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Introduction.

W. Ackermann introduced in a system of axiomatic set theory.
A typical character of the system is that the universe V of all sets is a part
of the individual domain and besides it is an individual. The system has an
interesting axiom schema which generates the sets. It is the following :

Y1 Y€V o Vx[A(x) = xeV] - weVVx[xew o A(x)],

where A(x) contains neither the individual constant V nor free variables other
than y;---y,, x.

In this paper, we modify the above schema to formalize a theory of
ordinal numbers and study the strength of the theory. Some theories of
ordinal number have been given in Takeuti [6]-[9]. The main purpose of
[6]-[9] seems to construct theories of ordinal numbers in which a model of
ZF can be constructed. Our interests here are the application itself of Acker-
mann’s schema to the formalization of a theory of ordinal numbers and the
degree of the strength of the theory.

The basic logic which we adopt is a second order calculus with the axiom
of weak comprehension of the following form :

IAPVxy -+ X, [Px; - X, © Ox A --- AOx,NA],

where O is a predicate constant which means “...is an ordinal” and A is any
formula. The reason why we weakened the axiom of comprehension in such
a form consists of the following two:

1. The author could not estimate the strength of the corresponding theory
formalized in the usual second order calculus.

2. Ackermann’s set theory has the axiom schema (in the form of Levy
and Vaught [4]) JxVy[yexeo yeVAA] and our weakened axiom of com-
prehension could be regarded as its natural representation in a second order
calculus.
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In §1, we explain the source of the form of the mathematical axioms given
in §2. In §2, we give the formal system of the theory denoted by OA. In §3,
we develop the theory and show the existence of 2 which is defined by
Vx[x<8 < Ox] and the inaccessibility of £ which corresponds to the replace-
ment schema (in the form given in Hanazawa [2]) of Ackermann’s set theory.
The arguments proceed in parallel with the ones in Reinhardt [6] In §4, we
show that OA - A° is equivalent to ZFL—P - A for every formula A of the
language of ZF, where A° means the routine interpretation of A in ordinal
number theory and ZFL—P means ZF set theory without the axiom of power
set and with the axiom of constructibility.

§1. The source of our axioms.

Let us consider the following procedure by which we construct an ordinal :
For the set S of all ordinals which have been constructed (or defined) until
now, we introduce an entity as the minimum ordinal which is larger than the
ordinals in S. The following schema is an innocent formalization of this
procedure :

(A) Vx[A(x) = Vy<xA(y)IAVx[A(x) — Ox]
=3y Vz[z<y o ARIANIYy[OyAVz[z<y < A(2)]1],

where A is any formula and O denotes the class of the ordinals. But, if we
assume the provability of Vx[Ox —=Vy<xOy] and VxVy[OxNOyAx<y— x#y],
the schema leads to the familiar contradiction. To avoid that contradiction,
following the idea given in the system of Ackermann’s set theory, we restrict
the schema as follows: In the schema (A), A denotes a formula which contains
neither the predicate symbol O nor parameters other than elements of O (we
shall call such a formula a primitive formula). By (A’), we denote the schema
(A) with this restriction.

On the other hand, we could assume that all the ordinals are generated
only by that procedure. The following is a direct representation of this
principle :

(B1) [(V primitive A) B(P, A)]— Vx[Ox — Px],

where B (P, A) is a formula which results from the formula (A) by substituting
the predicate variable P for the predicate constant O. We must replace
“(V primitive A)...” by a formal expression. Note that (Bl) is equivalent to
the following schema :

(B2) Vx[Px — Ox]IA N primitive A)[B(P, A)]— VYx[Ox — Px].
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(It is evident that (B1) implies [B2). To see the converse, suppose the antece-
dent of (Bl) and put Qx equal to PxAOx. Using (A’), we see that B(P, A)
implies B(Q, A). So the desired conclusion follows by applying to Q.
is written as follows:
Vx[Px — Ox]A(V primitive A)[Vx[A(x) > Vy<xA(y)]

Note that Vx[A(x) — Px] implies Vx[A(x) > Ox] under the assumption
Vx[Px—0Ox]. On the other hand, if A is a primitive formula and satisfies
Vx[A(x) = Vy<xA()IAVx[A(x) — Ox], then by (A’) there exists an ordinal
u (i.e. an element of O) such that Vz[z<u < A(z)]. So the predicate AxA(x)

in can be replaced by the predicate Ax[x<wu] for some ordinal ». Using
this fact, we can finally rewrite equivalently to the following :

(B3) VullOuAYx[x<u—-Vy<x[y<ullAVx[x<u— Px]
—31yVz[z<y o z<u]APu].—.V¥x[Ox — Px].

(The clause Vx[Px — Ox] has been omitted from the antecedent by the same
reason as ahove.)

Thus we have the mathematical axioms (A’) and [B3). In §2, we will
separate each of (A’) and into two axioms because they are too long.
(AY) is equivalent to the following (a) and (b):

(a) Ouy N+ NOu, — . Yx[A(x) = Vy<xA(y)NOx]
—3Ay[OyAVz[z<y & A(2)]],

where A is a primitive formula which contains no free variables other than
Uy "y Un, X

(b) Oan¥x[x<a e x<b]l— a=b.

is equivalent to the following (c) and (d) under (a) and (b):
(¢) Vul[QuAVx<uPx— Pu]l—Vx[Ox— Px];

(d) YulOu - Yx<uVy<x[y<ull.

