathcal{A}^p \oplus I^p \text{ and } L^p(dm) = \mathcal{L}^p \oplus M^p,$$

where \oplus denotes algebraic direct sum. It is known that $f \in I^p$ if and only if $\hat{f}(\varphi) = \int f \, d\varphi = 0$ for all $\varphi \in P(m)$. Further it is known that $I^2 \cap L^{\infty}(dm) = I^{\infty}$ and I^{∞} is dense in I^2 . (Cf. Merrill-Lal [11].)

We prove here two lemmas which will be needed in § 3.

Lemma 2.2. $\mathcal{L}^{\infty}I^{\infty}=I^{\infty}$.

PROOF. If $f \in I^{\infty}$, then we have $Z^n f \in I^{\infty}$ for all integers n (cf. Merrill-Lal [11], Lemma 1). For $f \in I^{\infty}$ and $g = \sum_{n=0}^{\infty} a_n Z^n \in \mathcal{H}^2$ we have

$$\int |f\bar{g} - \sum_{n=0}^{k} \bar{a}_n \bar{Z}^n f| dm \leq ||f|| \left[\int |g - \sum_{n=0}^{k} a_n Z^n|^2 dm \right]^{1/2} \to 0$$

as $k \to \infty$. Hence we obtain $\bar{\mathcal{H}}^2 I^\infty \subset I^2$. We obtain similarly $\mathcal{H}_m^2 I^\infty \subset I^2$, where $\mathcal{H}_m^2 = \{ f \in \mathcal{H}^2 : \int f \ dm = 0 \}$. Since $\mathcal{L}^2 = \bar{\mathcal{H}}^2 \oplus \mathcal{H}_m^2$ we have $\mathcal{L}^2 I^\infty \subset I^2$, and therefore $\mathcal{L}^\infty I^\infty \subset I^\infty$.

Lemma 2.3. $\Gamma(\mathcal{H}^{\infty})$ can be identified with $M(\mathcal{L}^{\infty})$, and a complex homomorphism φ of \mathcal{H}^{∞} belongs to $\Gamma(\mathcal{H}^{\infty})$ if and only if $|\varphi(h)|=1$ for every inner function h in \mathcal{H}^{∞} .

PROOF. Let T^* be the adjoint of the map T defined in (2.2). Since $T^*(\Gamma(H^{\infty}(D)) = \Gamma(\mathcal{H}^{\infty})$ and $\Gamma(H^{\infty}(D)) = M(L^{\infty}(C))$, we have $\Gamma(\mathcal{H}^{\infty}) = M(\mathcal{L}^{\infty})$. It is easily seen that T carries all inner functions in \mathcal{H}^{∞} onto all inner functions in $H^{\infty}(D)$. Therefore we see that φ belongs to $\Gamma(\mathcal{H}^{\infty})$ if and only if $|(T^*)^{-1}(\varphi)(h)| = 1$ for every inner function h in $H^{\infty}(D)$ (cf. Hoffman [4], p. 179) if and only if $|\varphi(h)| = 1$ for every inner function h in \mathcal{H}^{∞} .

486 К. Kisнi

§ 3. The maximal ideal space of $H^{\infty}(m)$.

For an ideal I in a complex commutative Banach algebra B we denote the hull of I by hull (I) i. e., hull $(I) = \{ \varphi \in M(B) : \varphi(f) = 0 \text{ for all } f \in I \}$. We denote the closure of a subset E of M(B) by \overline{E} .

THEOREM 3.1. (i) The quotient Banach algebra $H^{\infty}(m)/I^{\infty}$ is isometrically isomorphic to \mathcal{H}^{∞} , and under certain identification we have hull $(I^{\infty})=M(\mathcal{H}^{\infty})=\overline{\mathcal{P}}$ and $M(I^{\infty})=M(H^{\infty}(m))\setminus\overline{\mathcal{P}}$.

(ii) $H^{\infty}(m)$ is maximal as a w^* closed subalgebra of $L^{\infty}(dm)$ if and only if $M(H^{\infty}(m)) = \overline{\mathcal{P}}$.

PROOF. (i) By (2.3) and Lemma 2.2, for every function $f=g+h\in H^\infty(m)$, $g\in \mathcal{H}^\infty$, $h\in I^\infty$ and for every positive integer n, we have $f^n=g^n+h_n$, $g^n\in \mathcal{H}^\infty$, $h_n\in I^\infty$. Hence we have

$$\int |f|^{2n}dm = \int |g|^{2n}dm + \int |h_n|^2dm \ge \int |g|^{2n}dm$$
 ,

so we obtain $\|f\|=\lim_{n\to\infty} \left(\int |f|^{2n}dm\right)^{1/2n} \ge \lim_{n\to\infty} \left(\int |g|^{2n}dm\right)^{1/2n} = \|g\|$. Hence we have $\|g+I^\infty\|=\inf \{\|g+h\|:h\in I^\infty\}=\|g\|$ for $g\in\mathcal{H}^\infty$ and $g+I^\infty\in H^\infty(m)/I^\infty$. Therefore, by (2.3), the quotient algebra $H^\infty(m)/I^\infty$ is isometrically isomorphic to \mathcal{H}^∞ . Thus, under natural identification, we have hull $(I^\infty)=M(H^\infty(m)/I^\infty)=M(\mathcal{H}^\infty)$ and $M(I^\infty)=M(H^\infty(m))\setminus \{I^\infty\}$ (cf. Stout [12], pp. 27-28).

