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A class of infinitesimal generators of one-dimensional
Markov processes

By Heinz LANGER

(Received Nov. 21, 1974)

In this note we consider operators U of the form

(AS)(x) =(DnDy fY(x)+b(x) (D f )(2)+

[ =A== B, xe011 O

in spaces of continuous functions over the interval [0, 1] (for the properties
of m, b, n, and the definition of ¢, see the beginning of 2.). It is shown, that
A restricted by two boundary conditions

@()(f) =0, @1(f): 0 (2>

of Feller-Ventcel-type (see (13)) is the infinitesimal generator of a strongly
continuous nonnegative contraction (s.c.n.c.) semigroup in the subspace of
C,1;, which is defined by the boundary conditions (2).

Similar results (in cases without boundary conditions) can be found in [I].
As in (or [2]) we use a perturbation type argument, but here it does not
consist in a “smallness” condition on the perturbing operator B (with respect
to the unperturbed operator A), but in the compactness of the operator
B(2I—A)™* (2>0) (see theorem 1 below).

To avoid technical complications, we consider only the case of a strongly
increasing and continuous function m in (1). The general case of arbitrary
nondecreasing m can be treated similarly (comp. [1])*.

1. In this section we consider a Banach space B with a certain fixed

semi-inner product [f, g1, f, 2% ([3], IX. 8). An operator A in B is called
dissipative (with respect to [ f, g]), if

Re[Af, f1<0  for all feD(A).

The following theorem is a slight modification of the Hille-Yosida theorem for
contraction semigroups (comp. [3], theorem IX. 8).

*) The author thanks the referee for his kind suggestions.
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THEOREM 1. Let B, be a (closed) subspace of the Banach space B, A, a
linear operator from D,CB,, Dy="1B,, into B with the property, that for a cer-
tain A>0 the operator AI—A, maps D, bijective onto B. Suppose, B is a linear
operator in B with D(B)DD, and the properties:

(i) A,+B is dissipative.

(ii) B(AI—Ay)™ is compact in B.

Then the operator AI— Ay—B maps D, bijective onto B. For D, : =(AI—A,—B)™'B,
we have D,=B, and the operator (A,-+B)|y, generates a strongly continuous
contraction semigroup in B,.

Proor. Condition (i) yields (see [3], 1X. 8)

A=A —B)fllzal /Il (f€D). 3

Therefore (I—B(AI—A,)*)g=0 implies g=0, and from condition (ii) it follows,
that I—B(AI—A,)™' maps B bijective onto B. The identity

Al—Ay—B=(I—B(AI—A,)")(AI—A,)
gives immediately the first statement, and from (3) we have
|(A—4,—B)" | = - @)

An argument from [3], IX. 8 shows that (4) holds true for all A>0. Finally,
from the Hille-Yosida theorem and [4], theorem 12.2.4 we get the desired
resuit.

In the following we take B=C, 15, the Banach space of all real continuous
functions on [0, 1], with the following semi-inner product: Choose for each
ge G,y a point x, with the property g(xg):xrg[%’)f]g(x) and define for f, g€ C n:

Lf, 8] =fx)8(xy) . ®)

A linear operator A in iy is said to satisfy the maximum principle, if fe®D(A),
fx)= rgg}lc]f(x)zo imply (Af)(x,)=<0. An operator A, which satisfies the maxi-

mum principle, is dissipative (with respect to the semi-inner product (5)).

2. Let m be a strongly increasing continuous function on [0, 1]. We con-
sider the second order generalized differential operator D,D, as defined e.g.
in or [6]. As m is continuous, this operator is well defined and we have
D,feCyy if f€eD(DyD;). The operator A,:

D(A)=Dy: ={f € Cro,n: fEDNDpDy), DD, f € Crop,
(DL F)0)=(D.f)(1)="0} (6)
Aof:=DuD.f  (fED)
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is the infinitesimal generator of a s.c.n.c. semigroup in G,
We define a family of functions ¢., x€[0, 1], by

Y
¢:(3): =] (y=s)dm(s),  y<[0,11.
As m is strongly increasing, for each ¢>0 there exists a 7.>0, such that
Soz(y)grs lf |X—y|§€, x,yE[O, 1]'

Further, let n,, x[0, 1], be a family of nonnegative measures on [0, 1] with
the following properties :

(@) n([0,1])=K<c0 (x<[0,1]).

(b) &—x implies nz—n, *-weakly (x, £[0, 1]), that is

[ 7me(d) = fmds)  for all & Cuyp.