(The formula (d) can be proved from and hence the formula (c) can be
proved from and (b).)
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§2. The system of the theory OA.
This theory is developed in a second order language.

2.1. The language has the following symbols :
(a) Individual variables vy, v,, -**;

(b) Predicate variables P, P,, ---, where P; has j argument places, where
1=27 2k+1) ;

(c¢) Predicate constants Ox, *<x, *=x*;

(d) Logical symbols -, —, 3.

2.2. Formulas are defined as usual. The abbreviations A, V, V, =,
Vx<al...], etc. are used in the standard way.

When a formula A contains neither predicate constant O nor free predicate
variables, we shall call it a P-formula.

2.3. Axioms and inference rules.

2.3.1. Inference rules.

A A—B
(a) —5 -
A—B . e e . . .
(b) “SaA B where « is an individual variable or a predicate variable

which is not free in B.

2.3.2. Logical axioms.
(a) A—[B— Al
(b) [A—-[B—-Cl]—-[[A—B]—-[4—-C]].
(¢) [HA——=B]—-[B— Al
(d) A(a)—3IxAX).
(e) AP) —@EQ)AQ).
(f) The axiom schema of comprehension :

IPVx, - x,[Pxy o xp o Ox N - NOx, NA],

where A is any formula in which P does not occur.
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REMARK. Except for the axiom schema of comprehension, this is a standard
system of second order predicate calculus.
2.3.3. Equality axioms.
2.3.4. Mathematical axioms.
Al: Va, b[OaNnVx[x<a e x<b]— a=b].
A2: Va[OaNnx<aANy<x— y<al.
A3: VP[Vx[Ox—[(Vy<x)Py—Px]]—Vx[Ox— Px]].

Ad: Va,--a,[Oa;N -+ NOa,
— [Vx[Ax) = Vy<x) A(WANOx]—Ay[OyAVz[z2<y < A(z)]]]],

where A(x) is a P-formula which contains no free variables other than
x; al: "ty an'

§ 3. Development of the theory.

In this section, we raise some formal theorems of O A. To save the spaces,
the formal proofs will be given through informal arguments (in OA).

CONVENTION 1. (a) We use well-known ¢-symbol. An ¢term ¢xA(x) is
said to be a P-term if A(x) is a P-formula. Note that every formula which
results from a P-formula by substituting P-terms for the free variables is also
a P-formula. (b) We abbreviate a formula of the form

APYxy - xn[Pxy s xp o A(xg - x5)]
by “the predicate Ax, - x, A(x,--- x,) is admissible.” Note that
(a) OAW“Ax[OxANA] is admissible” and
(b) OAR “Ax;- x, A is admissible” — [(VP) B(P) — B(Ax, --- x, A)].
3.1. THEOREM 1.

(a) OAEYVx[OxA(Vy<x)A(y)— A(x)]—=Vx[0Ox — A(x)],

for every formula A(x).
(b) OAR Ix[OxNAX)]—Ax[OxANAX)AVy<x — A(y)],

for every formula A(x).

PROOF. Ax[OxAA(x)] and Ax[OxA— A(x)] are admissible. So they
follow immediately from A 3.
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3.2. THEOREM 2.

(a) OAFRF Oanb<a— 0Ob.
(b) OAF OaNnObAa<b— a+b.
(¢c) OAF OanOb— a<bVa=bVvb<a.
PROOF.
(a) Substitute (Vy<x)Oy for Px in [Theorem Il
(b) Substitute Vz<x[z# x] for Px in [Theorem 1.

(c) Let A(x) be the formula OxAVy[Oy— x<yVy=x]. By [Theorem 1,
it suffices to show that Oa and (Vz<a)A(z) imply A(a). Suppose Oa and
(Vz<a)A(z). Let B(y) be the formula a<yVy<a. Again by [Theorem 1,
to prove A(a), it suffices to show that Ob and (Vw<b)B(w) imply B(b).
Suppose Ob and (Vw<b)B(w). Now assume —a<bA—b<a. Then we obtain
the following (i) and (ii): (i) Vz<a[z<b] (Assume z<a. Then A(z). So
z<bVb=z. On the other hand —b=z since z<aA—b<aAOa and AZ2.
Hence z<b); (ii) Yw<b[w<a] (Assume w<b. Then Bw), i.e. a=ZwVvVw<a.
On the other hand —a=w since w<bA—a<bAOb. Hence w<a). From (i),
(ii) and Oa, we obtain a=5 by Al.

3.3. THEOREM 3.
(a) OARFANxVy[—y<x]. (We write 0 for exVNy[—y<x].)
“(b) OA+ 00.

Proor. Its existence in O comes from A4 (Take the formula x+#x as
A(x)). Its uniqueness comes from Al.
Note that 0 is a P-term.

