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\S 1. Introduction.

The main purpose of this note is to introduce the absolute value of a
strongly continuous one-parameter semi-group of contractions on $L_{1}(X)$ , which
is again a semi-group and to prove the local ergodic theorem and the ratio
ergodic theorem by making use of the introduced semi-group. The absolute
value of a bounded linear operator on $L_{1}(X)$ which is bounded also on $L_{\infty}(X)$

was introduced by N. Dunford and J. Schwartz [7]. The result was generalized
by R. Chacon and U. Krengel [6] as described in Lemma 1 of the present note.
But, as Krengel [10] remarked, an essentially same result was obtained much
earlier by Kantrovi\v{c} [8]. We shall introduce the absolute value of a contraction
semi-group (Theorem 1). The local ergodic theorem for positive contraction
semi-groups on $L_{1}(X)$ was conjectured by U. Krengel and proved by U. Kren-
gel [9] and D. Ornstein [13] independently. M. Akcoglu and R. Chacon [2]

and T. Terrell $[14, 15]$ gave different treatments of the theorem. D. Ornstein
[13] gave a proof of the theorem for a contraction semi-group on $L_{1}(X)$ which
is a contraction semi-group also on $L_{\infty}(X)$ . T. Terrell [14] independently
proved the theorem for an n-parameter contraction semi-group on $L_{1}(X)$ which
is a contraction semi-group also on $L_{\infty}(X)$ . We shall generalize Ornstein’s
theorem and prove the local ergodic theorem for a contraction semi-group $(T_{t})$

(Theorem 2) by making use of the absolute value of the semi-group $(T_{t})$ .
Further we shall prove a ratio ergodic theorem for a contraction semi-group
(Theorem 3). This is a continuous version of Chacon’s ratio ergodic theorem
for a contraction $T$ and a T-admissible sequence [5].

\S 2. Definitions and theorems.

Let (X, $\mathfrak{B},$ $m$) be a a-finite measure space and $L_{1}(X)=L_{1}(X, \mathfrak{B}, m)$ the Banach
space of complex-valued integrable functions on $X$ . Let $(T_{t})(t\geqq 0)$ be a strongly
continuous one-parameter semi-group of linear contractions on $L_{1}(X)$ . In the
sequel we call such a semi-group a contraction semi-group. This means that

(A) $T_{t}$ is a linear operator on $L_{1}(X)$ such that $\Vert T_{t}\Vert\leqq 1$ for any $t\geqq 0$



Ergodic theorems for $contracti0_{J}^{\prime}l$ semi-groups 185

(Contraction property on $L_{1}(X)$),
(B) $T_{t+s}f=T_{t}\circ T_{s}f$ for any $t,$ $s\geqq 0$ and $f\in L_{1}(X)$ , and
(C) $\lim_{t\rightarrow 0}\Vert T_{t}f-f\Vert=0$ for any $f\in L_{1}(X)$ (Strong continuity).

A contraction semi-group $(T_{t})$ on $L_{1}(X)$ is said to be positive if it satisfies (D):

(D) If $f\geqq 0$ and $f\in L_{1}(X)$ , then $T_{t}f\geqq 0$ for any $t\geqq 0$ .
Let $T$ be a contraction on $L_{1}(X)$ . A sequence $(P_{n})(n=0,1, 2, )$ of non-
negative functions in $L_{1}(X)$ is said to be T-admissible, if $|Tf|\leqq P_{n+1}$ holds
whenever $f$ and $n$ satisfy $|f|\leqq P_{n}[1,5]$ . We shall define a continuous version
of a T-admissible sequence. Let $(T_{t})(t\geqq 0)$ be a contraction semi-group and
let $(P_{t})(t\geqq 0)$ be a family of non-negative functions in $L_{1}(X)$ such that
$\lim_{t\rightarrow s}\Vert P_{t}-P_{s}\Vert=0$ for any $s\geqq 0$ . The family $(P_{t})$ is said to be $(T_{t})$-admissible if
$|T_{t}f|\leqq P_{t+s}$ holds for any $t\geqq 0$ whenever $f$ and $s$ satisfy $|f|\leqq P_{s}$ . There exists
a $\mathfrak{L}^{+}\times \mathfrak{B}$-measurable function $g(t, x)$ such that $g(t, x)=P_{t}(x)a$ . $e$ . for any fixed
$t$, where $\mathfrak{L}^{+}$ is the $\sigma$ -algebra of Lebesgue measurable sets on the half real line.