Let T^* be the adjoint of the map $T: \mathcal{H}^{\infty} \to H^{\infty}(D)$ defined in (2.2). Since the open unit disk D is dense in $M(H^{\infty}(D))$ (cf. Carleson [2]) and $T^*(D) = \mathcal{P}$, we have $T^*(M(H^{\infty}(D))) = \overline{\mathcal{P}}$. Therefore we have $M(\mathcal{H}^{\infty}) = \overline{\mathcal{P}}$.

(ii) $H^{\infty}(m)$ is maximal as a w^* closed subalgebra of $L^{\infty}(dm)$ if and only if $I^{\infty} = \{0\}$ (cf. Merrill [10], Theorem 1) if and only if $M(H^{\infty}(m)) = \overline{\mathcal{P}}$. q. e. d.

Theorem 3.2. (i) If $\varphi \in M(I^{\infty}) (=M(H^{\infty}(m)) \setminus \overline{\mathcal{P}})$, then φ is extendable to a complex homomorphism of \mathcal{L}^{∞} .

- (ii) $\overline{M(I^{\infty})} \cap \overline{\mathcal{P}}$ is contained in $M(\mathcal{L}^{\infty}) (= \Gamma(\mathcal{H}^{\infty}))$.
- (iii) If $\varphi \in M(I^{\infty}) \cup M(\mathcal{L}^{\infty})$, then for every f in \mathcal{L}^{∞} , \hat{f} is a constant $(=\varphi(f))$ on the closed support $(=\sup \varphi)$ of the representing measure for φ .
- PROOF. (i) If $\varphi \in M(I^{\infty})$, there is $h \in I^{\infty}$ with $\varphi(h) = 1$. Define Φ on $H^{\infty}(m)$ by $\Phi(f) = \varphi(hf)$ for all $f \in H^{\infty}(m)$. Then, as we have stated already in Theorem 3.1, the map $\varphi \mapsto \Phi$ is a homeomorphism of $M(I^{\infty})$ onto $M(H^{\infty}(m)) \setminus \overline{\mathscr{P}}$, and by this homeomorphism $M(I^{\infty})$ may be identified with $M(H^{\infty}(m)) \setminus \overline{\mathscr{P}}$. On the other hand we define Φ' on \mathscr{L}^{∞} by $\Phi'(f) = \varphi(hf)$ for all $f \in \mathscr{L}^{\infty}$. By Lemma 2.2, Φ' is multiplicative on \mathscr{L}^{∞} , and we have $\Phi' \mid \mathscr{H}^{\infty} = \Phi \mid \mathscr{H}^{\infty}$. Therefore φ is extendable to a complex homomorphism on \mathscr{L}^{∞} .
 - (ii) If $\varphi \in \overline{M(I^{\infty})} \cap \overline{\mathcal{P}}$, there is a net $\{\varphi_{\alpha}\}$ in $M(I^{\infty})$ converging to φ . By (i),

we have $|\varphi_{\alpha}(h)|=1$ for every inner function h in \mathcal{H}^{∞} , so we have $|\varphi(h)|=1$. Therefore, by Lemma 2.3, φ belongs to $M(\mathcal{L}^{\infty})$.

(iii) Let Q be the set of all functions of the form $h_1\bar{h}_2$, where h_1 is a finite linear combination of inner functions in $H^{\infty}(D)$ and h_2 is an inner function in $H^{\infty}(D)$. Then Q is norm-dense in $L^{\infty}(C)$ (cf. Douglas-Rudin [3], Theorem 2). By using the map T defined in (2.2), we see that the same holds for \mathcal{H}^{∞} and \mathcal{L}^{∞} .

