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Introduction.

Hermitian symmetric spaces play an important role in Kihler geometry.
These spaces of compact type admit nonnegative sectional curvature (Helgason
[6]). It is also known that an operator Q associated with the curvature tensor
has at most two eigenvalues for each irreducible hermitian symmetric space of
compact type (Calabi and Vesentini and Borel [2]).

An irreducible hermitian symmetric space of compact type is a typical
example of Kihler C-spaces. By a C-space we mean a compact simply
connected complex homogeneous space (Wang [13]) and by a Kéhler C-space
a C-space M which admits a Kdhler metric such that a group of holomorphic
isometries is transitive on M.

The purpose of this paper is to discuss, for a Kihler C-space,

(i) some properties of curvature tensor R,

(ii) the positivity of the holomorphic sectional curvature and
(iii) a relation between the hermitian symmetry and the number of eigenva-
lues of Q.

Our main results assert that a Kdhler C-space of the second Betti number
b,=1 is of strictly positive holomorphic curvature under a certain condition
and that a Kédhler C-space of b,=1 is hermitian symmetric if
and only if the operator @ has at most two eigenvalues (Theorem 5.2)).

In addition to irreducible symmetric spaces of compact type, Kdhler C-
spaces associated with (g, a;), where g is a complex simple Lie algebra of classical
type, afford countably many typical examples of compact Kihler manifolds of
positive holomorphic curvature.

gives a complete characterization for a Kihler C-space of
b,=1 to be hermitian symmetric in view of an arithmetical property of the
curvature.

Relative to the following problem naturally arises; whether
a compact Kéhler manifold is hermitian symmetric when the operator @ has
at most two different and constant eigenvalues.

§ 1 treats of a description of C-spaces with the aid of structure of a semi-
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simple Lie algebra. An invariant Kihler metric is described in
2.1 in §2 in terms of a root system.

A connection function /4 associated with an invariant Riemannian connec-
tion (cf., Nomizu [11]) is computed explicitly in [Proposition 2.2, and [Proposition]
24 gives the components of the curvature tensor R.

In §3, we give [Theorem 3.1, which asserts that for any Kéhler C-space
associated with (g, «;) under the condition 47(k)=0, k=3, the holomorphic
sectional curvature is strictly positive.

The operator Q, called the curvature operator, on m*-m* (the symmetric
tensor product of m*) is defined in §4. asserts that the /-
invariance of eigenspaces of @ is equivalent to the hermitian symmetry.
Representation theory of complex semi-simple Lie algebras together with the
properties of the curvature tensor makes clear relations between eigenvalues
of Q and weight vectors of the representation (m*-m*, ad,) (cf., Propositions
4.2 1.3 and [4.4). [Proposition 4.5 deals with a key condition on the /-invariance
of eigenspaces of Q.

§5 is devoted to show By using classification of complex
simple Lie algebras together with the propositions in § 4, we clarify which is
a hermitian symmetric space (Theorem 5.1).

is a consequence by the combination of and
of the number of eigenvalues of Q.

§1. Description of C-spaces.

In our attempt to study the structures of C-spaces, first we recall some
facts about complex semi-simple Lie algebras.

Let g and b respectively be a complex semi-simple Lie algebra and its
Cartan subalgebra. Put [=dim¢b). 4 denotes the set of nonzero roots of g
with respect to ). Then we have g:f)-}—g CE,, where E, is a root vector of

a_root a. Let B be the Killing form of g. It is nondegenerate, since g is
semi-simple. For ebh*=Hom (h: C) we define H:=Y by B(H, H:)=E&(H) for
all HeY). We define a bilinear form (-, -) on §* by (¢, p)=B(H:, Hy), &, n=h*.
Fix a suitable lexicographic ordering among roots of 4 with respect to some
fundamental root system I/={«a,, -, ¢;}. By 4% and 4~ we mean the subsets
of "positive and negative roots, respectively. Every positive (resp. negative)
root is given by a linear combination of «y, ---, a;, whose coefficients are non-
negative (resp. nonpositive) integers.

We can choose root vectors {E,; a=4} so as {H;=Hq,;, j=1,-,1, Eqa;
as4} to be a so-called Weyl's canonical basis of g, namely,
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B(Ecu E—rx):_'l: CL’EA+,

(1.1)
[Ea Eﬁ]:Na,san, Na,s=N_q, —aER

Then, _,R«/ 1H;+ E (RA,+RB,), denoted by g, is a compact real
form of g, Where Ag E +E @ Ba=~—1(E,—E_,), ac4*. The complex
conjugation on g with respect to g, satisfies the following; E,=F_,., E_,=E,,
acsd* and H;=—H,,j=1, -, L

From now on, g is assumed to be a complex simple Lie algebra. Consider
a subset @ of II; O={a;, -, a;,}.

Let 4%(®) be defined by

(1.2) 4*(D)={a= P 2nja; 4% ng, >0 for some «;, =90} .

lp=0+ 2 CE_,+ ¥ CE; defines a parabolic subalgebra of g, and the

acat a€at—oF(E)
intersection g,y which is denoted by fp, or simply {, is a real subalgebra

of g,;
(13) =2 RvV—1H+ % (RAL+RB).
j=1 aEdt-4+(@)

Let G be a simply connected complex Lie group whose Lie algebra is g
and Lp a connected closed complex subgroup of G generated by !p.

Let G, and Ky, or simply K, be a simply connected group and its connected
closed subgroup which correspond to g, and fp respectively.

The canonical imbedding G,—G gives a diffeomorphism of a compact coset
space M=G,/Kp to a simply connected complex coset space G/Lyg.

We have from Borel and Hirzebruch [3]

HXM ; R)=H'Kp; R)=center of fp= ZR\/ 1H,,, where A,€b%* is defined
by 2(As, a;)=(a;, a;)d;,; for all j. Thus we have the second Betti number
b(M)=r.

Hence we obtain a C-space G,/K of b,=r from a pair (g, @), where g is a
complex simple Lie algebra and @ is a subset of [/.

(Gu/Kp, g) is, then, a Kdhler C-space, when G,/Kp admits a G,-invariant
Kihler metric g.

Conversely, a Kdhler C-space of b,=r can be described by a coset space
G./Kp for some G, and Ky, with a Gy-invariant Kdhler metric g.

We remark that every compact homogeneous Kihler manifold is a
Kéhlerian direct product of a Kéhler C-space and a flat complex torus (Matsu-
shima [9]). By a homogeneous Kihler manifold we mean a Kéhler manifold
on which the group of holomorphic isometric transformations is transitive.

Define a linear subspace m of g, as follows;
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(14) m= > (RAs+RB,).
acd+(D)

Then we have g,=fp+m as a direct sum and [fp, Ip1Ctp, [fp, mICTm and
fp_Lm with respect to B.

Since K leaves fixed the origin of a C-space M=G,/K, K acts on the
tangent space at the origin as the linear isotropy. We can naturally identify
the tangent space with m such that the identification commutes with the
action of K on the tangent space as the linear isotropy and the adjoint
representation of K on m.

Let a complex structure I of m be defined by [A,=Bq, IBa=—Aq, ac 47 (D).
This gives a G,-invariant complex structure on G,/K and coincides with the
canonical structure induced from the complex coset space G/L.

Denote by f° and m® the complexifications of f and m respectively. These
are complex linear subspaces of g=g,°;

bC:T+ > <CEa'+CE—0() s

(1.5) acg+ 2+
mé= 3 (CE,+CE_.).
a4+ (D)
m¢ is decomposed into subspaces m*= 3> CE,and m = > CE_,. We

o acut(d) asat(@)
have, m*={Zem’; [Z=+—1Z} and m={Zem®; [Z=—~/—1Z}. And we
have the following representations which are associated with the adjoint
representation ; (m*, ad.®) and (m~, ad.®), since a+ g belongs to 4*(@) for ac
47(D), psd—47(D), if a+B is a root. To any element §&€3 Za; (D4), we
assign an element n(§) of Z'=ZXZX---XZ (r-times), by n(E)]:(nil, -ee, ng,) if
£=>n;a;. Then we have, n(a)eZ*"=Z*X--XZ* for acd*(P), where Z*
den(;tes the set of nonnegative integers. By 4*(®; n) we mean a subset
{acd(D); n(a)=n} of 47(®D) for neZ*". Then m"= > CE, and m™ "=

aE4T(@; n)
>  CE_,=m'" give linear subspaces of m" and m~ respectively. They
acst(@; W)
satisfy the following properties, from the linearity of n(a) with respect to

as A7 (D) ;
[t m*1Cm*,
[min, min’]Cmi(n+n’) ,
[m*?, m JCmt®? (n>n'),
(1.6)
Cte (n=n’),
Ccm--m (n<n’),
= {0} (otherwise) ,

here n>n’ means that n,=n’, for all k=1,--,r and n.>n’; for some 7,

—— ’_ /
n=(n,)jo1,yry W =(1})j=1,0yre
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Since ad(f’)m*"Cm*", we have a decomposition of the adjoint representa-
tion (m*, ady’); (m*, ad.%)= 3 (m*", ad.®).
nezZ+"

§ 2. Invariant Kidhler metric and invariant curvature tensor.

