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§1. Introduction.

Let f(n) be a multiplicative function, and let d(n) and 7(n) be the number
of divisors and the number of representations as a sum of two squares of n,

respectively. We consider the problem to find the asymptotic behaviour of
the sums

(L1) 2 dmf(nta),
(as N—c0)
(1.2) Zr(mf(n+a),
where a is an arbitrary non-zero integer. The conjugate sums
(1.3) 2 dmAN—=n),
(as N—0)
(1.4) 2 (mf(N=n),

where N runs over integers, may also be considered.

These problems have been treated by various authors mainly in the case
f(n)=d,(n) the number of representations of n as a product of %2 factors. The
first general result was obtained by Linnik [4], who proved the asymptotic
formula for the sum [(1.1) in the case of a=1 and f(n)=d,(n) with arbitrary
k=2 by appealing to his own powerful ‘Dispersion Method’. In his method the
work of A. Weil on the Kloosterman sum plays vital part. Later his result
was extended by Bredikhin [2].

The complexity and difficulty of the dispersion method compelled us to
seek a different way, and we have found in that the improved large sieve
method due to Bombieri enables us in some cases to simplify the proof as
a whole as well as to dispense with Weil's work. This way of investigation
has been further developed and strengthened by Wolke [10] [1I], who has
solved the fairly general problem (1.1) in which f is restricted only by the
size of f(n) and by the average behaviour of f(p), p a prime. In both Wolke’s
and our works the main concern is the proof of the analogue for f(n) of the
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mean prime number theorem of Bombieri (see also Vinogradov [9]). This
in turn is reduced to the investigation of the function

Fs, 1)="3 ™) sy,
n=1 n

where X is a Dirichlet character and s=o+it a complex variable. In our case
F(s,X) was a power of L(s, X) the Dirichlet L-function, and we needed a
good estimation of the sum

L(F+i 0" k=12,

(1.5) *
¢=Q yx(mod @)
where >3* denotes the sum over all primitive characters mod ¢. But this has
been settled only for £=4 (e.g. [8]), and our method failed to give a general
result. But Wolke took an ingenious way in which he divided F(s, X) and the
range of s into several parts and then estimated F(s, X) by appealing to the
large sieve method.

Now the purpose of the present paper is to show that there is a consider-
ably simpler way of investigation than most of previous works in this field.
Our method needs only an easy estimate of

2

L( —%ﬁtit, x)

N

>

x(mod @)

instead of (1.5), and also the large sieve method is applied in a very simple
manner. To make this clear we shall first give a quick proof of the asymptotic
formula of Linnik. And later we shall outline the proof of an iteration formula
from which the analogue of Bombieri’s theorem for f(n) follows immediately,
provided that f(n) satisfies a general (but not so general as Wolke’s) condition.
As for applications we shall show several asymptotic formulas without proof.

§2. Linnik’s asymptotic formula.

We shall use following lemmas:
LEMMA 1. For any complex numbers a, we have
2F 1 2 a X)) <(Q*+N) X |a,]®.
7=Q z(mod @) nr=N n=N
LEMMA 2.

3 LG 1) <ot +D 1oga( 11+ 1)

LEMMA 3. Let
Vigy<x, g=y"c, (¢ D=1.
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Then we have, for any positive integer a,

S dg(n)<-2-(log x)**,
n={ (mod q) q
r—-y<nszx

where ¢ (<1/2) is an arbitrary positive constant.

is the large sieve inequality, and for its simple proof see [3].
is an easy fact which can be proved only by the Pdlya-Vinogradov
theorem and the usual character sum method. is one of the funda-
mental tools in the theory of additive divisor problems, and this has been
essentially proved in [5].

We now start the proof of Linnik’s asymptotic formula. Let

Dyx; )= 2 )dk(n),

n=1 (mod ¢
nsr

and let A be a positive constant to be determined later. Then we have

2 d(n)dy(n+1)
PEN
(2.1) =2 2  D{N;9+0( _ 2 Dy(N; 9))
g<v§ log=4AN VN log—AN=Zq<VN logdN

=25,(N)+0O(N(log N)**loglog N), say,

where we used We decompose D.(N; q) into two parts as follows:

DiN; )= 3 3 dyi(m)

= 2 {4 2 di-(m+ > d-1(m)}
n=1 (mod @) mu=n mu=n
n<N mEN log—24N Nlog—24AN<m<N

=D{(N; )+DP(N; q), say.
In the sum DP(N; q) we have u=<(log N)*4, and so

. DP(N; g 2 2 2 dpa(m),
qsSV'N log—AN ,q)=1 qs<v¥N m=u (mod q)
uslog24N MmEN/u

where #u=1 (mod ¢). Thus again by this is

£ 2 > J—V——(log N)E-2

uslog24n q=vw qU

& N(log N)**loglog N .
This gives
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S{N)= 2 DPN; ¢+O0(N(og N)*~*loglog N)

g=vV'N log—4AN

(2.2)
=SP(N)+O(N(og N)*'loglog N),  say.