(¢) sup n(dy)—0 if 6]0.

ze[O.I]SII—yléé.yE[O,ll

Condition (c) implies n.({x})=0 for all x=[0, 1].
We shall consider restrictions by boundary conditions of the following
operator %A on (D, D,):

(U )x) =(DnDy f)(2)+b(x)( Dz f)(x)

[ )=~ (r= XD ) ™

Here b is a continuous function on [0, 1].

THEOREM 2. Suppose m, n, (x&[0, 1]) and b have the properties mentioned
above. Then the restriction of A to D, is the infinitesimal generator of a s.c.n.c.
semigroup in Cgo, 3.

PrROOF. We shall show that the operators A, in (6) and B:

(BA): =[ ()~ f 0~ (=)D YR LD b0 D)) (f=D0

satisfy the conditions of with B=3,=Cj, 1.
The operator B maps ¥, into Cy,;;. Indeed, with

flo)= a—{—f:(x—s)ga(s)dm(s) . 0eChn, f:godm:O ,

and

o.M (y—9)p(s)dm(s)  y=x
hal): = s (x, 200, 17)
o(x) y=x
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we have

(AR~ BA@IS|f hul5)nulds)—ne(d)
[ 1 h3) = he) | meldy)+ B SRO—b@OAE)] (x, €€L0,1]).

As h, is continuous, by condition (b) the first term on the right hand side
tends to zero if £&—x. The same is obvious for the third term. It will follow
for the second term, if we show that &—x also implies

max |h(y)—he(y)|—>0.
y€[0,1]

Given >0, choose d(¢) with the property |o(s)—o(t)|<=e if |s—t]|=d(e), s, te
[0,1]. Then for all & with |x—51§5—f)~ and all y with |x—y|§ﬁ2‘i we

have |h(¥)—he(y)| =3¢, and the desired result follows without difficulty.

It is easy to see, that A,+B satisfies the maximum principle and there-
fore (i).

With two solutions ¢, X of the equation D,D,f—Af=0,

¢0; H=1, (D:)0; H)=0;
M D=1, (DAL D=0,
the resolvent (4/—A,)™*, 2>0, admits a representation
((AI=A) ")) =] (Glx, 53 DA(s) dm(s), (®)
cAPla; DX(s; )  x<s

CAx; DP(s; ) x>

where ¢(4) is holomorphic in the right half plane. It follows

G(x,s;l):={

(BAI=A0) 1)) = e naldy)oA2f (r—=5)(s) dm(s)f ‘2f dm
+2 (y—5)2(5) dm(s)f "¢ F dm-+@(nf U= AN fs) dms)
— 1) (=N Ss) dm(9)}

+B)R (D] 6 dm-+(D.g)()f 1 dm. (©)

We define n®&():=n(I"'\(x—¢, x+¢)) (¢>0, I'-measurable subset of [0, 1],
x€[0,1]). Denote the right hand side of (9) (with 7, replaced by n®) by
(Kf)(x) ((K®f)(x) resp.). The functions K/ belong to the space By, of all
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bounded measurable functions on [0,1]. The operator S: (Sf)(x)=j1Xf dm is
compact in Ci,y;, and the operators T, T,: :

)i =28 0),  (Tug)n: = [ 2ELB) g0

from Cp;; into Byo,; are bounded. This implies the compactness of K as a
mapping from Ci,y into By, Furthermore, by (c) we have |K ©_K||—0 if
€] 0, therefore K is compact as a mapping from  Ci, ;3 into By, 3, and the com-
pactness of B(AI—A,)™" in Cp,q follows.

It remains to show, that the strongly continuous semigroup generated by
A+B is nonnegative. But this follows e.g. from [6], Theorem 2.8.

Before extending to more general boundary conditions, we shall
study certain initial and boundary problems for the equation

Af—Af=0 (1>0). (10)

LEMMA 3. Under the conditions of Theorem 2 the following holds:

a) (10) with boundary conditions f(0)=f(1)=0 has only the trivial solution

f=0;

b) (10) with boundary conditions f(0)=0, f(1)=1 has a wunique solution in

Cro,11; this solution is nonnegative,
If we additionally supppose supp n,2[x, 11¥ for all xe[O 1], we have

c) (10) with initial condition f(0)=(D,f)(0)=0 has only the trivial solution

f=0;

d) (10) with initial condition f(0)=1, (D.f)(0)=0 (or f(0)=0, (D.f)(0)=1)

has a unique solution in Cr .