We define the integral $\int_{a}^{b}P_{t}(x)dt(0\leqq a<b<\infty)$ by $\int_{a}^{b}g(t, x)dt$ . Note that if

$g(t, x)$ and $\tilde{g}(t, x)$ are two $\mathfrak{L}^{+}\times \mathfrak{B}$-measurable versions of $P_{t}(x)$ , then $g(t, x)=$

$\tilde{g}(t, x)$ except on a set of $\lambda\times m$ measure zero ($\lambda=Lebesgue$ measure) and there

is a m-null set $N\in \mathfrak{B}$ such that for $x\not\in N\int_{a}^{b}g(t, x)dt=\int_{a}^{b}\tilde{g}(t, x)dt$ holds for all

$a$ and $b$ . The integral $\int_{a}^{b}(T_{t}f)(x)dt$ is defined analogously.

We shall first construct a positive contraction semi-group $(\tilde{T}_{t})$ which do-
minates $(T_{t})$ in the absolute value, that is, we shall prove the following.

THEOREM 1. Let $(T_{t})(t\geqq 0)$ be a contraction semi-grouP on $L_{1}(X)$ . Then
there exists a Positive contraction semi-group $(\tilde{T}_{t})$ such that for any $t\geqq 0$ and
$f\in L_{1}(X)$

(1.1) $(ff_{t}|f|)(x)\geqq|(T_{t}f)(x)|$ $a$ . $e$ .
The semi-grouP $(7_{t})$ can be chosen in such a way that if a family $(P_{t})$ is $(T_{t})-$

admissible, then $(P_{t})$ is $(ff_{t})$-admissible.
Making use of this theorem we shall prove the following.
THEOREM 2 (Local ergodic theorem). Let $(T_{t})(t\geqq 0)$ be a contraction semi-

group on $L_{1}(X)$ . Then we have

$\lim_{\alpha\rightarrow 0}\frac{1}{\alpha}\int_{0}^{\alpha}(T_{t}f)(x)dt=f(x)$ $a$ . $e$ .

D. Ornstein [13] proved Theorem 2 for a contraction semi-group on $L_{1}(X)$

which satisfies (E).

(E) $ess.\sup_{x}|(T_{t}f)(x)|\leqq ess$ . $\sup_{x}|f(x)|$ for any $f\in L_{1}(X)\cap L_{\infty}(X)$ .
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T. Terrell [14] proved a similar theorem for an n-parameter contraction semi-
group which satisfies the condition analogous to (E). He [15] proved Theorem
2 assuming existence of the absolute value of a contraction semi-group.

COROLLARY 1. If $(T_{t})$ is a semi-group which satisfies (B), (C) and the fol-
lowing condition (F), then the local ergodic theorem for $(T_{t})$ holds.

(F) There exists a constant $\beta>0$ such that $\Vert T_{t}\Vert\leqq e^{\beta t}$ .

COROLLARY 2. Under the same condition as in Corollary 1 we have for any
$f,$ $g\in L_{1}(X)$

$\lim_{\alpha\rightarrow 0}\frac{\int_{0}^{\alpha}(T_{t}f)(x)dt}{\int_{0}^{\alpha}(T_{t}g)(x)dt}=\frac{f(x)}{g(x)}$ $a$ . $e$ . on $\{x:g(x)\neq 0\}$ .

Lastly we shall prove the following by reduction to Chacon’s ratio ergodic
theorem [5], employing Theorem 1.

THEOREM 3. Let $(T_{t})(t\geqq 0)$ be a contraction semi-group on $L_{1}(X)$ and let
a family $(P_{t})(t\geqq 0)$ be $(T_{t})$-admissible. Then for any $f\in L_{1}(X)$ the limit

$\lim_{\alpha\rightarrow\infty}\frac{\int_{0}^{\alpha}(T_{t}f)(x)dt}{\int_{0}^{\alpha}P_{t}(x)dt}$

exists and is finite almost everywhere on the set where $\int_{0}^{\alpha}P_{t}(x)dt>0$ for some
$\alpha>0$ .

If $(T_{t})$ is a positive contraction semi-group on $L_{1}(X)$ and $P_{t}=T_{t}g(g\geqq 0)$ ,

then $(P_{t})$ is $(T_{t})$ -admissible. M. Akcoglu and J. Cunsolo [3] proved Theorem
3 in this case. K. Berk [4] gave different treatments of such $(T_{t})$ and $(P_{t})$ .

\S 3. Proof of Theorem 1.

For the proof of Theorem 1 we need several lemmas. In the sequel the
order relation $f\leqq g$ for functions in $L_{1}(X)$ means $f(x)\leqq g(x)a$ . $e$ .