3.4. The successor function. Let S(x, y) be the formula Vz[z<yez=x].
By x’/, we denote the P-term ¢y[3!zS(x, 2)AS(x, »). V.3A1zS(x, 2)Ay=0].

THEOREM 4.
(a) OAFOa—0a'.

(b) OAF Oa—a<a' AVx—[a<x<a’].

PrRooF. Take the formula x=a as A(x) in A4.
3.5. An infinite ordinal. Let N(x) be the formula

VYP[POAYy[Py — Py’]— Px].
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THEOREM 5.

(a) OAR3I1Vx[x<ze N(x)]. (We write o for ¢z¥x[x<z e N(x)].)
(b) OAtF Ow.

(¢) OAF0<wAVala<w— a’'<w].

(d) OAR AOAVYx[A(x) — A(x)] — Vx<wA(x), for every formula A.

PrOOF of (a). We see Yx[N(x) — Ox], since OOAVy[Oy— Oy’] by the
previous two theorems. Besides N(x) — (Vz<x)N(z). (To see this, suppose
N(x). The predicate 2z(Vw=z)N(w) is admissible since Vx[N(x)— Ox]. So
we can take this predicate as P in VP[POAYy[Py — Py’]— Px].) Since N(x)

is a P-formula, we obtain by A4 that 3z[OzAVx[x<z < N(x)1]. Its uniqueness
comes from Al.

3.6. The individual £2.

We shall show the existence of such an individual £ that Vx[x<£2 & Ox]
and exhibit its fundamental properties.

3.6.1. THEOREM 6. (Undefinability of O)
OA+ Oa, N --- ANOa, — " Vx[A(x) < Ox],

where A is any P-formula which contains no free variable other than a,, -
Qn, X.

PRrROOF. Suppose OaA--*AQa,AVx[A(x) « Ox]. Then by A4, there exists
y such that OyAVz[z<y < A(z)]. Then y<y e A(y). Since Oy implies y<{y,
we see that —A(y) and Oy.

)

3.6.2. Introduction of £.

DEFINITION of the predicate O*.
L,(b) is the formula Vx<bVy<x[y<b],
L,(b) is Vx[Vy[y<x e y<b]— x=b],

Ly(b) is Vx<bVy<b[x<yVy=x],
W.(b) is APYx[Px & x<b],

W.(b) is VP[Ix=bPx — Ax=b[PxAVy<x—Py]l],
W,(b) is VPAQVx[Qx & x=bA— Px]

and

O*(a) is VO=alL,(D)N -« ANLL(O)AW(B)A - AWy(b)].
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REMARK. All the members of O* have the property W,(b). But this fact
does not imply that O* is well ordered by <. What we can assert is that if
A(x) is admissible, it holds that

Vx[O*(x) AV y < xA(y) — A(x)] — Vx[0*(x) — A(x)].
THEOREM 7. The following formulas are provable in OA :
(a) OXa)Ax<a— O*(x).
(b) Oa— 0%a).
(¢) O*a)AO*(b)— a<bVb=a.
(d) 3x[O¥(x)A—O0x].
(e) I1x[O*(x)A—0xAVy<x0y].

Proor. (a) Suppose O*(a) and x<a. Let b=x. Then b<a by L, a)
and x<a. Hence L,(b)A -+ AW,(b) by O*(a).

(b) OxAy<x—O0y and Ox — Li(x)NA -+ AW,(x).

(¢) Suppose O*(a), O*(b), —a<b and —b<a. Then the predicate 2Ax[x<a]
is admissible by W,(a). So, the predicate Ax[x=bA—x<a] is admissible by
W,(b). So, by W,(b) and —b<a, there exists a v such that v=bA—v<aAVx
<v[x<a] because x<vAv=b implies x=b by L,(b). Take such a v. Then
—a<v since —a<b. Since v=b, we see O*(v) by (a). So, in the
same way as above, we obtain Ju<a[—-u<vAVy<u[y<v]]l. Take such a u.
Then we have Vy<v[y<u]. (To see this, suppose y<w. Then y<a. So,
y<uVu=<y since Ly(a) and u=a. So, y<u since —u<vAy<vAL,(v) implies
—u=<y.) Thus we obtain Vy[y<u < y<v]. So u=v by L,(v). Hence we
obtain easily a=v=b which implies a¢=0) since —a<b.

(d) O*(x) is a P-formula. Hence Fx[O¥x)A—0x] follows immediately
from (b) and the undefinability of O.

(e) Take a b such that O*(b))A—0b. Since W,(b) by O*(), the predicate
Ax[x=bA—0x] is admissible. Hence, by W,(b), there exists an x such that
xEOANTO0xAVy<x " [y=bA— 0y] which is equivalent to x<bA—OxAVy
< x0y since L,(b). Uniqueness of such an x follows from (a) and (c).

By £, we denote (x[O*(x)A— OxAVy<x0y].
THEOREM 8. (a) OAF Vx[x< < Ox].
(b) OAVx[x<ae Ox]— a=0.
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PrROOF. (a) a<f2 — Oa is trivial. Suppose Oa. Then O*(a) by
7 (b). Hence £ and a are comparable by (c). Hence a<£ since
2=a leads to a contradiction.