Let G,/Kp be a C-space associated with (g, @), where g is a complex simple
Lie algebra and @ is a nonempty subset of /7.

Suppose that G,/Kp admits a G,-invariant Kédhler metric g.

Kéhler metrics, linear connections and tensors are regarded as ones
extended naturally over complex numbers C.

Since the Ké&hler metric g is Gy-invariant, a connection function A :
m®xXm’—m® which is associated with the Riemannian connection is given
(Kobayashi and Nomizu [8] and Nomizu [1I]) by

1) AX(V)=-[X, VIt U(X, ¥), X, Vent,

where [ X, Y]u.c denotes the mC-part of [X,Y] and U(-,-) is a symmetric
bilinear mapping, which is defined by
(22) 2g(U(X,Y), Z2)=g([Z, XJune, Y)+g(X,[Z,YIne) X,Y and Zem®.

We use the same symbol g for the Kihler metric g restricted to the
origin.
The connection function A gives the curvature tensor R as follows (Nomizu
(11D,
(2.3) R(X, Y)Z=[A(X), AY)IZ—ALX, Y1n0)Z
—[[X,YJe,Z], X,Y and Zem®,

here [ X, Y]ic denotes the ¥-part of [ X, Y.
Since g, /A and R are ad,c-invariant at the origin, we have,

(2.4) gLV, X1, Y)+g(X, [V, Y])=0,
(2.5) LV, AX)Y 1=ACLV, XDY +AX)LV, Y]
and

(2.6) L[V,R(X,Y)ZI=R(LV, X1, Y)Z+R(X,[V,YDZ+R(X, Y)LV, Z],
Vet and X,Y and Zenm.
The following theorem is known with respect to the invariance of a

Kéhler metric g on a C-space G,/Ky.

THEOREM (Borel [1]). Let g be a Gy-tnvariant Kdhler metric on a C-space
Gu./Kg. Then g is given at the origin by
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2.7) g=2 2 c.0% o, w“-w":%(w“'@wd—l—wa@w“), ce>0,

acd4+(®)
acd¥(D), catcs=caspg if «a B and a+ped*(P) and
Ca=Cary If a,a+y€d™(@) and ycd—A4%(D).

Conversely, if a bilinear form 2 2 cow™ %, which satisfies (2.7), then it can

be extended to a Gy-invariant Kdhler metric on G,/K.

Here, w* and w® are the dual of E,. and E_,, a< 4*(®) respectively.

Note that the condition c,+cs=cqrp is derived from the d-closedness of
the fundamental form, which is associated with g and c,=c4, is obtained by
the ad,c-invariance of the metric g.

From the above theorem we obtain a precise description of the Kéihler
metric g in terms of roots as follows.

PROPOSITION 2.1. Under the same notations as in the theorem, g is given
at the origin by

(2.8) g=2 > Zr}cj-nij(a)w“-wﬁ, for some ¢;>0, j=1, -, 7.

asdt (@) j=1

Here ni(a) means the aj-coefficient of a.
Conversely, if there is a bilinear form 23 caw® 0 on m®Xm® such that
Ca=2 cj-nij(a), then it can be extended to an invariant Kdhler metric.

,
NoTE. By c¢-n we denote X ¢;-n; for c¢c=(c¢;)j=1,.,r and n=(n;)-1,.r
Jj=1

Then (2.8) can be written in the simple form; g=2 3 c¢-nla)w® o™
asAt (D)

Proor. If a Kéihler metric g is Gy-invariant, then, from the above theorem
g can be written as g=2 Za) caw”® " such that the coefficients c,’s satisfy [2.7).
We set ca=0 for a=4"—47(@). Then cutcs=casrs for all @ and B=4*. Put
Cj=Cay, for each simple root a,;€®, j=1,--,r. Since any root a of 4%(®)
which is not simple is a sum of positive roots, the linearity of ¢, shows the
first part of the proposition inductively with respect to 2 n; (), as47(D).
The last part is easily verified by the above theorem. ’ Q.E.D.

From this proposition, we have

(29) g]m'*""xm_"’:c"l(—B)Im+"'><m'"’ nezZw,

and the set of G,-invariant Kéihler metrics on a Kihler C-space is parametrized
by » parameters, ¢, -+, ¢, .
Now we shall show the following proposition which gives an explicit ex-
pression of the connection function 4 in terms of the bracket operation [-, -].
PROPOSITION 2.2. The connection function A satisfies that
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c-n'

c-(n+n’)
AX)Y=[X, Y.+, X and Yem'.

(2.10) AX)Y= X, Y1+, Xem™, Yem*,

To prove the proposition we shall verify the following lemma.
LEMMA 2.3. The symmetric bilinear mapping U(-, -) defined by (2.2) satisfies
the following, for Xem*™ and Yem™,

c-(n'—

(2.11) UX,Y)= '2—(‘+—/)

[X, Y.+,
_ 1 -
U(X) Y>:7[X; Y]mcr 7’L<7’l/,

_‘%EX) Y]mC: 7’l>n’,

=0, otherwise .

Proor OoF LEMMA. Paying a regard to the relations B(°, m°)=0 and
g(m*, m*)=0, we verify the lemma.
For Xem™, Yem*™ and Zem’ we have in (2.2)

20(UX,Y), Z)=c-(n—n)(—BX[X, Y uc, Z).
Since [X, Y ]uce[m*™, m* lCm* @+ it follows that
c-(n'—n)_
c-(n+n’)
To prove the second, fix Xem*™ and Yem*™, Then
28(UX,Y), Z)=c-(w—n)(—B)[X, Y], Z).
If n>n/, then [ X, Y]em @ (y—n’>0). Therefore

29(UX,Y), Z)= g(CX, Yue, Z) for all Zem,

c-(n'—n)
c-(n—n')
And if n<n/, then [ X, Y]em* ™ » (5/—u>0). It follows then that

2g(U(X,Y), Z)= g([X, Yo, Z2)=—g([X, Y uc, 2).

20U, ), 2)= S5 g(CX, ¥ 1ue, 2)=¢(LX, Y Juo, 2).

For the other cases, we have clearly [ X, Y ],c=0 from (1.6).

Together with these arguments we have the last part of [(2.11). Q.E.D.
Now we shall show the proposition. For Xem'™ and Yewm'™, we have

from [2.11),

A(X)Y_———[X P Uil 0N

Se-(nkn’) ——TX, Y ]ue=

oy LYo
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Thus, the first part of is obtained.

To prove the last part, we set X=> X" and Y= V" X" Y"em™ for
X, Yemt, i '

Then it follows from (1.6) and that

ADY =X, ¥1uot UK, V)

1 o ,
=5 (T + )X Yo
n>n'  n<n/
+( T+ SHUKX, Y™)
n>n'  aln'
= S LX" Y Jwo=[X, ¥ Iu+ . Q.E.D.

NoTEe. From the proposition, we have, A(X)m*Cm* and R(X, ¥ )m*=Cm*,
for X and Yem® Moreover it follows from together with that
R(X, Y)Z=0 for any X, Yem* and Zem®.

By using the so-called first Bianchi’s identity together with the following
relation ; g(R(X, ¥)Z, W)+g(R(X, Y)W, Z)=0, we have the symmetric property
of the curvature tensor;

(212) R(X, ¥,z W)=R(Z, ¥, X, W)=R(X, W, 2, V), X, V,Z and Wemn*,
where R(X, Y, Z W)=g(R(X, V)Z, W).

By the aid of the expression of the conmection function 4, we have the
following proposition which is concerned with the curvature tensor K.

ProposITION 2.4. The components Rup;3=R(Ea E_g, E;, E_;) of R with
respect to the basis {E.; a=d*(@)} of m* satisfy the following.

(2.13) Ra5rs=0 if n(a+y)#n(B+0)

and

Q1) Rug=cn@fa P Pe (N, n@Snd),
:c-n(ﬁ){(a, 48)+?;—'<%(Na,‘@>2} ,  otherwise.

ProoF. We have from [Proposition 2.2,

R(X,Y)Zemt» v m for Xem™, Yem'™ and Zem*™. Hence, is ob-
tained.
Now we shall show [2.14). Since [E,, E_,1=t° we have

Reaps=g(MEJME_Ep, E_g)—g(ME_MEEs E_5)
——g([EEa’; E—a’]) E,@]y E—ﬂ) .
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From [(2.11), each term is turned into the following form
the first term ; ¢ n(f—a)(—BX[Ew [E-a Eglun+], E-p),

. He-n(B)}?
the second term ; et fy Nasg,
the last term; c-n(B)a, B).

If n(a)=n(P), then n(f—a)sZ*", that is, [E_,, Eglem®. The first term is
made into the following simple form; c-n(f—a){—(a, f)—Nzs}

If not n(a)=n(P), then [E_,, Esle&m*. The first term vanishes in this case.
Together with these computations, is obtained. Q.E.D.