We put

TV o= % 2 dea(m),

T2 ey eamzay

(2.3)

T{(y; = 2 2 dy(m),

n=1 (mod q) mu=n
nsy msN log—24N
and
I —_ 1. . 1 ()] .
4y O=Ty; q o) TY(y; @),

where ¢(q) is the Euler function. Then obviously we have

DP(N; ¢)=T«N; @),
and so we may write
1
SP(N)= ———TP(N; 4,(N;
V(N q;«x%g—u ) £ q>+q§ﬁ‘120g_m N5 @)

(2.4)
=SP(N)+SP(N), say.

Further we put
~ Yy
Ay; o= dw; 2.

Then, by the standard way of smoothening, we get, for any 0<d<1,

14(y; I« d(ve”; )—dy; O+ T3¢ ; )—Tu(y; @)
1 O o8« Y T OV 4 -
+ Sp(q) [Tk (.}e ’Q) Tk (.}’q)l'
Thus we have, by
144N )1 <67 max | 4,(y; )] +6-2 (log N)*,
N<ysNe q

provided

(2.5 (6N)'*=+/N.

From this and (2.4), we have

SP(N)<ét = max | 4(y; @)|+6N(log N)**!
g=vVN log—4N N=ysNe?

(2.6)
=0"'SP(N)+0N(log N)*+*, say .

Now we see easily that
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°° X
J~(?) n=1 (n> ( muz—)n dk_ 1(m>)%2— dS
msN lo‘g—>2AAV

7 1
A .
k(y ’ Q) 27['190(q) Z#Zg Gaod o)

1

_ 1 s 02
) mo(zmom ij(s, )M(s, 1% ds

where X, is the principal character mod ¢, and

M, = 3 HW g

m=N log—24N m

By an obvious reason we can change the line of integration from Re(s)=2 to
Re(s)=1/2. So we have

max |0 I < VN Iog N-- 52 14116 ms, Ik

1F 1o (mod @) I ]

From this and (2.6), we get

SPWN < VNIogNf(yy B L s s My vl

2) gV N log—4AN § x#xg (mod @) | s?]
2.7)

_\/_long( )H(s N)—— IldTl ,  say.

Let X(mod ¢) be induced by the primitive character X*(mod ¢*). Then we have
X=X*X,, where X, is the principal character mod ¢,, ¢o=¢/¢*. And we have

His, )< X b3 %qo | L(s, X¥7g)H(s, 1¥2,)|.

009V log=AN yryq) 4

Here we note

20

D) N oo s
——ps—)L(s, 1%)

= d(qo)| L(s, %)

for Re(s)>0. Thus we get

Hs, Ny« x4 w1 S LG5, HCs, 11y,
0sVN log=4N¥ o, VN jog-ay 9 z(mod
q

~— O

<logN -8 gy s s | L(s, HHG, 12,

9g=~VN log—48 Qo Qg%‘ylog_@v =@ y(mod q)
0

S

On the other hand we have, for s:fé~+it,

2% | L(s, X)H(s, 2X,,)|

¢=Q y(mod q)

S(Z 3L DI T IH 1))

¢=Q y(mod @)
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€ QU1 log Q111+ 1){(@+ N log-24N) 3, -halm) 1,

where we have used Lemma 1l and Lemma 2 Thus we get
_ 2
A(-S-+it, N) < (V141 log (N(] ]+ 1))log N340
which, being inserted into (2.7), gives

SP(N) < N(log N) *+72%*
So, setting

—(log N) A+4+ (k—1)2—k
Ag%-(k—l)z—k+5 (>0),

in (2.6), we see that the requirement is satisfied by sufficiently large N,
and we have
(2.8) SP(N) < Nllog NY +*772,

Next we have to estimate S{P(N). For this sake we note that

> 1= -2 r oy,

UST

(r,u)=1

1 o) log p d(r)
= Ty {logx%—r——p” p—l—}+o( p logx>
(r,u)=1

= SDST) {log x+O(loglog 3r)} +O<—d—§:—) log x) )

where 7 is the Euler constant. These are proved by an easy application of
Eratosthenes’ sieve. Thus we have from (2.3) and (2.4)