3.6.3. THEOREM 9. If A(x) is a P-formula which contains no free variable
other than ay, -+, a,, x, then the following hold :

(a) (Undefinability of 2) OAF OaiA - NOa, — " Vx[A(x) & x=07;
(b) (Reflection principle for 2) OAF Oa A -+ ANOa, NAR2) —Ix<QA(x);

(¢) (Upward reflection principle for £2)
OAF Oai N - ANOa, NAR) — Ax[R<x ANA(x)].

Proofr. (a) Immediate from the undefinability of O. (b and ¢) Consider
the P-formulas A(X)AO*(x)AVy<x—A(y) and AXAO*(X)AYy[O*(NAx<y
— =1 A(y)] respectively. And apply them to the result (a).

3.7. We shall show two certain properties of £, which we shall call the
weak inaccessibility of £ and the inaccessibility of £ respectively. The former
is provided for the proof of the latter. These properties will play an impor-
tant r6le in §4.

CONVENTION 2. (a) We shall use the abbreviation 3! x<aA(x) for 3! x[x
<aANA(x)] (ot for Jx<aVz[z==x < A(R)]). (b) By =x,--x,<2, we denote
Ox;A+AOx,. (¢) By Min[a; A(a)], we denote the formula O*(a)AA(a)A
Yw<a — Alw).

REMARK. 3Ix[O*(x)A A(x)] does not necessarily imply 3x Min [x; A(x)].

3.7.1. THEOREM 10. (Weak inaccessibility of £2)

OA = ay a,, b<QAVs<QINt<QA(s, t)
— Ju<QVs<VI< QLA D—t<u],

where A(s, t) is a P-formula which contains no free variables other than a, -+ a,,
b, s, t.

Proor. Let B(x) be the formula F[x=tATs<b Mint; A(, H1]1. Now
SUPPOSE d; -+ Qn, b<LAVs<LIVi<LA(s,1). Then it holds that Vx[B(x)—
Vy<xB(y)] and Yx[B(x)— Ox]. (To see this, assume B(x). Then we have
an s and a ¢ such that x=tAs<OAO*ONA(s, DAVu<t — A(s, t). Let y<ux.
Then y=t follows from O*()Ax=t by L,(f). Hence B(y). On the other hand,
there exists a #,<{2 such that A(s, t,) by the assumption. Then ¢ and ¢, are
comparable because both are in O*. So, by the minimality of ¢, we have t=<t,.
Hence t is an ordinal and hence so is x.) Hence, by A4, there exists an
ordinal u such that Vx[x<u < B(x)]. Then the ordinal u satisfies Vs, t[s<b
At<ONA(s, £) —t<ul. (Suppose s<bAt<f2AA(s,t). Then by the assump-
tion, such a ¢ is unique. So, we have B(f). Hence t<u.)
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3.7.2. DEFINITION. We define quasi-primitive formulas (abbreviated by
Q-formulas) inductively as follows:
(a) Every P-formula is a Q-formula;
(b) If A and B are Q-formulas, then so are =4 and A — B;
(¢) If Ais a Q-formula, then so is Ix[OxAA].

Jx[0OxNA] is equivalent to Ix<QA. So, we write often Ix<RA as an
abbreviation of 3x[OxAA].
THEOREM 11. (Inaccessibility of £2)

OAb ay - an, b<OAVs<Q2I11<QA(s, 1)
— Ju<QVs<bVt<Q[A(s, t) = t<u],

where A(s, t) is a Q-formula which contains no free variable other than a, - a,,
b, s, L.

This theorem differs from the previous theorem only in the respect that A
is a @Q-formula.

We shall provide two lemmas for its proof.

LEMMA 1. If A(y, x;---x,) 1s a P-formula, then there exists a P-formula
B (uo, 1y tip, X1 -+ x,) Such that

OA = auo e un<va1 eee xn<Q[3y<QA(y, Xyt xn)
> Bt Un, X1 Xn)],

where u, -+ u, are variables not occurring in A(y, x; -+ Xn).

REMARK. We shall prove this only for the case n=1. To see it for the
other cases, regard the letters x and u occurring in the proof below as finite
sequences of variables.

ProoF. Let A(y, x) be a P-formula. Then we shall use the following
abbreviations :

A*(a, x) for Min[a ; A(a, x)],

C(b, a) for Ax<bA*(a, x),

D(c) for Vo=c[Talb=a=cAC(b, a)]—3Id Min[d ; b=d=cNC(b, d)]1],
E for 3c[C(Q, OAD(OANR=c],

F(d, u) for 2=ZdNANu<2ANA¥d, WAY[R2=v<d — C(L, v)],

Bi(u, x) for Ad[A*(d, W)ANIy<dA*(y, x)],

By(x) for Iy[D(»)ANA*(y, 2)]
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and
B(, u, x) for i=0AB,(u, x). VvV .1=0 AB,(x).

Note that A*, C, D, B,, B, and B are P-formulas.
Then the following formulas (a)-(k) are theorems in OA:

(a) A*(a, x)— 0*a).