The Ricci curvature tensor S of a Kéhler C-space (G,/Kyp, g) is defined by

S(X, Y )=trace of an endomorphism of m®; Z—R(X, Y)Z for X, YemC,

1
Since {:/“—t*Ea, aEd*(@)} constitutes a unitary basis, S is given by

¢ nla)
S B-0=2, B, con(p) Koot
Thus, we have from the proposition,
c-n(p) :
@15 SE.ED=2 5 e prt s N
c-nla) c-nla)

+2n(3)>2n(a) .. (ﬁ){ ﬁ)‘i‘m]\fﬁ,ﬁ}.

REMARK. If a Kédhler C-space (G,/Kyp, g) associated with (g, @) is a normal
homogeneous space, that is, g is given by an adjoint invariant bilinear form
of g,, then @ consists of a single simple root and [m*, m*]1=0. Since an adjoint
invariant bilinear form is a scalar multiple of the Killing form B, g=2 Zc-n

o*-»® coincides with aB|, cx,e=—2¢ 2 > 0% o for some constant
aS4+(D,n) n ac4t(P,n)

a. Hence we have c-n(a)=—a for all a€4%(®), in particular ¢;=—a for each

a;;€0,j=1, -, r. Suppose that $0=2. Then, there exists a root a<4%(®)

such that a=2'n;a;, n;;>0 and n,,>0 for some ; and k. We have —a=c-n(a)
J

=c;4+c,=—2a. This is a contradiction. Hence #0=1; O@={a;}. Moreover,
by the similar argument any root a of 4*(®) takes one as its a;-coefficient,
that is, m*=m*', Thus, [m*, m*]=0.

Conversely, a Kéihler C-space associated with (g, @), @={a;} such that
m*=m%, is a normal homogeneous space. Henceforth, it is a hermitian
symmetric space, since g,=f-+m gives an effective and orthogonal symmetric
Lie algebra (g, s) (Helgason [6]).

Let (M, g) be an irreducible hermitian symmetric space of compact type.
By the help of the argument of Ise [7], (M, g) is given by a Kéhler C-space
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(G./K, g), which is normal.
Since [m*, m*]=0 for a Kdhler C-space which is normal, we have

(2.16) R(X,Y)Z=[[X,Y] ¢, Z], X,Y and Zem®.

(2.16) coincides with the usual expression of the curvature tensor of
symmetric spaces (Helgason [6]).

§ 3. Curvature of Kihler C-spaces.

Let (G./K, g) be a Kihler C-space associated with (g, @).

In this section, @ is assumed to consist of a single simple root a;€1l;
O@={a;}. By 4; and 4;(k) we mean 4*({a;})={a=Xna;=4*; n;>0} and
A*({ai}, k)={a=2 nja;&c 4" ; n,=Fk} for positive integerj k, respectively.

The invarianjt Kihler metric g and the connection function 4 can be
written in this case as follows (a parameter ¢=1);

(31) g—:ZEk 2 w“‘wazz k(—B>Im+k‘<m"k;
B aedfn k
. k . . .
(3.2) A Z)Wr= Ttk [z, Wk]mc, Z’em?’ and Wkemtk,
AZW=LZ, W], 2, Wem,
where mr= > m*k, mt* = 3 CE,.
kez acdf (k>

Relative to holomorphic sectional curvature of (G,/K, g), the following is
obtained.

THEOREM 3.1. Let (G,/K,g) be a Kdhler C-space associated with (g, a;).
Suppose that 4;(k)=0 for k=3. Then we have,

(3.3) (holomorphic bisectional curvature)
H(XNIX, Y/\IY):—%H[ZH W2+ I0Z8, WH+0ze, WHl+ 02, we|l2
+10ze, WAle+-ILze, WA,
(3.4) (holomorphic sectional curvature)
HXNIX)=[[Z", Z*+2I[Z% Z=]|*+410Z%, Z#]|,
for X Yem, where Z% Wt are m**-components of Z_\/ (X—~/—1IX) and
W_«/_2_(Y V1Y) respectively, g(Z, Z)=g(W, W)=1. By |Z|* we mean

—B(Z, 7).
Moreover, the Kdhler C-space has strictly positive holomorphic sectional
curvature.
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In the above, the condition 4F(k)=0 means that there is no root a of
4F, whose a;-coefficient is equal to k.

By the aid of tables of roots of complex simple Lie algebras (Bourbaki
[4]), the following is directly obtained from the theorem.

COROLLARY 3.2. If a Kdhler C-space (G,/K, g) is associated with one of the
following pairs the holomorphic sectional curvature 1is strictly positive;

(Al; ai)i=1,---,z,za1, (Bz,ai)i=1,---,z,zg2, (Cz, ai)i=1,---,l,[33; (Dl; ai)i=1,---,l,l;4, (Es; ai)i=1,2,3,5,6;
(E,, ai)i=1,2,6,7, (Es, ay), (Es, as), (F4, ay), (F4, a,) and (G, a,).
PROOF OF THEOREM 3.1. From [3.2), we have, for Z and Wem*

g(CAZ), NEYIW, Wy=—-g (2", (24 Wi, 4779

-—%g([Z—l, A Wl]m+]m+; W1+ WZ)
=—B(Z, [Z, W+, W?)

1 B2, T2, WiTlas, W)

T v—mnw%nm W,

Similarly, we get,
g A(Z, Z1ne)W, W)=—|[2*, WI+[Z2 WA +1028, W1I?
+0Z2, W18,
and
g(([Z, Z1we, W1, W)=—|[2*, W1l*+I[2*, Wl*=2|[Z*, W=|?
—|Cz2, WHliP—2Irz2, W)=

Hence, from the combination of the above leads to obtain (3.3). To verify
(34), we set W=Z in (3.3). Then we have,

HXAIX)=2I[Z", Z2]|*+Ii[Z% 22 +-I02%, 23+ 22, 22011

The last term is turned into [[Z%, Z41|°*+|[Z?% Z=1|2+2I[Z*, Z7]|2, by a
slight computation. Therefore, (3.4) is an immediate conclusion.

The positivity of the holomorphic sectional curvature is assured by the
following argument. Since H(XAIX)=0, what to show is that [Z!, Z']=
[2,2=[2%,Z]=0 leads to Z=0. Put Z'= % §°E,&°=C. Then,
[Zl, Z—l:]: ZﬂEa{_:ﬁ[Em E—ﬂ] a&d; (1)
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=TI LE, Eoalt 2 E*EP[E, E_5].

Thus, the f-component of [Z% Z'] is 2|&%|{Eq E-ol=—316%2H,. If
as4f(1) is given by a=X n(a)a;, ni(a):Lathen H,=X nj(a)Haj. Hence we
have, Z]E“IZHO,:Z)(Elf“ljznj(a))Hj. Since {H;; j=1, -~], [} is a basis of b,
[Z%, Z1=0 means 3[&%|*n,(a)=0 for all j. Then, we have =0 for ae 4;(1),
from the nonnegatigity of nj{a) together with n;(a)=1.

By the similar argument, we obtain that Z?=0. Thus, we get Z=2'42°=0.

Q.E.D.

REMARK. Relative to a Kdhler C-space (G,/K, g) which is normal, the

holomorphic sectional curvature is given by H(XAIX)=]|[Z, ik

§4. Curvature operator.

Let (G./Kp, g) be a Kihler C-space which is associated with (g, @), where
g is a complex simple Lie algebra and @={a;,, ---, a;,} CII.

In this section, we shall define a linear operator, called a curvature ope-
rator, and investigate properties of this operator.

We denote by m*-m* the symmetric tensor product of m*, m*.-m* is gene-
rated by X- Y=—§—(X®Y—I— Y®X), X, Yem®. In particular, {E.- Ez; @, € 4¥(D)}

constitutes a basis of m*-m*.

We introduce a hermitian inner product <-, -> on m"-m* from the form g
on m*;

1 _ _ — -
(4.1) (XY, Z-Wo=—- {e(X, 2)-g(Y, W)+g(X, W)g(Y, Z)}.
Since, A(X), X=m® leaves the space m* invariant by A(X) induces a
linear operator on m*-m*, for which we use the same letter;
(4.2) AXNY - 2)y=(AX)Y)-Z+Y-(A(X)Z), Xem, Y,Zeum*

A on m*-m* is skew symmetric with respect to the inner product <-, -);
LAMX)Y-Z, W-Ty+<Y-Z, AX)W-T)=0.

And also the adjoint representation (m*, adic) canonically introduces a
representation on m*-m*, which is denoted by (m*-m*, ad);

(4.3) adV(X-V)=LV, X1- Y+ X-[V, V], Vete, X, Yemt,
From (2.5), we have the following relation between A(X) and ad(V);
(4.4) ad(V)e A(X)Y-Z)=ALV, XI)Y - Z)+A(X)ead(VXY-Z).