SP)=_ 3 e B di(m) 31
a5v/N log=4N PG MmN log—24N (=1

=N 3 G=tm s L oiniog N)t-r

= N{--log N+O(loglog N)} __ = S ) g, (m)
+O(N(log N)#~24),
On the other hand we have, for Re(s)>1,

S A 4 m=t+) T (1A (1)),
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where {(s) is the Riemann zeta-function. So, by the routine complex integra-
tion method we get

3 A g, (m) = Pher logtx+ Olog* ),

sy mP NCESH)
where
_ 1 1 [
0= -5+ 505",
Hence we have
(2.9) S“”(N)—~N(log N)H* (kUli)l +O(N(log N)**loglog N)

+O(N(log N)*24),
Therefore, collecting [2.1), (2.2), (2.4), [2.8), [2.9), and setting
A=PR*/2+7,

we obtain the asymptotic formula of Linnik:
THEOREM 1.

> d(n)dy(n+1)

71_

_ 1,1 1\ . B N
‘WN log"NTI (1-—-+-5(1-) )+0(N(log N)** loglog N).

§ 3. Iteration formula.

Now we apply the argument of the preceding paragraph to a general
multiplicative function f(n), which is restricted only by the condition

(3.1) f(n)=0(d(n)),
where C is a fixed positive integer. We put

gm= 3 ()

where u¢(d) is the Mdbius function. So we have

(3.2) d%g(d):f(n), g(n)=0(d"(n)).
Let
d(x; g, Z;f):nzlngzodqif(n) SD(Q) o2 1f( n).

Further let M be a positive number to be determined later, and we put
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e tN=, B, (D e 3 (2 gm)
(3.3) .
g tN=, B, (D ey 3 (3 g0,
=z m>M

Then obviously we have, by [3.2),

Ax;q,1; )=ADx; 9,15 H)+AP(x;5 4,15 f).
Next we put
E(X;q;f>=r§gx m?XIdU;q,l;f)l,

(g,0)=1

E®(x; q; f)=max max |4”(y; q,; )| (v=1,2),
y=e (q,l)L‘—'l
and also

I(x; Q;f):(;%E(X; q;f),

(3.4)
I(x; QJ)Z%E‘”(M q;/) =12).

The estimation of I(x; @; f) leads to the analogue of Bombieri’'s theorem. We
note that

(3.5) Ix;Q; NHNEIV(x; Q5 NHFI®(x;Q5 1)
Now from (3.3) we have

A%(x;q, 1 )= g(m)— g(m)}

11{ MIm<x/h
(h q) 1 m=(h(mod q)

S"
(P(C]) $I<m)<x/h

”h/r/ll{A( h > 4 IR; g> AQM; 9 th; g)}

(h,@)=1

Thus we get

Oy g FY< o X L. Af-g-

E@(x;q; N2, 3 {B(550: 8)+EOM; 45 )}
which gives

Ol () £)< X .. M-O-

190; Q; N2, 35 {I(55 Qi 8)+IM;Q; 9}
(3.6)

<247 [x;Q;5 9,

provided
M<Z x,

As for 4%(x;q, ; f) we introduce
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Foy;q,1; )= "a%w; g, 1; -,

and we put
Eox; q; f)~max maXIA‘”(y q,1; NI,

(@b=1
I(x; Q; N=2 E“)(x a;5).
Then we have, by Lemma 3,
ED(x; q; )< 25 ED(xe; g f)+0(6—¢é—)(log x)ZC”) ,

provided
0<o<1, (0x)tc=q.

From this and (3.4), we get
(3.7) IO(x; Q; £)< 67 IM(xe; Q; f)+bx(log )™ "+,
On the other hand we see easily that

1
§0<9> 1Fxo (mod @ 271'1

d0(y;q,1; )= 2O [ 4165, GG, 1) %

where

GGs, 1= 2 28 g(m) .

Then, dividing X into primitive and principal characters as in the preceding
paragraph, we get

I®(xe; Q; f)
(3.8)
<<x2 logQ X — X 1

2,=Q QO 9=Q/qy 9 % (modq)

And here we have, by Lemma 1, Lemma 2 and [3.2),

_lds)
* fay s 220)GGs, 1) =

L s LG, 2,6, 22y

9=Q/qy 4 x (mod @)

< d(go)(=+ VI (11| +D¥(og M) 1og*@(l1] +1)

for s=1/2-+it. This gives

T(xe; Q; £) < x¥(Q+ /M )(log x)7 ' +5

provided
M QO<Lx.
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Therefore, setting