(b) C(b, a) — O*(a).

(c) Fy<LA(, x) = IJy<QA*(y, x).

(d) E—3d3uF(d, u).

(e) Fd, uw)—Vx<Q[Fy<LA(y, x) < By(u, x)].

(f) Fd, u)—u<f.

(g) y<L-D().

(h) —E—-Vx<Q[Fy<LA(y, x) < By(x)].

(i) E—3, u<fVx<Q2[3y<QA(, x) « B3, u, x)].

(i) —E—3, u<Nx<2[3y<RA(@, x) < BG, u, x)].

(k) 30, u<@Vx<Q3Fy<LRA(y, x) < B, u, x)].
The proof of the lemma is concluded by (k), since B is a P-formula.
Proors ofF (a)-(k). :

(a) Obvious. (See Convention 2 (b).)

(b) Obvious by (a).

(c) Obvious since O is well-ordered by <.

(d) Suppose C(2, OAD(ONR=Zc. Then =cAFa[l=Za=cNC(2, a)]. So,
by D(c), we can obtain a d such that Q=d=cAC(LQ, d)AVv<d 7 [L=v=cA
C(2,v)]. Then the d satisfies Yo[2=v<d — —~C(2, v)]. (Note that O*(c)
follows from C(£, ¢) by (b). So, v<d and d=c¢ imply v=c¢.) From C(£, d),
it follows that there exists a u such that u <A A*(d, ).

(e) Suppose F(d, u)ANx<Q.

1) Suppose Ay<LA(y, x). Then, by (c), there exists a y such that y<QA
A*(y, x). Take such a y. Then, by F(d, u), we see y<QAL=dANO0*(d) and
hence y<d. So Iy<dA*(y, x). Since A*(d, u) by F(d, u), we obtain Id[A*(d,
WAy <dA*(y, x)].
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2) Suppose B,(u, x). Then there exist a d and a y such that A*(d, WA
y<dANA*(y, x). Since x<£2, we see y<dAC(2, y), which implies 7 2=y by
F(d, u). —$£2=<y implies y<Q since O*(y) by A*(y, x) and (a). Hence
Jy<QA(y, x) by (c).

(f) Trivial.
(g) Because O is well-ordered by <.

(h) Suppose —F and x<£.

1) Suppose Iy<L2A(y, x). Then by (c), we have a y such that y<Q and
A*(y, x). Then by (g), we obtain D(y)AA*(y, x).

2) Suppose D(y)AA*(y, x). Then D(y)AC(2, y) since x<f. Hence, by
—E, we obtain — [2=<7y], which implies y<2 since O*(y) by (a). Hence
Jy<QA(y, x) by (c).

(i) By (e) and (f), F(d, u) implies u<2 and Vx<Q[Ty<LQA(y, x) « B(0,
#, x)]. Hence by (d), E implies Ju<2Vx<2[Iy<LA(y, x) - B0, u, x)].

(j) By (h), —=F implies Ju<QVx<2[Iy<QA(y, x) « B/, u, x)].
(k) Immediate from (i) and (j).

LEMMA 2. If A(xy--x,) is a Q-formula, then there exists a P-formula
By iy, Xy -+ X,) Such that

OAF Juy o up<OVx; - x, <Q[A(xy - x) o Bluy oy, X1 201,

where uy -+ U, are variables not occurring in A(xy - xy,).

Proor. By induction corresponding to the inductive definition of the
Q-formulas.
1) If A(x,--- x,) is a P-formula, then it is trivial.
2) If A is =B or B—C where B and C are Q-formulas, then it follows
immediately from the induction hypothesis.
3) Let A(x;-- x,) be 3y<L2B(y, x,--- x,) and B(y, x; - x,) be a P-formula.
For simplicity, we write x and u for the sequences x;---x, and u;- u, re-
spectively. Now, by the induction hypothesis, there exists a P-formula C(u, v, x)
such that

OA - Ju<Vy, x<2[B(y, x) o C(u, y, x)].
By Lemma 1|, there exists a P-formula D(v, u, x) such that
OA - w<Nu, x<2[3Fy<2Cu, vy, x) & D(v, u, x)1,
where v is written for vy - vmin. Then we have

OA v, u<Q¥x<2[Ay<2B(y, x) < D, u, x)J.



A theory of ordinal numbers 425

PROOF OF THEOREM 11. Let A(s,f) be a @Q-formula which contains no
free variable other than a,---a,, b, s, . By we have a P-formula
B(u; - up, s, 1) such that

OAF Fu; - un<8Vs, t<Q[A(s, ) o B(uy - un, s, H1.

Now, suppose a; - dn, b<QAVs<QA1t<QA(s, t). There exist u; - 1, <L
such that Vs, t<Q[A(Gs, )= B(uy -+ um, s, )]. Then a, -+ an,, b, uy - un <A
Vs<QI31t<2B(u; - m, S, 1). So, by Lemma 10, Ju<QVs<bVit<2[B(u; - tm,
s, ) —t<u]. Hence

Ju<Vs<OVI<Q[A(Gs, t) — t<ul.