Now we define a linear endomorphism @ of m*-m*, which we call the
curvature operator associated with R, by
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(4.5) (QX-Y), Z-Wy=R(X,Z, Y, W).

Q is well-defined from the property (2.12). See Calabi and Vesentini and
Borel for another definition of @ in terms of a basis of m*-m* It is
easily verified that these definitions are equivalent. @ is self-adjoint with
respect to (-, -> from (2.12).

The following theorem gives a condition on the hermitian symmetry of a
Kdihler C-space (G,/K, g) in terms of the operator Q.

THEOREM 4.1. Let (Gu/K, g) be a Kdhler C-space associated with (g, @).
The following conditions are equivalent

(i) (Gu/K, g) is a hermitian symmetric space.

(ii) R is A-invariant, that is,

(4.6) [AX), R(Y, ZYIW=R(A(X)Y, ZYW+R(Y, A(X)Z)W,
X, Y,Z and Wemn®.

(iii) Q is A-invariant, A(X)-Q=Q-A(X), XemC,
(iv) every eigenspace of Q is A-invariant, that is,
A(XnCn, Xem® for each eigenspace n of Q.
PROOF. (i) & (ii); this is obvious from Nomizu [11], since G,/K is simply
connected.
(iii) & (iv) ; this is easily verified.
That (ii) implies (iii) will be shown by the aid of the following formula;
A7) Q- AMXNY-W), Z-T>—MX)Q(Y-W), Z-T>
=g(RUAX)Y, )W, T)+g(R(Y, AX)Z)W, T)—g(LAX), R(Y, ZIW, T),
Xem®, Y, Z, W, Ten".
To prove (iii) = (ii), it is sufficient to show that, under the invariance of
Q,
4.8) g(LAX), R(Y, Z)IW, T)—g(R(A(X)Y, Z)W, T)—g(R(Y, AX)Z)W, T)=0
only for Xem®, Y, Z, W, Tem®, since m=m*+m~, glm*, m*)=0, A(X)m*Cm®*,
R(m*, m")Z=0 and g, 4 and R are all real.

(4.8) is an immediate consequence of (4.7). Q.E.D.
Since R is ad.c-invariant, so is @, that is,

(4.9) ‘ Qead(V)=ad(V)-Q, vel®.

If the representation (m*.m*, ad.c) has an irreducible decomposition;
(m*-m*, ad.c)=2((m*-m"),, adye), and (m*-m*), satisfies that Q((m*-m*),)C
(m*-m*),, then each irreducible subspace (m*-m*), belongs to some eigenspace
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of Q from together with Schur’s lemma.

We shall clarify relations between such an irreducible decomposition of
m*-m* and the operation of @, as follows.

¥ is given by a sum of the center ¢ and the maximal semi-simple part [’;
=c+l’, =317, CHy;, where A; is given by 2 (4, ax)=(aw, a)di;s, =1, -, 7,
k=1, -, V= > {CLE. E_.]+CE,+CE_,}. Therefore, the restriction

a€at—uT(0)
(m*-m*, ady) of (m™-m*, ad,c) to I’ gives a representation of the semi-simple
Lie algebra !’.

Since every root a=4%(®), more precisely aly gives a weight of (m*,
ady), where 1 is the Cartan subalgebra of I, defined by Y= X C[E, E_.],

asd¥—aT (@
{a+p; a, f47(D)} constitutes the set of all weights of (n*-m*, ady). Es Eg,
denoted simply by E,.; is a weight vector corresponding to a weight a+f.
Then, the weight space Wy which corresponds to X in m*.-m* is given by
WZ‘: a+§:_ CEa.ﬁ.
a, fELHD)

We have the following proposition which asserts that @ leaves Wy inva-
riant,

PROPOSITION 4.2. Let Wy be a weight space of (m*-m* ady). Then
QWs)CTWs for any weight 2.

PrOOF. By we have, for ZeWj, ad(H)Q(Z)=Q(ad(H)Z)=2(H)Q(Z),
HeY, hence Q(Z)= Wy by definition of a weight space. Q.E.D.

Suppose that there exist a weight 2 and a weight vector Z5; of W such
that ad (Eg)Zs=0 for any S€II—@ and Q(Zs;)=vZy;. Then, with the aid of
the representation theory of semi-simple Lie algebras, X satisfies that
202, ap/(a;, apyeZ* for all a;ell—@, that is, 2 is a so-called dominant
integral weight, and the subspace of m*-m* which is generated by Z; and
ad(E_g)ad(E_g,_)-+ad(E-3)Z5, By, -, Bl —®, k>0, is an irreducible
subspace whose highest weight is 2. Moreover v is an eigenvalue of Q on
the irreducible subspace, since Q and ad ¢ are commutative by [4.9).

(m*-m*)y 7, or simply (m*-m*); denotes this irreducible subspace. Hence,
we have the following

PROPOSITION 4.3. If a weight vector ZE Wy satisfies that ad (Eg)Z=0 for
all Bell—0, and Q(Z)=vZ. Then X is a dominant integral weight and
(m*-m*); , gives a linear subspace of an eigenspace corresponding to v.

Since R(m*™ m™")m™™Cm* " **+™ from and ad(¥°)m*™Cm*™, we have
the following decomposition of (m*-m*, ady); (m*-m*, adﬁ:%}((m*-m*)", ady),

<m+ . m+)n: 2 m+n1 . m+n2, and Q(<m+ . m+)n>c(m+ . m+)n.
n1+n2=n

We note that this decomposition is not always irreducible.
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With respect to eigenvalues of (), we have the following.
PropoSITION 4.4. (i) If a weight vector E4p of (m*-m*)* (a=p) is an
eigenvector of Q; Q(Ea.ﬁ):uEa.ﬁ, then the eigenvalue v is given by

(4.10) y=-—"—(a, a), a=p,

2 _cena) _

—en(B) {(a, ‘8)+c-n(a+ﬁ) “’ﬁ} o mla)=n(p),
(i) Relative to a weight space Wy in (m*-m*)", the trace of Qlw is written
by

— oy 2 _en(@)
A1) TrQg=Tm= 3 {@ B+ 5 ey Nas)

1
+~c'—n(?)‘(r’ 7)>

where v is an eigenvalue of Q in Wy with multiplicity m,, and y=2/2. The
summation of the left hand side is taken over all the eigenvalues of @ in Ws.
The second term of the right hand side is excluded if y=2/2 is not in 4%(D).

PROOF. Suppose that Q satisfies, Q(Eq.5)=vE .5, a, f€47(D), n(a)+n(f)=n,
n(a)=n(B). Then, we have v(Eq.s, Ea.g»=Raaps. Hence, is verified directly
from [Proposition 2.4l

The second part is shown by the following consideration.

Since Q(W)CTWj, @ is given on Wy by

Q(Ea,ﬁ):r;ﬁz‘.ZQa’ﬁraErﬁ for any «, ‘BE A+<@>) a+[8:2 ’ aé‘B-
7=6

We have Tr(Qlwy)= = Qas*?. Since
atp=%

azp

_ 2 _
T e (e (@) Fewsi  (@<B),

Q"= oy R G=E1220),

(4.11) is immediately obtained from [Proposition 2.4 Q.E.D.
Let © be the highest weight among {a+8; n(a)+n(f)=n} with respect to
the lexicographic ordering. Then, @ is given by a sum of some roots; @=
a™+a™, where a™ is the maximal root in 4%(®; n;), i=1, 2 respectively and
ni+n,=n. Of course, @ is a dominant integral weight of ((m*-m*)*, ad.). If
dim;We=1, then E n;. ., is a weight vector of O such that Q(E . ny)=
VE n1..ns.  Thus, the irreducible subspace associated with @ and E n;. »s
gives a subspace of an eigenspace corresponding to v from [Proposition 4.3

Q aﬂaﬂ
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On the other hand, we have, relative to the operation of A, A(X)(m*-m*)"
C(mt-m*)™, AX)mt-m*)*C(mt-mt) Y Xemt™, if n>n’ and A(X)(m*-m*)r=
{0} for Xem™, if npn'.

We shall show the following proposition, which can be applied to the /-
invariance of eigenspaces of Q.

PROPOSITION 4.5. Let (m*-m*)3i be an irreducible subspace associated with
the highest weight 3 ;, i=1, 2 respectively.

Suppose that n,<n, (respectively n,>n,), and

MENZs e(m*-m*)R (resp., A(E_o)Zz,&(m*-m*)53)
for a weight vector Zy,

corresponding to 2, and any root «, n(a)=n,—n, (resp., n(a)=n;—n,). Then

AX)m-mHuC(mt-m)iE for all Xem* ™™ (resp. A(X)(mt-m*)pc
(m*-m*)g;’ for Xemtm-n),

ProOF. Letn,>n;. Then, the subspace m*"27"1 ig spanned by E,’s, n(a)=n,
—n,. Since the irreducible subspace (m*-m*)% is generated by the vector Zy,
and ad (E_g,)-ad (E_g)Zs,, B, -+, BxEII—D, k>0, it is sufficient to show that
A(Es) ad (E_g,)--+ ad (E_,)Z5, belongs to (m*-m*)32 for a, n(a)=n,—n, and k>0.