If $\varphi \in M(I^{\infty}) \cup M(\mathcal{L}^{\infty})$ then, by (i) and Lemma 2.3, we have $|\varphi(h)|=1$ for every inner function h in \mathcal{H}^{∞} . Thus we have $\int |\hat{h}-\varphi(h)|^2 d\varphi = 0$, so $\hat{h}=\varphi(h)$ a.e. $(d\varphi)$. Given $f \in \mathcal{L}^{\infty}$ and any positive number ε , there are g_1 and g_2 such that $||f-g_1/g_2|| < \varepsilon/2$, where g_1 is a finite linear combination of inner functions in \mathcal{H}^{∞} and g_2 is an inner function in \mathcal{H}^{∞} . Then we have

$$\int \! |\hat{f} \! - \! \varphi(f)| \, d\varphi \! \leqq \! \int \! |\hat{f} \! - \! \frac{\hat{g}_1}{\hat{g}_2}| \, d\varphi \! + \! \int \! | \! - \! \frac{\hat{g}_1}{\hat{g}_2} \! - \! \varphi(f)| \, d\varphi \! < \! \varepsilon \; ,$$

so we have $\hat{f} = \varphi(f)$ a.e. $(d\varphi)$. Since \hat{f} belongs to $C(\tilde{X})$ and $\varphi(f)$ is constant, we obtain $\hat{f} = \varphi(f)$ on supp φ .

It is known that $\varphi \in M(H^{\infty}(m))$ belongs to $\widetilde{X} = M(L^{\infty}(dm))$ if and only if $|\varphi(h)| = 1$ for every inner function h in $H^{\infty}(m)$ (cf. Douglas-Rudin [3], Theorem 4). Hence, if $\widetilde{x} \in \widetilde{X}$ then, by Lemma 2.3, $\widetilde{x} \mid \mathcal{H}^{\infty}$ belongs to $M(\mathcal{L}^{\infty})$.

We define a continuous map $\tilde{\pi}$ of $\tilde{X}=M(L^{\infty}(dm))$ into $M(\mathcal{L}^{\infty})$ by

(3.1)
$$\tilde{\pi}(\tilde{x}) = \tilde{x} \mid \mathcal{H}^{\infty}, \ \tilde{x} \in \tilde{X},$$

and for every $\varphi \in M(\mathcal{L}^{\infty})$ we set

(3.2)
$$K(\varphi) = \{ \tilde{x} \in \tilde{X} : \tilde{\pi}(\tilde{x}) = \varphi \}.$$

Then, by Theorem 3.2, (iii), we see that $\tilde{\pi}(\tilde{X}) = M(\mathcal{L}^{\infty})$ and $\operatorname{supp} \varphi \subset K(\varphi)$ for every $\varphi \in M(\mathcal{L}^{\infty})$. It is not known whether $\operatorname{supp} \varphi = K(\varphi)$ holds for $\varphi \in M(\mathcal{L}^{\infty})$.

For a set E in the maximal ideal space $M(H^{\infty}(m))$ of $H^{\infty}(m)$ the $H^{\infty}(m)$ -convex hull of E is the closed set $\hat{E} = \{ \varphi \in M(H^{\infty}(m)) : |\varphi(f)| \leq \sup_{E} |f| \text{ for all } f \in H^{\infty}(m) \}$. It is easy to see that, for a compact subset E of \tilde{X} , $\varphi \in \hat{E}$ if and only if φ has a (unique) representing measure which is supported on E.

Theorem 3.3. (i) If φ , $\phi \in M(\mathcal{L}^{\infty})$ and $\varphi \neq \phi$, then $\hat{K}(\varphi)$ and $\hat{K}(\phi)$ are disjoint.

- (ii) $M(I^{\infty}) = \bigcup \{\hat{K}(\varphi) \setminus \{\varphi\} : \varphi \in M(\mathcal{L}^{\infty})\}.$
- (iii) The map $\tilde{\pi}$ of $M(L^{\infty}(dm))$ onto $M(\mathcal{L}^{\infty})$ has a continuous cross section, i. e., there is a homeomorphism S from $M(\mathcal{L}^{\infty})$ into $M(L^{\infty}(dm))$ such that $\tilde{\pi} \circ S$ is the identity.
- PROOF. (i) Since \mathcal{H}^{∞} separates the points of $M(\mathcal{L}^{\infty})$, there is a function f in \mathcal{H}^{∞} such that $\varphi(f) \neq \psi(f)$. Hence $K(\varphi)$ and $K(\psi)$ are disjoint, and therefore $\hat{K}(\varphi)$ and $\hat{K}(\psi)$ are disjoint.
 - (ii) Let θ be any element in $M(I^{\infty})$. Then, by Theorem 3.2, (iii), there is

488 К. Kisнi

a unique $\varphi \in M(\mathcal{L}^{\infty})$ such that supp $\theta \subset K(\varphi)$. Thus we have $M(I^{\infty}) \subset \bigcup \{\hat{K}(\varphi) \setminus \{\varphi\} : \varphi \in M(\mathcal{L}^{\infty})\}$.

Conversely if $\theta \in \bigcup \{\hat{K}(\varphi) \setminus \{\varphi\} : \varphi \in M(\mathcal{L}^{\infty})\}$, then there is a unique $\varphi \in M(\mathcal{L}^{\infty})$ such that $\theta \in \hat{K}(\varphi) \setminus \{\varphi\}$. For every inner function h in \mathcal{H}^{∞} we have $\hat{h} = \varphi(h)$ on $K(\varphi)$, so we have also $\hat{h} = \varphi(h)$ on supp θ . By Lemma 2.3, we have $|\theta(h)| = |\varphi(h)| = 1$, so θ cannot belong to $\overline{\mathcal{P}} \setminus M(\mathcal{L}^{\infty})$. Thus θ belongs to $M(I^{\infty}) \cup M(\mathcal{L}^{\infty})$. But, by (i), θ does not belong to $M(\mathcal{L}^{\infty})$. Thus θ belongs to $M(I^{\infty})$.