§4. Strength of the theory OA.

By ZF—P, we denote Zermelo-Fraenkel set theory minus the power set
axiom, i.e. the theory which has the following axioms 1-8:

1. Extensionality.

Null set.

Pairs.

Unions.

Infinity.

Regularity.

Subsets: Vx3yVz[lzey—zexAA(z, u, -+ u,)], where A is any for-
mula in which y does not occur.

8. Collection: Vx[xeu—3zA(x, z, u, v1 - V)] — Iy Vx[xcu —Iz[z€y

NA(x, z, u, vy - v,)]], where A is a formula in which y does not occur.

ZFL—P means ZF—P with the axiom of constructibility of the usual form:
Vy3ax[Ord(x)Ay=F(x)]. By Le and Lo4, we denote the languages of ZF—P
and OA respectively.

In this section, we show that if we construct a model of set theory in the
usual way (. e. inductive definition of the constructible sets) in OA, then it is
a mode lof ZFL—P and conversely every formula which is valid in the model
is provable in ZFL—P, i.e. OA - “A is valid in the model” is equivalent to
ZFL—P A. Hence we see at least that OA and ZF—P are equiconsistent.

N oG W

4.1. Interpretation of ZFL—P in OA.
DEFINITION of the predicates S, Se and J* of Ljg,.

S(a, b, ¢, d) is O*(a) A\ O*(b) N\ O*(c) A O*(d) A[max{a, b} <max{c, d}
V[max{a, b} =max{c, d} Ala<cV[a=cAb<d]]1l];

Se(a, b, ¢, d) is S(a, b, ¢, d)V {a=cANb=d];
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J*(a, b, ¢) is AP[PabcAVx, y[Se(x, v, a, b) > Vz[Pxyz
o Min[z;VYu, v, w[S, v, x, yY)APuvw — w<z]]1]1]11.

Note that S, Se and J* are P-formulas.
LEMMA 3. (The schema of transfinite induction on S)
OAWVx, y<Q[Vu, v[S(u, v, x, y) — A(u, v)]
— A(x, )] = Vx, y<QA(x, y),
for every formula A.
DEFINITION of the functions J, K and L of Lgg,.
J(a, b)y=cz[A'w]*(a, b, wWYANJ*(a, b, 2). V. F1w]*(a, b, w)yANz=0].
K(c)=txMin[x;Vz[Min [z; 3y=cJ*z, y, )] —z=x]].
L()=cyMin[y;Vz[Min [z;3x=c/*(x, z, )] —z=y]].
Note that J(a, b), K(c) and L(c) are P-terms.

LEMMA 4. (a) OAta, b<Q— J(a, b)<L.
(b) OAc<2— K(c), L(c)< 2.
(¢) OArc<2— J(K(0), L(c))=c.
(d) OAR c<Q—-Fx<QAy< 2] (x, y)=c].

Proor. We shall prove only (a), since the others are obtained as usual.
To show it, it suffices to show Vx, y<Q31z<2/*(x, y, z). By induction on S.
Suppose x, y<£2 and Yu, v[S(u, v, x, ) — 31z2<2]*(u, v, z)]. Let t=max{x, y}.
Let A(u, v, w) be the formula S(u, v, x, WAJ*u, v, w). V.S, v, x, YA
w=0. Then obviously x, y, t<QAVu, v<Q23I'w<LA(u, v, w). Note that
Au, v, w) is a P-formula. So by inaccessibility of £, we obtain Iz<2Vu, v<
tVw[A(u, v, w) — w<t]. This implies 3z<OVu, v, wS(u, v, x, YAJ*(u, v, w)
— w<z]. The rest is routine.

Now we shall define a binary predicate Ax, y [xE y] which means intuitively

Ax, y[F(x)eF(y)], where F is Godel’'s function for generating the constructi-
ble sets.

DEFINITION of the predicate *E*. It is not so important to write faithfully
*E* costing the wide spaces. So we shall give «F4 only in sketched form
which will, however, indicate its character sufficiently. As the fundamental
operations, we shall adopt the following (and fix through this paper):

Fi(x, y)={a, by :<a, b)ex and aE€b}, -,
Fy(x, y)=x N dom(y), F(x, y)={x, y}.
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(F,, ---, Fs are also standard ones). aFEb is the formula
EPI:Pab/\VC, d[Se(C, d, a, b)_') I:PCd (—)A(P; c, d)]j]:

where A(P, ¢, d) is the following formula:

Jx<d[x=cN[K(d)=0
VIK(d)=1A3y, z<x[x=<{y, 2)°ANPyzAPxd,]]
N
VLK (d)=9APxd ATy, z<d,[z=<{x, y>° APzd,]]
VIK(d)>IN[x=d,Vx=d,]]1]],

where d; and d, stand for K(L(d)) and L(L(d)) respectively and

a=~b means Vx<a[Pxa — PxbJA\Vx<b[Pxb— Pxa],
a=<b, ¢)° means Ix, y<al[x={b, b} °Ay={b, c}°Na={x, y}°],
a=1{b, ¢}° means PbhaAPcaAVx<a[Pxa — x=bVx=c].
REMARK. (a) Note that ¢, d<QAVx, y[S(x, y, ¢, d)—[Pxy << Qxy]l]
implies A(P, ¢, d) « A(Q, ¢, d). So, the postulate Pcd < AP, ¢, d) gives

recursive definition (on S) of the predicate P. (b) The formula aEb is a
P-formula since K(x) and L(x) are P-terms.