It follows from (4.4) that

AE.) ad (E-p)Zy,=ad (E-p) A(Ee)Zs,—A(CE-5, E)Zs,.

Hence, from the assumption of the proposition, A(E) ad (E_p)Zy, is in (m*-m*)72.
Thus, the assertion is inductively verified on k.
The statement for n,>n, is similarly verified. Q.E.D.

§5. Hermitian symmetry and eigenvalues of curvature operator.

We shall show, in this section, the following theorems which are concerned
with the hermitian symmetry of Kahler C-spaces.

Let (G./K, g) be a Kihler C-space associated with (g, @). Suppose that
@ consists of a single root a; of II; @={a;}. This is equivalent to the
second Betti number b,=1. The Gy-invariant Kihler metric g is written in the

following form; g=2>2 %k 2 o™ " (a parameter ¢=1).
acdf

Then, we have the following.
THEOREM 5.1. A Kdhler C-space (G,/K, g) of b,=1 is hernitian symmetric
if and only if it is associated with one of the following pairs;

(4, ai)i=1,---,l; (Bz, a’i)i=1,L ’ (Cz, ai)i=1,z ’
(D, ai)i=1,l—1,l ’ (Es, Xi)i=1,6 (E., a;) and (G,, a;).
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a; ot .y a;
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@, o, g oy

Gz C====>o

(A Kdhler C-space associated with (g, a;) is hermitian symmetric if «; 1S
enclosed with double circles in the above Dynkin diagrams.)

The following theorem gives an equivalent condition on the hermitian
symmetry of Kéhler C-spaces of b,==1 with the aid of numbers of eigenvalues

of Q.

THEOREM 5.2. A Kdhler C-space of b,=1 is hermitian symmetric if and only
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if its curvature operator has at most two distinct eigenvalues.

REMARK. A Kihler C-space (G,/K, g) of b,=1 is a normal homogeneous
space if it is associated with one of the following pairs;

(4, ai)i=1,---,l ’ (Bz, a;), (Cy, al) ’ (Dl,cq) , (Dy, 1),
(DZ) al) ’ (ES; al) ’ <E6; aﬁ) ’ (E7) a7> .

On the other hand, a Kihler C-space, associated with each of (B, a;), (C;, a;)
and (G,, a,), admits a proper subgroup of I,(G./K, g) (the identity component
of the isometry group) which acts transitively on G,/K, since G,/CNK, where
C is the center of G, is such a proper subgroup.

It has been shown in Calabi and Vesentini and Borel that every
irreducible hermitian symmetric space of compact type, and consequently of
noncompact type, has at most two eigenvalues.

We shall show these theorems by investigating the /-invariance of
eigenspaces of @ together with computations of eigenvalues.

Relative to the Dynkin diagrams and the root systems of complex simple
Lie algebras, we refer to Bourbaki [4].

In order to prepare for the proof of the theorems, we assume first that
4F(k)=0 for k=3, that is m*=m*'4m*% This assumption is satisfied by
almost pairs (g, a;)’s exclusive of some exceptional Lie algebras g’s and some
roots a;’s (cf, in §3). Then, we have, (m*-m")’=m*'.m",
(m*-m*)*=m*t.-m*? and (m*-m*)‘=m*2-m*?), for which 2a*, a’*+a® and 2a* give
the highest weights respectively, and (m*-m*)*={0} for £=5.

The weight spaces W, ., W 14,0, and W, , consist of CE ..., CE_..,
and CE . . respectively. (m*-m*)y, (m*-m*)?, and (m*-m*)Y, denote the
irreducible subspaces (m"-m*); ;, (m*-m*)%; . and (m*-m*)! .. They have E
E_... and E,. . as weight vectors corresponding to 2a’, a'4-a® and 2a*® respec-
tively.

We obtain the following table from [Proposition 4.4;

al'als

Table 1.
eigenvalue of () | highest weight
(m*-m*)y (a', a?) 2a’
(m*-m* )}, (at, a?) al+a?
(m*-m*), (a® a®)/2 2a®

The dimensions of these irreducible subspaces can be computed by using
Weyl's dimension formula. For example, dims(m*-m*)}, is given by
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1
dimg(m*-mHy,= II M,
acdt-4f (9, @)
where, o={ X «a}/2.
acd™-4F

As a concrete example of the irreducible decomposition of (m*-m™, ad,.), we
__shall investigate the complete decomposition of (m*-m*)?, for instance, associated
with (B, a;)<i<; and compute the eigenvalues of the curvature operator Q.

(a) the root system of type B, (1=2) (Bourbaki [4]));

Let (e4);sis; be an orthonormal basis of a [-dim euclidean space (R, (-, )).
A fundamental root system [/={a,, -+, a;} is defined by a;=¢;—¢;4q, 1=1, -
[—1 and a;=¢; and positive roo:s are given as follows;

2

positive roots: e;=a;ta;,+ - tay, 1=,<1,
e;—&r=jFAjpt ot gy, 1=5j<k=l,
e;itea=(a;+ - Fa)+lap+ - +a), 1=5j<k=I.
(b) df=df(L)\JAF(2) for the pair (B, ay)ici<y;
45D ajt - tapt e Fag=ei—epi, 1

J

IA
lIA

1=k<l,
a;+ - ta=e;, 1=j=1,
aj+ ot o Fag 20+ o F2a=e5te,, 1SSk,
47 2) 0 a;t o Fag+H2ap+ o F2a4+ - F20=¢5+te,, 1= j<k=0.
$47(D)=dimem*'=i(2[—2i+1),  #4f(2)=dimm*"*=i(i—1)/2.
(¢) dominant integral weights;
=2+ - Fa;+2a;,+ o F2a)=26,+2¢,,4,

Y=o +2a,+ s F2a 3 HAaat s Fha=e et tein
and
Yy=2a,+ -+ +a)=2¢,.

These weights are dominant integral, since 2X,/2 is the maximal root in
451, ¥, and X, satisfy that

‘y ) )
2(22; az) — 2\—’ 2 aH—l) :1 , 2<22’ aj) :0 , ]iz, l+1
(ag, aty) (i1, Qii1) (aj; aj)
and
22, ay) 202, ay) .
———’—«::2 s —:0 ’ 71:]. .
(ay, ay) (aj, a;) !

dimngl—;l, dich);Q:Z and dim(;WESZI—-i—!—l,
since 21:(51+5i+1)+(51+5i+1); 22:(51+5i+1)+(52+5i+2):(51+5i+2)+(52+8i+1) and
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23:(61_5i+1)+(51+5i+1):(51_5i+2>+(51+5i+2)): :(51_€l)+(51+5l):51’|‘51- Zi’
i=1, 2, 3 are not roots. Then coefficients Nq,5=0 for any «, B 47(1), a+ =2,
i=1, 2, 3. Hence from Proposition 4.4, Tr (Q |wy,)=(21/2, 21/2)=(e;F €141, €1€441)
=2, Tr (Q]IVzg):z{(el+Ei+17 eateia) T (61 6iss, €2t e)} =0 and Tr (Q]WZ:;):
(51; 81)"1'2{(51_“51:“, etep)+ o +(51—51; e1+e)} =1

(d) decomposition of (m*-m*)* and eigenvalues of Q ;

(m*-m™)%, denotes the irreducible subspace of (m*-m*)? whose highest weight
is Yy; mtemM)yy=m*m")y,p,. ., a=2/2. Because of dim;Wy =1, Tr (QIW£1)
=2 gives the eigenvalue of (m*-m*)%,.

Since XY,=2X,—(a;+a;,.), (m*-m")}, contains a weight vector corresponding
to X, that is, (m™-m"){ "Wy, # {0}. From the inequality, Tr (Q| wy,) <Tr Q] Wzl)
=the eigenvalue of (m*-m*)}, together with dim;Wj,=2, there is a nonzero
vector Z, in Wjy,, orthogonal to (m*-m*),. Then we have another irreducible
subspace (m*-m*)y, z,, denoted by (m*-m*)%,, whose highest weight vector is Z,.

Because of 2,;=2,—2(a;i,+ -+ +a,), (m*-m*)?, has also a non-trivial vector
of Wy,; (m*-m")pN\Wy,#{0}. Since 2,—2;=—a,+a;+2a;,+ - +2a;, by
representation theory of complex semisimple Lie algebras it is concluded that
2, never appears among weights of (m*-m*)%,, hence Wy N(m*-m*)%={0}. And
Wy, ac(m*-m*)3,, for Tr (Q|W23)<2. Hence there is a weight vector Z, in Wy,
orthogonal to (m*-m*)%4,. Z, is also orthogonal to (m*™-m%)%,. Therefore, we
have the third irreducible subspace (m*-m");,, 7., denoted by (m*-m*)%,, of highest
weight vector Z,.