(iii) Since $M(\mathcal{L}^{\infty})$ is extremely disconnected and $\tilde{\pi}$ is the continuous map of a compact Hausdorff space $M(L^{\infty}(dm))$ onto $M(\mathcal{L}^{\infty})$, so $\tilde{\pi}$ has a continuous cross section (cf. Bade [1], Theorem 7.4). q. e. d.

We define a continuous map π of $M(H^{\infty}(m))$ into M(A) by

(3.3)
$$\pi(\Phi) = \Phi \mid A, \quad \Phi \in M(H^{\infty}(m)).$$

COROLLARY 3.4. If $\varphi \in \pi(M(I^{\infty}) \cup M(\mathcal{L}^{\infty}))$, then there is a $\Psi \in M(\mathcal{L}^{\infty})$ such that supp $\varphi \subset \pi(K(\Psi))$.

PROOF. Suppose that $\varphi = \pi(\Phi)$ for some Φ in $M(I^{\infty}) \cup M(\mathcal{L}^{\infty})$. Then, by Theorem 3.3, there is an element Ψ of $M(\mathcal{L}^{\infty})$ such that supp $\Phi \subset K(\Psi)$. Therefore we obtain supp $\varphi = \pi(\text{supp }\Phi) \subset \pi(K(\Psi))$.

Theorem 3.5. Let $B = \mathcal{L}^{\infty} \oplus I^{\infty}$ be the algebraic direct sum of \mathcal{L}^{∞} and I^{∞} . Then we have the following.

- (i) B is a w^* closed subalgebra of $L^{\infty}(dm)$.
- (ii) The quotient Banach algebra B/I^{∞} is isometrically isomorphic to \mathcal{L}^{∞} .
- (iii) $M(B) = \bigcup \{ \hat{K}(\varphi) : \varphi \in M(\mathcal{L}^{\infty}) \}$, where $\hat{K}(\varphi)$ is the $H^{\infty}(m)$ -convex hull of $K(\varphi)$. If φ , $\psi \in M(\mathcal{L}^{\infty})$ and $\varphi \neq \psi$, then $\hat{K}(\varphi)$ and $\hat{K}(\psi)$ are disjoint.
- PROOF. (i) For every function f=g+h in B, where $g \in \mathcal{L}^{\infty}$ and $h \in I^{\infty}$, we have $\|g\|+\|h\| \leq 3\|g+h\|$ (see the proof of Theorem 3.1 and Lemma 2.2). Then, since \mathcal{L}^{∞} and I^{∞} are w^* closed subspaces of $L^{\infty}(dm)$, B is a w^* closed subalgebra of $L^{\infty}(dm)$ (cf. Leibowitz [9], p. 203).
 - (ii) This is proved by the same argument as in the proof of Theorem 3.1.
- (iii) By (ii), we obtain hull $(I^{\infty}) = \{ \varphi \in M(B) : \varphi(f) = 0 \text{ for all } f \in I^{\infty} \} = M(\mathcal{L}^{\infty})$ and $M(I^{\infty}) = M(B) \setminus \text{hull}(I^{\infty})$. Therefore, by Theorem 3.3, we have $M(B) = \bigcup \{ \hat{K}(\varphi) : \varphi \in M(\mathcal{L}^{\infty}) \}$.

THEOREM 3.6. (i) $\mathcal{P}\backslash M(\mathcal{L}^{\infty})$ is a union of Gleason parts for $H^{\infty}(m)$.

- (ii) If φ , $\theta \in \overline{\mathcal{P}}$, then we have $\sup\{|\varphi(f) \theta(f)| : f \in H^{\infty}(m), \|f\| \leq 1\} = \sup\{|\varphi(f) \theta(f)| : f \in \mathcal{H}^{\infty}, \|f\| \leq 1\}$.
- (iii) If $\varphi \in \mathcal{P} \setminus M(\mathcal{L}^{\infty})$ and $\theta \in M(I^{\infty}) \cup M(\mathcal{L}^{\infty})$, then we have $\mu_{\varphi}(\sup \theta) = 0$ for a (unique) representing measure μ_{φ} on \tilde{X} for φ .
- PROOF. (i) If $\phi \in M(\mathcal{L}^{\infty}) \cup M(I^{\infty})$ then, by Lemma 2.3 and Theorem 3.2, (i), we have $|\phi(f)|=1$ for any inner function f in \mathcal{H}^{∞} . If $\varphi \in \overline{\mathcal{L}} \setminus M(\mathcal{L}^{\infty})$ then, by Lemma 2.3, we have $|\varphi(f_0)| < 1$ for some inner function f_0 in \mathcal{H}^{∞} . Hence,