DEFINITION. a=b is the formula

Vx<alxEa — xEbJAVx<b[xEb— xEa].

Now we shall define an interpretation of Lo in OA. For this purpose, we
provide a one-to-one correspondence between the set of all variables of L and
a set of individual variables of Ly, and fix it. By x°, we denote the variable
of Ly, corresponding to a variable x of Lc.

DEFINITION. For each formula A of Le, the formula A° of Ly, is defined
inductively as follows:

[a=b]°is a°=b°;

[asb]’ is a°Eb°;

[A— B]°, [mA]" are A° — B°®, = A° respectively ;
[AxA]° is Ax°[Ox°ANA°].

REMARK. A° is a @Q-formula for every formula A of L., since x=y and
xEy are P-formulas.



428 M. HanAzawAa

We shall use the following abbreviations :
a={b, c}° is the P-formula
Vx=max{a, b, ¢} [xEa o x=bVx=c];
a=<b, ¢>° is the P-formula
dy, z<max{a, b, c}[a={y, 2} "ANy={b, b}°Nz={b, ¢} °T;
a=<{xy Xp+1p° and <{x; -~ x,>°Ea means respectively
Jy<aly=<{xi 20 ANa={y, xn0°]
and dy<al[y=<x;-- x,0°AyEal.

LEMMA 5. OAFVa<fQ3b<QVx, y<al{x, y> Eb].

Proor. Consider the formula Min[c¢; c=<{x, y)>°]. This is a P-formula
and besides Vx, y<f23!c<L2Min[c; c=<x, y>°] holds. So by inaccessibility
of £, a<f implies I6<2Vx, y<aVe<Q[Min[c¢: c=<{x, y>°]1—c<b]. Take
such a b. Then Vx, y<a[<x, y>°EJ(0, b)].

LEMMA 6. For every formula A of L.,

OA R Va<Q3b<Nx, - x,<2[x,Ean - ANx, Ea
— Lxyox Ebeo A% (xy -+ x,)].

ProoF. By induction on the complexity of A. The case that A° is of the
form Jy<L22B°(y, xy -+ x,). Let C(y, x;--+ x,) be the formula

B°(y, 1 x )AVz<y = B°(z, x;+++ x,). V. 32<LB"(z, x; -+ x,) N\ y=0.

Since B° is a Q-formula, so is C. Besides it holds that Vx, - x,<@3!y<
QRC(y, x, - x,). So, by inaccessibility of £, we have a <2 —Ib<QVx; -+ x,<
aVy<Q[C(y, x1-+ x4) = y<b]. The rest goes as usual.

THEOREM 12. If ZFL—PWr A, then OAR A°, where A is any sentence
of Le.

Proor. We shall show that OA+— A° for all axioms A of ZFL—P. For
the axioms 1-7, it is evident by the previous lemma. The case of the axiom
of collection follows from the inaccessibility of £ and the fact that every A°
is a Q-formula. We shall check the case of the axiom of constructibility :
Vx3y[Ord(y)AF(x, ¥)], where F(x, y) is a formula which represents x=F(y).
Let Nm(a, b) be the following formula:

OaNObAIP[PabNVx, y<Q[Pxy
o [Yo<y[v=y]AVz[zEy o Fw <xFv[PwvAv=z]]1]].

Then it holds that Vx<23!y<ONm(x, y). Let x* stand for cy[x<Q2Av<
QANm(x, y). V.7 x<£Ay=0]. Then we obtain the following: [x<&2 —
2*¥<2] and Vx<Q[Ord°(x®)AF°(x, x¥)]. These facts show Vx<Q3y<
Q[0rd® (MAF*(x, )]
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4.2. The auxiliary system ZFL,—P.

In this section we define a system ZFL,—P, which is a conservative
extension of ZFL—P.

The language of ZFL,—P (denoted by L) is Le with a constant symbol M.
The axioms of ZFL,—P are ZFL—P with the following :

10, Ax[Ord(x)AM=F"“x].
11. Vx;--x,eM[3yeM A(y, x, - x,) < 3AvA(y, x; -+ x,)], where the formula

A contains neither the constant symbol M nor free variable other than
y, -xl cse xn.

THEOREM 13. ZFL,—P is a conservative extension of ZFL—P.

ProorF. It suffices to prove that

ZFL—P— 3Am[Fz[O0rd()A0<zAm=F“z]

ANisise Vx s xp€m[FyvemA; (3, x1 -+ x,) & Iy A (y, x5+ x)1],

for any finite set of formulas {A4;(y, x;--- x,)}i=1..2. Fix arbitrarily given
formulas A;(y, x;--- x,), i=1---k Let B(a, b) be the following formula:

Nigise VX1 xn€F“a [y eF“bA;(y, x1+ xo)V Ay A (y, x5+ x0)].