Since (X, a;)=(2, a;11)=2 and (X, a;)=0, j#1, i+1, dim;(m*-m*)},

_ 7 (20, @) . ) )
=11 6, @) 7 where the product II is taken over only roots of I’ whose

o

a;- or a;-coefficient is positive. Then by a slight calculation,
dim(m* m* )y =i+ 1)~ 2i+3) .
By similar calculations,
dime(m* -m* %2>:%i(i—l)(l——i)(2l-2i+1)
and
. . i 1 ..
dim¢(m*-m )z3>=71(z+1)-

Since the sum of these dimensions is equal to the dimension of the whole
space (m*-m*)?’=m*l-m™, (m*-m")? is completely decomposed into irreducible
spaces, (m*-m*)2=(m*-m")%,+(m"-m*)+m"-m*),.

The eigenvalues v; of Q@ on (m*-m*)3,, j=1, 2, 3 are given as follows.

y,=2, this is already obtained.
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W= m")H\We,+m*-m* )Wy, gives a direct sum of Wy, Then,
from (4.11) Tr(Qlwy,)=v1+v,=0, or v,=—2.

Since (m*-m*)% N Wy, is one-dimensional and Wy,n\(m*-m")t={0}, Tr(Qlwy,)
=(l—1)y,+v,=1, hence v,=—2([—1)-+1.

For each classical type, by a similar argument we can list the irreducible
decomposition of (m*-m', ad,) together with eigenvalues of ), the highest
weights and the dimensions of irreducible subspaces (Tables 2~11).

Table 2. (A, ai)isis:
eigenvalue 1 highest weight dimension
(m*-m*)y, 2 2at (i+DU—i+1)([—i+2)/4
(m*-m*)%, —2 a2+ 420, +a; | 1(i—1D)(I—D(—1+1)/4

(i) dimem*=i(l—i+1),

(i) (m*m")H={0}, i=1or /|
(iii) a'=a;+-+a
Table 3. (Bl, al)zgl
eigenvalue highest weight dimension
(m*-m)3, 2 20t (I—1)(21+1)
(m+'m+)%2) ““21_{“3 2(“{‘}“"""‘&’[) 1
(i) dimem*=2[—1,
(il) a'=a;+2a,+ 420,
Table 4. (B, as)i<i<y, 251
eigenvalue highest weight dimension
(m*-m*)h, 2 20! i+ ((—1)(21—21+3)/2
(m*-m*)% —2 o+ 20,20, 1G—1)([—1)(21—2i+1)/2
3 et
+4al
(ntm | 200D | et ta) i(i+1)/2
(m*-m*), 1 at+at 11— +1)(21—2i+1)/3
(m*-m*), —2 a,+2a,+3a, 1(1—1)(T—2)(2[—2i4+1)/6
+ - +3a;tHdag
+ -,
(m*-m*)i, 1 2at 1—D(E2—1+2)/8
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(i) dimem*=i(4l—31+1)/2, dimem*'=1i(2{—2i+1),
dimem**=i(i—1)/2
(ii) a1:a1+"'+ai+2ai+1+'"+2al;
a’=a,+2a,+ 20
Table 5. (Bl, al)ggl
eigenvalue highest weight dimension
(m*-m*)%, 1 2at I(1+1)/2
(m*-m*)?, 1 ool (I—-1D)I(+1)/3
(m*-m*), —2 o, +20,+3a;+ (I—2)(I—1)1/6
- +3a;
(m*-m*)i, 1 2a B(l—1D(I+1)/12
(m*-m™)h, —2 o+ 2a,+ 3w, [I—-1)(1—2)(1—3)/24
+da,+ e,
(i) dimem*=I(l+1)/2, dimem*=|, dimem*2=[(l—1)/2,
(i) a'=a;+--+ay,
a*=a,+2a,++2a;
Table 6. (CL, a1>2§l
) eigenvalue highest weight dimension
(m*-m, 2 2at (I—1)(21-1)
(m*-m*)}, 2 a'+a® 20—2
(m+'m+ %1) 2 2&2 1
(i) dimgm*=2[—1, dimem*'=2[—2, dimsm*?=1,
(i) a'=a;+2a,++2a,+ay,
a2:2a1+---+2al_1+al
Table 7. (C,, ai)1<i<l,~ 251
eigenvalue highest weight dimension
(m*-m*)%, 2 2a’ G+ D(I—)(21—2i+1)/2
(m*-m™), —2 o, F2a,+ -+ 2ay 1—D)([—i—1)(21—2i+1)/2
341t
datipot 4o 20
(m*-m*), —2(l—i+1) | ayF2ay -2, | i(1—1)/2
+a
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(m*-m*), 2 a'+a? G+1DE+2)(1—1)/3
(m*-m*), —1 20,4+ 3ay+ -+ +3a; 210+ —1)(1—1)/3
+4ayi,
+--‘+4a1_1—1—2al
(m*-m*)f, 2 2a* 1+ DE+2)(1+3)/24
(m*-m*)y, —1 2, +4ay+ - F4a; - *(+1)(—1)/12
+2a,

(i) dimem*=i(4(—3:1+1)/2, dimem*t=2:(l—1), dimem*2=i(i+1)/2
(i) a'=a;t+-+a;+2ai++2a1+ay,
a’=2a;+ - +2a;+ - +20 1 ta;

Table 8. (Cl, a[)zgl

eigenvalue highest weight dimension
(m*-m*)3, 4 2at (I+1)(I+2)(1+3)/24
(m*-m*)% —2 20, +4a, 4 +4a; -, 1*(12—1)/12
‘}‘26(1

(i) dimem*=I[(l4+1)/2
(11) a’:2a1+---+2al-1+al.

Table 9. (D, ay)ss:

eigenvalue highest weight dimension
(m*-m*), 2 2at 1(21-3)
(m*-m*)y, —2(1—2) 200+ 20, 1
+ata;

(i) dimem*=2[—2
(i) a'=a;+2a,+-+2a; o+

Table 10. (D, a’i>1<i<l; 3<1

eigenvalue highest weight dimension

(m*-m*)y, 2 2at 1+D(I—1+1)(21—2i—1)/2
(m*-m*)3, —2 o F2a,+ 420 G—1D{—1)(21—2i—1)/2

+3ats gy,

+ee a2,

+2a,
(m*-m*)g, —2(1—1)+2 20+ 20, i(i+1)/2

+a, . +a;
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(m*-m* )y 1 a't+a’ (i—D+D(I—=0)/2
(m*-m*)%, —2 a2, 30+ 1G—1)—2)(1—1)/3
+3a;+4ag
+da; - +20, 1120,
(m*-m*)i, 1 2a* 12(1*—1)/12
(m*-m™), —1 a2+ 3a,Ha, iG—1)(12—i-+2)/24
+oetday 20,
+2a,

(i) dimem*=i(4/—3i—1)/2, dimem*'=2i({—1),
dimem*2=1(1—1)/2

(i) a'=a;+-+a; 2+ F2m o ta,
a’=a+ 20,4+ 20t ta

Table 11. (D, a;)s=;

eigenvalue highest weight ' dimension
(m*™-m* ), 2 2at 2(12—1)/12
(m*-m*), —4 * (I—=1)(—2)(1-3)/24

(i) dimem*t=[({—1)/2
(i) a'=a,+2a,+- 420, a1 ta,
the highest weight of (m*-m*)%, :

a;+2a,+as+2a, (I=4)

a;+2a,+3a,+ 20,4 2a5 (1=b)

a 20,3, +H4a, a1+ 2a, 1 Fay (1=6)

(iii) the eigenvalues with multiplicities of (D;, @;,_,) are the same as of

(D, ay)

We shall show the assertion of by the aid of tables 2~11
together with [Theorem 4.1

ProoF OoF THEOREM 5.1 for classical types.

From tables 2~11, a Kéhler C-space (G,/K, g) associated with one of the
following pairs; (B, ai)i<i<i, (Ci, ai)icici, (Dy, ai)icici, can not be hermitian
symmetric.

(By, @i)i<i<i and (Dy, a;)i<i<; 2 The weight vectors E,,., and E_,. , correspond-
ing to the highest weights 2a' and a'+a® give eigenvectors of () which belong
to the eigenvalues 2 and 1 respectively. Moreover we have,

AMEQE

a1~a1:2N‘/3,a1'E .2 for some B=a’—a'e 4{(1), N, 17#0.

al*

Thus, the A-invariance of eigenspaces of @ does not hold.
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(Cy, ai)icic;: Let Z; be a vector which belongs to the eigenvalue —2, 2 =a,+
20,4 +2a;+3c; 4+ - +4a; 1 +2a;. Then, A(E,)Z5 is a nonzero vector
in We (Cm*-m*)® for a=a;+ta,++a;+a;.; and @=2a,-+3a,+ - +3a;+
4oyt 20,

Since @ has 2 and —1 as its eigenvalues on (m*-m*)® (cf, table 7), it
follows that the eigenspaces are not /-invariant.
(A, aisisi, (B, ay), (C, ay), (D, ay), (D, «;_;) and (D, a;): In these cases, we
have m*=m"!, that is, a Kidhler C-space associated with each of the pairs is
normal. It follows that the operation A(X) is trivial. Hence, the eigenspaces
of Q are /-invariant.
(Ci, ay): Q satisfies that Q=2-identity on the whole m*-m™*.
(B, az) . In this case,  satisfies also that Q=identity on the whole space.
(B, a;);zs: The eigenspaces corresponding to the eigenvalues 1 and —2 are
given by (m*-m*)+m™-mH)i+m - m*), and (m*-m*)h+(mT-m*)h, respectively.
We can easily conclude that

AX)m*-mHDiL,Cm*-m)E and AX)(mt-mP)iH Clmt-mhh,
Xem*!, 1=2 and 3,

from the properties of the root system of type B,.