for an inner function $F=\frac{f_0-\varphi(f_0)}{1-\overline{\varphi(f_0)}f_0}$ in \mathcal{H}^{∞} , we have $|\psi(F)|=1$ and $\varphi(F)=0$. Thus we obtain $d(\varphi,\,\psi)=\sup\{|\psi(f)|:\,f\in H^{\infty}(m),\,\|f\|\leq 1,\,\varphi(f)=0\}=1,\,\text{so}\,\,\overline{\mathcal{L}}\setminus M(\mathcal{L}^{\infty})$ is a union of Gleason parts for $H^{\infty}(m)$.

- (ii) If $f=g+h\in H^\infty(m)$, $g\in\mathcal{H}^\infty$, $h\in I^\infty$ and $\|f\|\leq 1$, then we obtain $\|g\|\leq \|f\|\leq 1$ (see the proof of Theorem 3.1). And, for any φ , $\theta\in\overline{\mathcal{P}}$, we have $|\varphi(f)-\theta(f)|=|\varphi(g)-\theta(g)|$. Thus we have $|\varphi(f)-\theta(f)|\leq \sup\{|\varphi(g)-\theta(g)|:g\in\mathcal{H}^\infty,\|g\|\leq 1\}$, so we obtain $\sup\{|\varphi(f)-\theta(f)|:f\in H^\infty(m),\|f\|\leq 1\}=\sup\{|\varphi(g)-\theta(g)|:g\in\mathcal{H}^\infty,\|g\|\leq 1\}$.
- (iii) Since $\hat{\mathcal{H}}^{\infty}$ is a logmodular algebra on $Y=M(\mathcal{L}^{\infty})$, $\varphi\in\overline{\mathcal{P}}\backslash M(\mathcal{L}^{\infty})$ also has a unique representing measure on Y for \mathcal{H}^{∞} . The map $\tilde{\pi}$ defined in (3.1) is a continuous map of \tilde{X} onto Y. Thus there is a natural linear transformation $\tilde{\sigma}$ of the dual space $\mathcal{M}(\tilde{X})$ of $C(\tilde{X})$ onto the dual space $\mathcal{M}(Y)$ of C(Y) which takes $\mu\in\mathcal{M}(\tilde{X})$ onto the measure $\tilde{\sigma}(\mu)$ defined on the Borel set E of Y by

$$\tilde{\sigma}(\mu)(E) = \mu(\tilde{\pi}^{-1}(E))$$
,

or, equivalently, on the function $g \in C(Y)$ by

$$\int_{\mathbf{Y}} g \ d(\tilde{\sigma}(\mu)) = \int_{\widetilde{\mathbf{X}}} g \circ \widetilde{\pi} \ d\mu.$$

Then, if μ_{φ} is the representing measure on \widetilde{X} of $\varphi \in \overline{\mathcal{P}} \backslash M(\mathcal{L}^{\infty})$ for $H^{\infty}(m)$, then $\widetilde{\sigma}(\mu_{\varphi})$ is the representing measure on Y of φ for \mathcal{H}^{∞} . Thus, for any $\theta \in M(\mathcal{L}^{\infty})$, we have $0 = \widetilde{\sigma}(\mu_{\varphi})(\{\theta\}) = \mu_{\varphi}(K(\theta))$. If $\theta \in M(\mathcal{L}^{\infty})$, we have $\sup \theta \subset K(\theta)$, so we obtain $\mu_{\varphi}(\sup \theta) = 0$. If $\theta \in M(I^{\infty})$, then, by Theorem 3.3, (ii), we have $\sup \theta \subset K(\psi)$ for some $\psi \in M(\mathcal{L}^{\infty})$, so we obtain $\mu_{\varphi}(\sup \theta) = 0$. q. e. d.

COROLLARY 3.7. If $\varphi \in \overline{\mathcal{P}} \backslash M(\mathcal{L}^{\infty})$, then the closure of the Gleason part $P(\varphi)$ for $H^{\infty}(m)$ which contains φ does not meet $M(I^{\infty}) \cup M(\mathcal{L}^{\infty})$. The union G of all nontrivial Gleason parts for $H^{\infty}(m)$ which are contained in $\overline{\mathcal{P}} \backslash M(\mathcal{L}^{\infty})$ is open in the space $M(H^{\infty}(m))$.