Q < +x log 28x, M=xlog™*®x,

0 = (log x)—B+2+220 _2C+1 B> 2
we get from and (3.8)
(3.9) [90x; Q; f) < x(log x)-B22,

And hence, from {(3.5), (3.6) and [3.9), we obtain the iteration formula:
THEOREM 2. Let f(n) be a multiplicative function such that

f(n) =0(d(n)°), C: a positive integer.
Let g(n) be defined by
_ n
g(m)= 3 ud)f ().
Further let

[(x;Q; f)= 3 max maxl S Am——ie 3 s,
q=Q y=Q @ ll):l nzzn(;nyodq) 90((]) (nn,qS)yZI

Then we have
I(x; Q; )< 2log 0 I(x; Q ; g)+0(x(log x)72+"7%) .
if
Q<+x(og ), B=2°,

§4. Applications.
We now specialize the function f by
f(p)=r7: a fixed positive integer,
for all primes p. And we write

fPm=, B d)plds) - pld)fom)

ged jm

FOm)=1n).
Then we have, from [3.1),
fP(n)=0@dm)+).

Thus, from [Theorem 2, we get

(4.1) I(x; Q; f9)< 2(log x)*Bil(x; Q ; f9*D)+0(x(log x) i+ TP,
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provided

Q=+x(logx)8i, B,z
On the other hand
Fe>p)=0
and so the function
50 rom

is regular for Re(s)>1/2. Also it is easy to see that this is

1

<<<20-_1)_E, 0> 2 ’

where E is a certain constant which depends on 7, C and the constant involved
in the ‘O’ of at most. Thus we have uniformly for any ¢

> f< (n) € Vx (log x)** .

n= L(mo Q)
n=x

From this we have at once

I(x;Q; )< x(log x)™*
if
Q= vVx(log x)"4"E-1,

And hence we obtain, from this and [(4.1),
THEOREM 3. Let f be a multiplicative function such that

f(n) = kd(n)°, C: a positive integer,
f(p)=7: a fixed positive integer for all primes p.

Then we have

> maxX max > f
g~z log—Br y=z 4 n=l (mod q) ( ) SD(Q) f( )
(g, D=1 n=y ngy

< x(log x)™4.

Here B is a certain function of A, k, C, 7, at most,

The above result is certainly weaker than Wolke’s, but for most applica-
tions this seems sufficient. We also can prove by a slight modification of the
present method

THEOREM 4. We have, uniformly for any positive integers h and «,

max max d¢(hn d"‘ hn
qg“?%g—Bx Y=z La n=l (‘§0d0) k( ) SD(Q) 2 ( )
(q,0)=1 nsy n<y

& d(h)***x(log x)™4 .
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Here B is a function of A, k, a.
From this we can deduce the following asymptotic formulas by an elemen-
tary argument:

2 dmdi(nta)= NGESR kal_ 7 @@ (a)N(log N)*+0O(N(log N)**-! loglog N),
3 dmdg(N- n):ﬁ T@d(N)N(log N)**

+O0(N(log N)**-'(loglog N)***",

where

re=n(o5) (g () + - S50,

o0~ 40-5) -5 )

plr
pw«l ) d;’(ﬁg) +(1— >; I

Also we can prove the following asymptotic formulas by following closely the
argument of [7]: If a is odd,

;Vr(n)d,?(n—a):nziid)F;“)(a)N(log N)**+0O(N(log N)**-1-%) ,

Also if N is odd,
Zrdi(N—n)=z 4T (N)N(log N)**~*+0(N(log N)**~*%)..

Here 6=0.0179, and Ay, ['y’(r) are defined by

Agew:l}(l__jl)_) ‘<1_ Pgbm +_£—(p£)_'<1_%’)—1+<1— bep) ),,gl dfp(n.?m))’

@) = (1—{—p(7’) p(?’)(k’*%—l)(}_, dk(zm) 1)

XH(I p(p) 4P P) (1__%)‘1+<1_ pgbm )mé d;;"j()gm)

x&g(o 1) e )+ (1- 22 3 o0 3 4D,

o being the non-principal character mod 4.

Added in proof: Recently the present author has proved an asymptotic
series for the sum with an error-term O(N(log N)‘(log N)™!), which solves
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a problem raised in [2], [4]. A short account of the proof of a little weaker
result than this has been published in Proc. Japan Acad., 52 (1976), pp. 279-

281.

Also he has shown that the argument of § 3 can be modified to prove an

induction principle which, among other things, enables one to iterate Bombieri’s
prime number theorem (for this see Proc. Japan Acad., 52 (1976), pp. 273-275).
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