Let i=4. Let Wy and Wy, be the weight spaces corresponding to the
dominant integral weights Y,=a,+2a,+3a;+--+3a;, and Y,=a;+2a,+3as+
4a,+---+4a, respectively ;

Wy,= i} CEyy.5, and Wy, = i: CEypei)

where, yi=a;++a;, 0,;=a,+2a;+ +2a;, 7i=y7i-1—Qi-1, 0;=0;1+Q;-y, 1=2
and 3 respectively, and o,=a,+2a,++2a,;, 7.=as+20,+ -+ 20, 0;=0;_1—ay,
7;=Ts-1Fta;, 1=2 and 3, respectively.

Let E_, be the root vector of —a=—(a,+--+a;). Then, the connection
function A(E_,) gives a linear isomorphism of Wy, onto Wy,. Let Z be a
weight vector which corresponds to the highest weight of (m*m™)%,, that is, Z
€Wy, and ad (Eg)Z=0 for each f&lI—{a;}. Since ad(E_4,)Es,.c;=N_a,c,E0,.c,
and ad (E_4)Esy.c;=N_n;z,E0,.c, belong to (m™-m")y Wy, we have

(Z, 0d (E-4))Eope;y=(Z, ad (E-a))Eop.c>=0.
Since A(EHA(E_,) ad (E-4,)E,, .-, is proportional to ad (E_a,)Es,.c,, We get
<A<E—Q)ZJ A<E—a> ad (E—QZ)E01.72>:—<Z; A(Ea)A(E—a) ad (E—a'z)Eal-12>:0 .

Similarly, <{(AM(E_.)Z, A(E..)ad(E_4)Es.->=0. A(E_o)ad(E_4)Es.., and
ME_y) ad (E_4,)Es,.., are linearly independent in (m™-m"){H Wy, Hence,
A(E_)Z belongs to (m*-m*)iy\Wy,. Thus, we have that

ACE_): (m*-m")pn Wy, —> (" m )W,
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is an isomorphism. We can also conclude that
A(Ey): (m*-m™)iyn W21 —> (m*-mH)pN W):g

gives an isomorphism.
In order to verify the /A-invariance of the eigenspace (m*-m*)b+(m*-m*)s,,
we need to show that

AENME_HZem* - m*)y,  AE_pZem™ -m )y
and M(E_gA(E_o)Z=0, B 4{(1), from [Proposition 4.5
If B<a, then, neither B-+y; nor §+44; is in 4f, i=1,2,3. Hence, we have
A(EQA(E_)Z=0. On the other hand, there is a 4" —4; such that f=a+g,
when S>a. Then, we have,
1
Noa

MEHME-o)Z= A(CEg, ENAE-0Z

= {0l B MEIAE_)Z—A(E2) ad (Ep) A(E-2)Z)
Bha

which is proportional to ad (Eg)Z, by a slight calculation. Thus, A(EQ)A(E_o)Z
e(mt-m*)h,.

Similarly, we have A(E_g)Z<@m"-m*)} and A(E_pA(E_0)Z=0 for = 4f(1).

If /=3, we have (m*-m*)%,={0} from table 5. We can easily show that
A(Egm*-m* )y =A(E_g)(m*-m™)%=1{0} for f=4f(1). Q.E.D.

PROOF OF THEOREM 5.1 for exceptional types. Let (G,/K, g) be a Kéhler
C-space associated with (g, «;), where g is a complex simple Lie algebra of
exceptional type and «; is a fundamental root.

The irreducible decomposition of m*-m* is so complicated for the excep-
tional Lie algebra g that we shall partially compute the eigenvalues of @ and

investigate the A-invariance of some main irreducible subspaces (m*-m*)%, and
(m*-m*), (cf., table 12).

Table 12.
E, | E.
a;, ag as, A3, Ay, A ] a;, 1=1, -+, 6 ’ aq
(m*-m*)z 2 2 2 | 2
(| - 1 H 1 |//
E, | F, G,
a;, 1=1,--,8 “ ay, @, f ay | a, ﬂ a, o f
2 2 1 |1 2 | s
1 1 J2 |1t | o2 | 3




Kahler C-spaces 65

With the aid of table 12, a Kédhler C-space associated with each of the
following pairs can not be hermitian symmetric; (Es, ®)izs,3,4,5, (Evy Qi)i1,eenp6r
(Esy @i)iz1,enysy (Fuy @i)iz1,0,s and (G,, @), since there exist nonzero vectors Z2
and Z* (Zie(m*-m*)},, 1=2, 3 respectively), and Xem** such that A(X)Z*=Z°,
for each pairs.

We have m*=m*' for a Kihler C-space associated with each of (E,, a;),
(Ee, as) and (E,, a;). Hence, each Kihler C-space is hermitian symmetric.

Now we shall show that the Kihler C-space associated with (F,, a,) can
not be hermitian symmetric, and that the C-space associated with (G,, a;) is
hermitian symmetric.

(Fy, ay): The irreducible decomposition of m*-m* for the Kéihler C-space
associated with (F,, «,) is obtained by a slight computation as the following
table.

Table 13. (F,, a,)

eigenvalue highest weight dimension
(m*m*), 1 2a 35
(m*-m*) —5 ay+2a,+3a;+2a, 1
(m*-m*), 1 a'+a? 43
(m*-m*)l, —5/2 2a;+4a,+6a,+3a, 8
(m*-m*), 1 2a? 27
(m*-m), —5/2 20, +4a,+6a,+4ea, 1

i) dimem*t=15,
i) a*=a;+2a,+3a;+ay,
i) a*=2a;+3a,+4as+2a,

By the argument which is similar to the case (B, a;), we can verify that
A(E )Z is a weight vector of the highest weight of (m*-m*)%,, where Z is
some weight vector of the highest weight of (m*-m*)%,. Hence, the eigenspaces
of Q are not A-invariant.

(Gy, 1) Let a, and a, be the fundamental roots of simple Lie algebra of
type G;; II={a,, a;}. We have, (ay, a;)=2, (a;, a,)=—3 and (a,, a,)=6, and
the set 4% of positive roots is given by

A =A{a, ay, ay+a,, 20+ ay, 3a,t+as, 3a,+2a,) .

The subset 4f is obtained by 4i=4"—{a,}; £47=5. We have, then,
4; =4I AF2)\VAF(3) 5 AT (D= {ay, aiias}, 47(2)={2a;+a,} and 4f(3)= {3a;+
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as, 3a;-+2a,} and mt= E+CEC, is decomposed into m*!, m*? and m™. Hence,
acsd

m*-m* has the following decomposition; m*-m*=3 (m*-m*)", (m*-m*)2=m**-m™,
(m+_m+)3:m+1_m+z’ (m+.m+)4:m+1.m+3+m+2,m+z, (mﬁ-_m+)5:m+z.m+3 and (m"-m*)G
=m*™-m*3, and the sets of weights with respect to ((m*-m%)", adic) are given
in the following forms respectively, n=2,--,6; {2ay, 2a;+a,, 2a,+2a;},
{8a,+a,, 3 +2a,}, {da,+ta,, da,+2a,, 4a,+3as}, {Say+2a,, 5a+3a,)  and
{6a;+2a,, 6,43, 6, +4as}.

We note that 4a,+2a, is an only weight whose degree is greater than 1,
in fact, its degree is equal to 3;

Wz‘:CEal.(saﬁ—ZaZ)+CE(a1+02)-(3a1+a2)+CE(2a1+a2)-(2a1+a2): (2:46(1+20(2) .

We shall show that Wy can be splitted into two eigenspaces of @, one
corresponds to eigenvalue 2 with multiplicity 2 and the other corresponds to
—3, and moreover, the eigenspace corresponding to 2 is decomposed into two
subspaces, one is contained in (m*-m*)},, the other gives the one dimensional
irreducible subspace (m*-m%)k,.