PROOF. The map T defined in (2.2) is an isometric isomorphism of \mathcal{H}^{∞} onto $H^{\infty}(D)$, and thus the adjoint T^* of T is a homeomorphism of $M(H^{\infty}(D))$ onto $M(\mathcal{H}^{\infty})$. If P is a nontrivial (trivial) Gleason part for $H^{\infty}(D)$ which is contained in $M(H^{\infty}(D))\backslash M(L^{\infty}(C))$, then, by Theorem 3.6, $T^*(P)$ is also a nontrivial (trivial) Gleason part for $H^{\infty}(m)$ which is contained in $\overline{\mathcal{L}}\backslash M(\mathcal{L}^{\infty})$. Hence, for $P(\varphi)$ there is a Gleason part P for $H^{\infty}(D)$ such that $P \cap M(L^{\infty}(C)) = \emptyset$ and $T^*(P) = P(\varphi)$. Since \overline{P} does not meet $M(L^{\infty}(C))$ (cf. Hoffman $[\mathbf{6}]$, p. 102), $\overline{P(\varphi)}$ does not meet $M(\mathcal{L}^{\infty})$. Hence, by Theorem 3.1, we have $\overline{P(\varphi)} \cap (M(I^{\infty}) \cup M(\mathcal{L}^{\infty})) = \emptyset$.

The union G_1 of all nontrivial Gleason parts for $H^{\infty}(D)$ is open in the subspace $M(H^{\infty}(D))\backslash M(L^{\infty}(C))$ (cf. Hoffman [6], p. 89), so that $G=T^*(G_1)$ is open in the subspace $\overline{\mathcal{L}}\backslash M(\mathcal{L}^{\infty})=M(H^{\infty}(m))\backslash (M(I^{\infty})\cup M(\mathcal{L}^{\infty}))$. But, by Theorem 3.2, (ii), $M(I^{\infty})\cup M(\mathcal{L}^{\infty})$ is closed in $M(H^{\infty}(m))$, so G is open in $M(H^{\infty}(m))$. q. e. d.

490 N. Kishi

§ 4. A Gleason part P satisfying $A \mid P = H^{\infty}(D)$.

By Theorem 2.1, there is a one-to-one continuous map τ of the open unit disk D onto a nontrivial Gleason part P=P(m) containing $m \in M(A)$ such that, for every f in A, the composition $\hat{f} \circ \tau$ belongs to $H^{\infty}(D)$. If we set

$$A \mid P = \{ \hat{f} \circ \tau : f \in A \},$$

then we have $A|P \subset H^{\infty}(D)$. When $\{\hat{f} \circ \tau : f \in A\} = H^{\infty}(D)$ holds, we denote it by $A|P = H^{\infty}(D)$. Note that $H^{\infty}(m)|\mathcal{L} = \{\hat{f} \circ \tau : f \in H^{\infty}(m)\}$ is contained in $H^{\infty}(D)$ (cf. Leibowitz [9], p. 142).

Theorem 4.1. Let A be a uniform algebra on a compact space X. Suppose that $m \in M$ has a unique representing measure m on X, and that the part P containing m consists of more than one point. If $A \mid P = H^{\infty}(D)$, then the map π defined in (3.3) is a homeomorphism of the closure $\overline{\mathcal{P}}$ of \mathcal{P} in $M(H^{\infty}(m))$ onto the closure \overline{P} of P in M(A). Therefore \overline{P} is homeomorphic to the maximal ideal space of $H^{\infty}(D)$.

PROOF. By the continuity of π we have $\pi \overline{\mathscr{Q}} \subset \overline{\pi} \mathscr{Q} = \overline{P}$, and clearly we have $\pi \overline{\mathscr{Q}} \supset \overline{\pi} \mathscr{Q}$, so that we have $\pi \overline{\mathscr{Q}} = \overline{P}$. From $H^{\infty}(D) = A |P = A| \mathscr{Q} \subset H^{\infty}(m) |\mathscr{Q} = \mathscr{H}^{\infty}| \mathscr{Q} \subset H^{\infty}(D)$ we obtain

$$(3.4) A|P = \mathcal{H}^{\infty}|\mathcal{L} = H^{\infty}(m)|\mathcal{L}.$$

If φ_1 , $\varphi_2 \in \overline{\mathcal{P}}$ and $\varphi_1 \neq \varphi_2$, then there is a function $f \in \mathcal{H}^{\infty}$ satisfying $\hat{f}(\varphi_1) \neq \hat{f}(\varphi_2)$. There is a function $g \in A$ such that $\hat{f} = \hat{g}$ on \mathcal{P} and thus $\hat{f} = \hat{g}$ on $\overline{\mathcal{P}}$. For such a function g we have $\hat{g}(\varphi_1) \neq \hat{g}(\varphi_2)$. Thus π is a homeomorphism of $\overline{\mathcal{P}}$ onto $\overline{\mathcal{P}}$.

In the proof of Theorem 3.1 we have shown that $\bar{\mathcal{P}}$ is homeomorphic to $M(H^{\infty}(D))$, so that \bar{P} is homeomorphic to $M(H^{\infty}(D))$. q. e. d.

COROLLARY 4.2. If $A|P=H^{\infty}(D)$, then P is homeomorphic to the open unit disk D.