Then by the axiom of collection and the axiom of constructibility, we have
YasOrd3b=O0rd B(a, b). Let f(a) be the function ¢b[Ord(b)AB(a, b)AVx<
b— B(a, x)] and {a,}.c., be the sequences of ordinals defined by a,=1 and
@n+1=f(a,). By the axiom of collection, we see the existence of a=\U{a, :
ncew} and m=F“a. They have the desired property.

THEOREM 14. ZFL,—P\+ A< ZFL,—P — A for every sentence A of Lc,
where A means the relativization of A by M.

Proor. By induction on the complexity of A, using the axiom 11 of
ZFL,—P, we see that ZFL,,—P + Vx, - x,€M[A < A¥], where A is a formula
of Lo which contains no free variable other than x,--- x,.

THEOREM 15. ZFL—PW+ A< ZFL,—P =AY for every sentence A of Lc.
Proor. By Theorems [3 and [4
4. 3. Interpretation of OA in ZFL,—P.

Fix a one-to-one mapping from the union of the set of all predicate vari-
ables and the set of all individual variables of L,, into a set of variables of
L.. We shall denote the variables corresponding to the individual variables x
or the predicate variables P by x™ or P™ respectively. But often for simplicity,
we write x itself for x™ and a small letter p for P™.
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DEFINITION. For each formula A of Ly,, the formula A™ of L, is defined
inductively as follows:

1. [Oa]™ is Ord(a)ANaEM,

2. [a<b]™ is aEb,

3. [Pa,-a,J™ is {a,--a,)Ep,

4. [A— B]™ and [MA]™ are A™ — B™ and —[A]™ respectively,

5 [HxAI™ is 9xA™,

6. [FPAI™ is pA™.

THEOREM 16. OA+~ A— ZFL,—P + A™, for every formula A of Lya.

ProoFr. It suffices to show that A™ is provable in ZFL,—P for every
axiom A of OA. '

(1) The case where A is an axiom of comprehension. A™ has the form of
dpVxy o x, [{xy o xpp€EDp o Nich [Ord(x)Ax;€eMIAB™]. Hence A™ follows
from the axiom of subset since ZF—P - VYx3y[y=x X -+ X x].

(2) [Al]™ follows from the extensionality.

(3) [A2]™ and [A3]™ is clear by the properties of Ord.

(4) The case of A4. Assume Ord(a)Aa;€M, i=1---n and Vx[A™(x)
— . VyexA™(»)AOrd (x)Ax=M], where A(x) contains neither the predicate
constant O nor free variable other than x, a,--- a,. Vx[A™(x) — x&M ] implies
JuVx[A™(x) — x=u]. Note that the formula JuVx[A™(x) — x=u] does not
contain the constant symbol M since A does not contain the predicate symbol O.
Hence, by Axiom 11, JueMVx[A™(x) — x<u] is provable from a,---a,=M.
Put y=sup {x : A™(x)}. Then yeMAOrd(y)AVz[z€y « A™(2)].

(5) Other cases are evident.

4.4. Equivalence of OA and ZFL—P with respect to the formulas of L..

We shall show that OA+— A° < ZFL—P - A for every sentence A of Lc.
For this purpose we shall first prove the following theorem.

THEOREM 17. ZFL,—PF y,-y,€0rd N\ MANisn x:=F (y;) = [A° ™~ AY],
where xy -+ X, are all the free variables in A (a formula of Le) and y; -y,
stand for (x;°)™ --- (x,°)™ vespectively.

Proor. By induction on the complexity of A.

(1) [x;=x;]°™ is identical with y;E™y;. y,E™y; does not contain the
symbol M since x;° Ex;° is a P-formula. So y;E™y; is a formula of L and
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it is easily seen that
ZFL—P 1t Ya, b[Ord(a)ANOrd(b) — [aE™b < F(a)=F (b)1].

Hence Ais.[x;=F(y;)AOrd(y;)] implies y,E™y; < x,=x;. Since [x,=x;]" is
x;€x;, we see that

Nisn[x;=F(y)AOrd(y,)] implies [x;€X;]°™ & [x;€x,]".

(2) If Ais JxB, then A% is 3xeM B™ and A°™ is Ay [Ord(y)AyeMAB°™],
where y stands for x°™. Suppose y, - y,€M N\ OrdA A isn x;=F(y;). By the
induction hypothesis, Vx, y[x=F(»)AOrd(y) AyeM — [B°™ - B¥]]. Since M
is a model of ZFL—P (Theorem 19), Ord(y) and yeM imply F(y)eM. By the
same reason, x<M implies AyeM[Ord(y)Ax=F(y)]. Hence Iy [Ord(y)A
yeEMAB*™] - 3x=M B,

(3) The other cases are evident.
THEOREM 18. QA A° & ZFL—P - A, for every sentence A of Le.

ProOOF. Let A be a sentence of L and suppose OA - A°. By
ZFL,—P—A°™ By ZFL,,—P+—AY. By [Theorem 15, ZFL—P\A.
The converse is just [Theorem 12
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