The operator @ is described on Wy by

X a d e X
Q Y |=| d b f Y
Z e [ ¢ Z

for a unitary basis {X,Y,Z} of W, X:x/—g-Eal.mﬁmz). Y=

«/%Emlwp-(saﬁaz) and Z:LEQQIMZ).MIMZ» Then, by the followingtable,

2
which is concerned with the coefficients Ngp's, a, B€4*; we obtain
a d e 0 2 —/2
d b f |= 2 0 V72
e f ¢ -2 V2 1
Table 14. The coefficients N, g's for G,
a, a, a;ta, 2ata,  3ata,  3a;+2a,
s X V'3 0 0 V3 0
o —+/3 X 2 v'3 0 0
o Fa, 0 —2 X V'3 0 0
3a,+a, —+/3 0 0 0 X 0
3a,+2a, 0 0 0 0 0 X
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. 3
ThUS, Ea1~(3a1+2a2) + E(a1+a2)-(3a1+a2) :\/T(X'l_ Y) and 2Ea1-<3a’1+2a2)'—
V' 3 Eayrap-rapray =V 6 (X—~'2Z) give eigenvectors to the eigenvalue 2,
- V2 1
and 4Ea1-(3zx1+2a2) - 4E(a1+a2)~(3a1+a2) + '\/ 3 E(2a1+a2)-(2a1+a2) :4—\/? (X”_‘ Y+V_7Z)

belongs to the eigenvalue —3.

Since ad (Ea,(X—+/22Z)=ad (E_.,)(X—~ 2 Z)=0,
the weight vectors 2Eu,.csayroap—V 3 Ecoarrap-Gagrap a0 4Eq . say+sap —4E (ayr ap-
tartapT V' 3 Ecoaysagy2ayrap give the irreducible subspaces, denoted by (m*-m*)k,
and (m*-m*)%, respectively. That is,
(m*-m* %2):C<2Ea1-(3a‘+2a.‘)—"\/.g_E(ga1+a2)'(2a1+a'2)) and (m+'m+)%3):C(4Ea1-(3a’1+2a2)
—4E 0y rap-agran T V3 Ecarap-cagray.  On the other hand, we have, Eq,.csaj+2ap

1
+E(a1+a2)~(3a +ad ™ ':ad<E—a2>E(a1+a2:w-(3a'1+2a2)) hence Eoll'(3a1+a’2)+E({x1+a2)'(3a1+a2)
VA

belongs to (m*-m*)f,.
Therefore, we have the following table which gives the complete irreducible

decomposition of m*™-m*.

Table 15. (G, a,)

eigenvalue highest weight dimension
(m*-m*)3, 2 20, +2a, 3
(m*-m*)h, 2 3a,+2a, 2
(m*-m*)t, 2 4a,+3a, 3
(m*-m") 2 da,+2a, 1
<m+'m+)%3) _3 4a1+2a2 1
(m™-m*)Y, 2 5a,+3a, 2
(m+'m+)€(5l) 2 6a;+4a, 3

It is easily verified that A(X)(m™-m*),C(m*-m*)3!, and A(X)m*-m*)iicC
(m*-m*))y, Xem™, j=2 and 5. Hence, in order to show that each eigenspace
of Q is A-invariant, it is sufficient to verify that

AX)m*m* R Cm™-mly+m* - m*y

AX{@t-mHl,+m*m*)y} St m*)y,, Xem',
and
AX)(m* - mH=4X)m*-m*)g={0}, Xem*.

With respect to the vector Ea,iay.coa+ayy cOrresponding to the highest
weight 3a,+2a, of (m™-m*)},, we have
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2
A(Eal)E(a'1+a2)-(2a1+a2) :Vg— E(a1+a2)-(3a1+a2)+E(2a1+a2)-(2a1+a2) and

2
A(Eal+a2>E(a1+a2)-(2a'1+a2):”\7?E(a1+a2)~(3a1+2a2)- ThUS, A(X)E(a1+a'2)-(2al+a2)e

(m*-m*)y+mb-mt)y, Xem*™. Therefore, from [Proposition 4.5 we have

AX)mr-mMiH Tt -mb+(m*-m*)h, Xem™.
Similarly, we can verify that
AX){(m*-mH)hy+H(mt-my) S my, Xem™,
We have also,
MENAE 4, sayr2ap—4E (aytagy-csaytap T '\/—§E(2a1+az)-(2a1+a2))
= A(E-)AE oy cragssapy—AE casap-camprapt V' 3 Ecayeapr oy

=0, aed’.
It follows that A(X)m*-m*)4y=AX)m* -m*)4=1{0}, Xem*. Thus, we can
verify the A-invariance of the eigenspaces of Q. Q.E.D.

REMARK. It is known that a Kdhler C-space associated with (G, a;) is a
hermitian symmetric space (Nakagawa and Takagi [10]). It can be imbedded as
a 5-dim Kihler submanifold in a 6-dim complex projective space, by using the
representation of g of type G, whose highest weight is 4; (see §1 for the
definition of A,). It is an Einstein Ké&hler manifold. Hence, it is hermitian
symmetric by the result of Smyth [127.

PROOF OF THEOREM 5.2. To verify it is sufficient from
to show that the operator Q has at most two different eigenvalues
for each of pairs listed at [Theorem 5.1, and that Q has at least three eigen-
values for a Kédhler C-space associated with each of the others.

This is an immediate conclusion for classical type by tables 2~11.

For exceptional type, we have the following tables;

Table 16. (FE,, ay)

eigenvalue highest weight dimesion
(m*-m*)zy 2 20t 126
(m*-m™)%, —6 23 % 32 10

(i) dimem*=186,
(ii) by acdef we mean a form aa;+ba,+cas+do,+eas+fas,
b

(i) a=12 % 21
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(iv) the eigenvalues of (FE; a;) with multiplicities are the same as of
(Es, ay).

Table 17. (E;, a;)

‘ eigenvalue highest weight dimension
(mtom®, | 2 2 351
(m*-m*)2, i -8 2463542 27

(i) dimem*=27,
(ii) by a cgefg we mean a form aa,+ba,+ca;+da,+eas+fas+ga,,

(iii) a:23%321

Therefore, Q has just two distinct eigenvalues for each of pairs; (E, a,)
(Es, ae), (Eq, a;) and (G,, a,).

For a Kihler C-space associated with (F,, a,), Q has 1, ——g— and —5 as

its eigenvalues (cf., table 13).

With respect to Kédhler C-spaces associated with the other pairs, we have
shown in table 12 that @ has at least two eigenvalues, which are positive.

If there exists a negative eigenvalue, then, @ has at least three different
eigenvalues. Therefore, it is sufficient to show that there is a weight space
Wy on which the trace of @ is nonpositive.

(E;, @,): Relative to a Kdhler C-space associated with this pair, we have a

weight space Wy, I=23432; W= S\CE;;.5, Where 7,=11 1L, et as i
p2
=2 and 3, and 6,=12321, 0;=0;-,—®;4s, i=2 and 3. The trace of Q on Wy

is given by (4.11); Tr %QIWE)ZZjZ (7i, 0:). By the way, (7, 0:,)=0, i=1, 2 and
3 from Dynkin diagram of type és. Hence, we have Tr (Q|W2>=o.
(Es, ai)i=s,4,5, (E,, ai)i=1,---,6, (Es, ai)i=1,m,8; (Fy, ai)i=1,2,3 and (G,, a;): By the aid
of the similar arguments, we have some weight space Wy for these pairs such
that Tr (QIWE)_S_O.
Thus, is proved. Q.E.D.
REMARK. The following table shows the eigenvalues with multiplicities of
Q for all Kdhler C-spaces of b,=1, which is hermitian symmetric. A Kéhler
C-space (G,/K,g) associated with each pair (g, a;) written at the left end in
the table is holomorphically isometric (or homothetic) to an irreducible hermi-
tian symmetric space of the type given at the right on the same line (Calabi
and Vesentini [5)).
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Table 18.
dim Yy ] m, YV, My
(A, o) l 2 | w2 | (= | B-I,,
(Aly a,
<l
A, o) (l—14+1) 2 lt+1N\I—i+2 —2 1\/[—1+1 B-I;,-;
(A2, (%) ()(75) i
(B, ) l 2[—1 2 (I—-1)(214+1) | —2I4+3 1 B-1V,,_,
2=
(B,, as) 3 1 6 (=v)) B-1,,
(By, ay) [(1+1)/2 1| (HD¥(+1)* —2 ( l+1> B-I1,,
3=! —1)/12 4
(Cl; al) 2[—1 2 1(21"1) (:Vl) B'Il,zl—l
2=
(C,, ay) (1+1)/2 4 (l+3) —2 1%(1*—1)/12 | B-III,
2= 4
(D,, ay) 20—2 2 1(2(—3) —2(1—2) 1 B-1V,_,
3=l
(Dy, a;_1) I(1—1)/2 2 2(2—-1)/12 —4 ( [ ) B-11,
Dy, ay 4
(Es, ay) 16 2 126 —6 10 B-V
(EG, a6
(E,, a7) 27 2 351 —8 27 B-VI
(G,, ay) 5 2 14 —3 1 B-1V
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