A complex valued function f on P is called a bounded analytic function on P if $f \circ \tau$ is analytic on D for τ in Theorem 2.1 and sup $\{|(f \circ \tau)(\lambda)| : \lambda \in D\}$ is finite. We denote by $H^{\infty}(P)$ the set of all bounded analytic functions on P, then it is known that $H^{\infty}(P) = \{\hat{f} \circ \tau : f \in H^{\infty}(m)\}$ (cf. Leibowitz [9], p. 155). By (3.4), we obtain the following corollary.

COROLLARY 4.3. If $A|P=H^{\infty}(D)$, then $A|P=H^{\infty}(P)$.

THEOREM 4.4. Let A, m and P be as in Theorem 4.1, and let $I = \{f \in A : \varphi(f) = 0 \text{ for all } \varphi \in P\}$. Then, if $A \mid P = H^{\infty}(D)$, we have $M(A/I) = \text{hull } (I) = \overline{P}$. Therefore $M(A) \supseteq \overline{P}$ if and only if $I \supseteq \{0\}$.

PROOF. As we have shown in the proof of Theorem 4.1, if $A|P=H^{\infty}(D)$ then $A|\mathcal{L}=H^{\infty}(m)|\mathcal{L}$. Hence if we consider A as a subset of $H^{\infty}(m)$, we have

 $\{f+I^\infty\colon f\!\in\! H^\infty(m)\} = \{f+I^\infty\colon f\!\in\! A\}$. Therefore, if we set $A/I^\infty = \{f+I^\infty\colon f\!\in\! A\}$, then we have $A/I^\infty = H^\infty(m)/I^\infty$. Since $I=I^\infty \cap A$, we have $(f+I^\infty) \cap A = f+I$ for every $f\!\in\! A$. The correspondence $f+I^\infty \mapsto f+I$, which is defined for $f\!\in\! A$, induces an algebra isomorphism Σ of $H^\infty(m)/I^\infty = A/I^\infty$ onto A/I. Therefore the adjoint Σ^* of Σ is a homeomorphism of M(A/I) onto $M(H^\infty(m)/I^\infty)$. We set $\sigma = (\Sigma^*)^{-1}$. If $\sigma(\Phi) = \varphi$ for $\Phi \in M(H^\infty(m)/I^\infty)$, then we have

$$\varphi(f+I) = \! (\sigma(\boldsymbol{\Phi})) \, (f+I) = \! \boldsymbol{\Phi}(f+I^{\circ})$$

for every $f \in A$.

If ρ is the natural homomorphism of $H^{\infty}(m)$ onto $H^{\infty}(m)/I^{\infty}$, then the adjoint ρ^* of ρ is a homeomorphism of $M(H^{\infty}(m)/I^{\infty})$ onto hull (I^{∞}) . Similarly if ρ_A is the natural homomorphism of A onto A/I, then the adjoint ρ_A^* of ρ_A is a homeomorphism of M(A/I) onto hull (I). We then have

$$M(A/I) = \{ (\sigma \circ (\rho^*)^{-1})(\Phi) : \Phi \in \text{hull } (I^{\infty}) = \overline{\mathcal{Q}} \}$$

and, by Theorem 4.1, we have

$$\bar{P} = \{ \pi(\Phi) : \Phi \in \overline{\mathcal{P}} \}.$$

And, for every $f \in A$ and $\Phi \in \overline{\mathcal{P}}$, we have

$$(\pi \circ \Phi)(f) = \Phi(f) = (\sigma \circ (\rho^*)^{-1} \circ \Phi)(f+I)$$
.

Therefore, by using the identification map ρ_A^* , we have

$$M(A/I) = \bar{P}$$
,

and thus we have $\operatorname{hull}(I) = \overline{P}$.

q. e. d

COROLLARY 4.5. Suppose that $A|P=H^{\infty}(D)$ and the closure \bar{P} of P in M(A) is disjoint from X. If we put $A_1=\{f\in A:\hat{f}\circ\tau \text{ is a constant}\}\ \text{for }\tau$ in Theorem 2.1, then A_1 is a uniform algebra on X.

§ 5. Examples.

1. Let $A=A(T^2)$ be the Dirichlet algebra of continuous functions on the torus $T^2=\{(z,w): |z|=|w|=1\}$ which are uniform limits of the polynomials in z^iw^j , where

$$(i, j) \in S = \{(i, j) : j > 0\} \cup \{(i, 0) : i \ge 0\}.$$

Then the maximal ideal space of A can be identified with

$$\{(z, w): |z|=1, |w| \leq 1\} \cup \{(z, 0): |z|<1\}$$

with the normalized Haar measure m identified with z=w=0. The Gleason part P(m) containing m is $\{(z,0): |z|<1\}$ and the closure of P(m) does not meet T^2 . The Wermer's embedding function for P(m) is given by Z=z (cf. Merrill-Lal [11].)