PROOF. A function f, satisfying [10), cannot have a positive absolute maxi-
mum (or a negative absolute minimum) in (0,1). Indeed, f(xo):wg%%')lg]f(x),
0< x,<1, implies (D, f)(x,)=0, (DnD.f)(x,)<0 and from we get f(x,)=0.
Therefore the maximum and minimum of f are at the endpoints of [0, 1], that
is in cases f(0)=0 or f(1)=0 the function f is of constant sign, and in case a)
we have f=0.

To prove c¢) suppose f(0)=(D.f)(0)=0. If F:={x:f(x)#0} #0, consider
x,=inf F. Then we have

(DuDof X+ F9) ”m((dy)) —o0,

and if e.g. /=0, then (D,D,f)(x,)=0 and supp n,,2O[%,, 1] imply f=0, a con-
tradiction.

With f(x)= ,B—}—,B’x—l—f (x—s)p(s)dm(s) equation m (10) becomes

*) Apparently, the condition suppn,D[x, 1] is only for technical reason.
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e(x)+b(x)f gpdm+j j (y—8)e(s)dm(s) "’((d;)) Zfox(x—S)so(S)dm(SD (a1

= — BB+ AP+ 2%

As in the proof of it can be shown, that the left hand side of (11)
has the form (I4+G)¢ with a compact operator G in Ci,,,;. Therefore, to prove
existence and uniqueness of f in case d) it remains to show, that the homo-
geneous equation corresponding to (11) has only the trivial solution. But this
was shown in c¢). The proof of b) is similar.

In the following we have to deal with the solutions f,, f; of equation
with boundary conditions

fo(O):l, fo(l):O; fl(o):()y fl(l):]--
Then
F(x):=1—flx)—fi(x)>0  (0<x<1). . (12)

Indeed, F(0)=F(1)=0, and

(D Do F)(x)+b(x) (D, F)x) + j (F()=F)=(y=0DaF))= oy go’(<dyy>)

—AF(x)=—

implies, that F cannot have a nonpositive minimum on (0, 1).
If fe®(D,D,) we define (see e.g. [7], II. 5)

0.(f): =ro O+ [ LD g a7 )0),
(13)
0,(f): =m0+ TR dg, () o)1)

Here %A is again given by (7), the constants &, k,, 7, 0, are nonnegative, ¢,
1

and ¢, are (nonnegative) measures on [0, 1] and /c,-—l-ai-l-f dg,;>0 (1=0,1). It
0

is understood that

Let
Dopo1 : = {/ ED(DnDyz): O f)=P(f)=0} .

As is well known (see [7]), Dgo,0:=Cro,1y if and only if

0>0 or g(rH>0 or [ fjﬁﬂ —oo  for i=0,1. (14)

THEOREM 4. Suppose the equations @f)=0, @,(f)=0 are not equivalent
to f(0)=f(1). Then, if (14) is fulfilled, the restriction A of the operator U to
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Voo, 1S the infinitesimal generator of a s.c.n.c. semigroup in Cryy. If (14) is
not fulfilled, the restriction A of U to

D1 ={/=Dgp0,: AL E Dgy.0,}

is the infinitesimal generator of a s.c.n.c. semigroup in Deqp;-
PrRoOOF. By RY, 2>0, we denote the resolvent of the restriction of U to
D, (see [Theorem 2). If g=C,p, the solution f of Af—Af=g has the form

f(x)=(RPg)2)+Cofo()+C,f1(x) .

In the same way as in [7], Lemma II. 55 it follows, that C, and C, are uni-
quely determined by the boundary conditions @4 f)=®,(f)=0 (here we have
to make use of [(12)).
Let us now suppose d,0,>0. Then ¥, restricted to Dy,,q,, satisfies the maxi-
mum principle. Therefore, by [6], Theorem 2.8, it generates a s.c.n.c. semi-
group in Cr,1.

If 6,0,=0, e.g. 0,=0,=0, we define operators A. (¢=0):

D(Ae): ={/€D(DnDy) : O f)+e(AS)(0)=0,(f)+(ANN1) =0},
Af:=Uf if feD(A).

Their resolvents exist by the first part of the proof and depend continuously
on ¢ (in the strong operator topology). As A.is the infinitesimal generator of
a s.c.n.c. semigroup in Cp,; it has the properties

S Cap, F20 5 QI-A)'F20; IAI—A)" IS (>0).

If ¢ 0, the same relations hold true for the resolvent of A,=A, and the state-
ment follows from [7], Theorem L1.1 and [4], Theorem 12.2.4.

Finally let us mention, that the boundary conditions (2) satisfying (14) are
the most general ones, which turn % into the infinitesimal generator of a
s. c.n. c. semigroup in Cp, 1y (see the proof of [7], Theorem I1.5.2).
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