492 K. Kisнi

Let $H^{\infty}(m)$ be the w^* closure in $L^{\infty}(dm)$ of A. Then $H^{\infty}(m)$ is not maximal as a w^* closed subalgebra of $L^{\infty}(dm)$. \mathcal{H}^{∞} and I^{∞} are the w^* closure in $L^{\infty}(dm)$ of the polynomials in z^i , $i=0, 1, 2, \cdots$ and the w^* closure in $L^{\infty}(dm)$ of the polynomials in z^iw^j for $i=0, \pm 1, \pm 2, \cdots$ and $j \geq 1$ respectively. By using an inner function f=zw we see that the closure of the Gleason part \mathcal{P} for $H^{\infty}(m)$ does not meet the Šilov boundary $M(L^{\infty}(dm))$ for $H^{\infty}(m)$ (see (2.1)). \mathcal{L}^{∞} is the w^* closure in $L^{\infty}(dm)$ of the polynomials in z^i for $i=0, \pm 1, \pm 2, \cdots$ and the Banach algebra B defined in Theorem 3.5 is the w^* closure in $L^{\infty}(dm)$ of the polynomials in z^iw^j for $i=0, \pm 1, \pm 2\cdots$ and $j=0, 1, 2, \cdots$.

2. Let $H^{\infty}=H^{\infty}(D)$ be the algebra of all bounded analytic functions on the open unit disk D. For $|\alpha|=1$ let M_{α} be the fiber of $M(H^{\infty})$ over α , i.e., $M_{\alpha}=\{\varphi\in M(H^{\infty}): \varphi(z)=\alpha\}$ and let $X_{\alpha}=M_{\alpha}\cap M(L^{\infty}(C))$. Then $A_{\alpha}=\hat{H}^{\infty}|M_{\alpha}$ is a uniform algebra on M_{α} and the Šilov boundary of A_{α} is X_{α} . Evidently we have

$$C_R(X_\alpha) \supset \log |A_\alpha^{-1}| \supset (\log |(\hat{H}^\infty)^{-1}|) |X_\alpha = C_R(M(L^\infty(C)))| |X_\alpha = C_R(X_\alpha),$$

so we obtain $\log |A_{\alpha}^{-1}| = C_R(X_{\alpha})$. Therefore A_{α} is a logmodular algebra on X_{α} . As we have stated already in the proof of Corollary 3.7, if P is any nontrivial Gleason part for A_{α} , then there is an inner function f such that $\hat{f}=0$ on P (cf. Hoffman [6], p. 102). Therefore if $m \in P$ and $H^{\infty}(m)$ is the w^* closure of A_{α} in $L^{\infty}(dm)$, then $H^{\infty}(m)$ is not maximal as a w^* closed subalgebra of $L^{\infty}(dm)$.

There is a nontrivial Gleason part P for A_{α} such that $A_{\alpha}|P=H^{\infty}(D)$ (cf. Hoffman [4], p. 106). By Corollary 4.2, we see that if $A_{\alpha}|P=H^{\infty}(D)$, then P is homeomorphic to the open unit disk. But there is an example such that P is not homeomorphic to D (cf. Hoffman [6], p. 109), and for such a Gleason part we have $A_{\alpha}|P\neq H^{\infty}(D)$.

References

- [1] W.G. Bade, The Banach space C(S), Aarhus University Lecture Notes Series, No. 26, 1971.
- [2] L. Carleson, Interpolation by bounded analytic functions and the corona problem, Ann. of Math., 76 (1962), 547-560.
- [3] R.G. Douglas and W. Rudin, Approximation by inner functions, Pacific J. Math., 31 (1969), 313-320.
- [4] K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N. J., 1962.
- [5] K. Hoffman, Analytic functions and logmodular Banach algebras, Acta Math., 108 (1962), 271-317.
- [6] K. Hoffman, Bounded analytic functions and Gleason parts, Ann. of Math., 86 (1967), 74-111.
- [7] K. Kishi, Analytic maps of the open unit disk onto a Gleason part, Pacific J. Math., 63 (1976), 417-422.
- [8] K. Kishi, Homeomorphism between the open unit disk and a Gleason part, J. Math. Soc. Japan, 27 (1975), 467-473.

- [9] G.M. Leibowitz, Lectures on complex function algebras, Scott, Foresman, Glenview, Ill., 1970.
- [10] S. Merrill, Maximality of certain algebras $H^{\infty}(dm)$, Math. Z., 106 (1968), 261-266.
- [11] S. Merrill and N. Lal, Characterization of certain invariant subspaces of H^p and L^p spaces derived from logmodular algebras, Pacific J. Math., 30 (1969), 463-474.
- [12] E.L. Stout, The theory of uniform algebras, Bogden-Quigley, Tarrytown-on-Hudson, N.Y., 1971.

Kazuo KISHI Department of Mathematics Faculty of Education Wakayama University Masago-cho, Wakayama Japan