LEMMA 1 (Chacon-Krengel) [6]. Let $T$ be a bounded linear operator on
$L_{1}(X)$ . Define

$\ovalbox{\tt\small REJECT}^{T|f=}S^{u}P^{1}$ Tg l

for $f\in L_{1}(X)$ such that $f\geqq 0$ . Then $|T|$ is uniquely extended to a positive
bounded linear operator on $L_{1}(X)$ and

(1) $|T||f|\geqq|Tf|$ for any $f\in L_{1}(X)$ ,

(2) $\Vert|T|\Vert=\Vert T\Vert$ .
If $T$ is positive, then $|T|=T$. If $T_{1}$ and $T_{2}$ are bounded linear operatOrs on
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$L_{1}(X)$ , then

(3) $|T_{1}T_{2}|f\leqq|T_{1}||T_{2}|f$

for any $f\in L_{1}(X)$ such that $f\geqq 0$ .
Put

$Q(n)=\{\frac{l}{2^{n}}$ : 1 is a non-negative $integer\}$ and $Q=\bigcup_{n=1}^{\infty}Q(n)$ .

LEMMA 2. Let $(T_{t})$ be a contraction semi-group on $L_{1}(X)$ . If $f\in L_{1}(X)$ ,
then for any $r\in Q$ the limit

(4) $\lim_{m\infty}|T_{1/2}n|^{[2^{n}r]}f(x)$

exists in the sense of almost everywhere convergence as well as strong convergence.
We define $ffi_{r}f$ by (4) for any $r\in Q$ and $f\in L_{1}(X)$ .
PROOF. We can assume $f\geqq 0$ . If $n$ is large enough, then $[2^{n}r]=2^{n}r$. We

have by Lemma 1
$|T_{1/2}n+1|^{2l}g\geqq|T_{1/2}n|^{t}g$

for any positive integer 1 and $g\geqq 0$ . Hence

$|T_{1/2^{n+1}}|^{2n+1_{r}}f\geqq|T_{1,2}/n|^{2^{n}r}f$ for large $n$ .
Since $|T_{1/2}n|$ is a contraction by (2) of Lemma 1, we have $\Vert|T_{1/2}n|^{[2^{n}r]}f\Vert\leqq\Vert f\Vert$ .
Therefore the limit of the sequence $(|T_{1/2}n|^{[2^{n}\gamma]}f(x))$ exists almost everywhere
and the convergence is strong.

LEMMA 3. The operator $ff_{r}(r\in Q)$ defined in Lemma 2 has the following
properties.

(5) $T_{r}$ is a Positive linear contraction on $L_{1}(X)$ for any $r\in Q$ .
(6) $T_{r+s}f=T_{r}\circ T_{s}f$ for any $r,$ $s\in Q$ and $f\in L_{1}(X)$ .
(7) If $f\geqq 0$ and $f\in L_{1}(X)$ , then we have

$\Vert T_{r}f-f\Vert\leqq 2\Vert T_{\gamma}f-f\Vert$ for any $r\in Q$ .
PROOF. Since the operator T. is the strong limit of a sequence of positive

contractions by Lemma 2 we have (5). We shall prove (6). We can assume
$f\geqq 0$ . We have

$\Vert?_{r+s}f-T_{r}\circ T_{s}f\Vert\leqq\Vert T_{r+s}f-|T_{1/2^{n}}|^{2^{n}(r+s)}f\Vert$

$+\Vert|T_{1/2}n|^{2}n_{r}(|T_{1/2}n|^{2}n_{s}f-\mathcal{T}_{s}f)\Vert$

$+\Vert(|T_{1/2}n|^{2n_{r}}-\tilde{T}_{r})\tilde{T}_{s}f\Vert$ .
The second term on the right-hand side is bounded by

$\Vert|T_{1/2^{n}}|^{2^{n_{S}}}f-F_{s}f\Vert$ .
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Letting $n$ tend to infinity, we have (6) by the dePnition of $(\tilde{T}_{r})$ . Lastly we
shall prove (7). Put

$T_{r}f=f+g_{r}$ and $F_{r}f=f+h_{r}$ .
Let $r=l/2^{q}$ , where $q,$

$l$ are positive integers. Since $\tilde{T}_{r}f$ is the limit of the
increasing sequence $(|T_{1/2^{n}}|^{[2^{n}r]}f)(n=q, q+1, )$ by Lemma 2, we have by (1)
and (3) of Lemma 1,

(8) $ffl_{r}f\geqq|T_{1/2^{q}}|{}^{t}f\geqq|T_{r}|f\geqq|T_{r}f|$ .
Therefore we have

$f+h_{r}\geqq f-|g_{r}|$ ,
or

$h_{r}^{-}\leqq|g_{r}|$ , where $h_{r}=h_{r}^{+}--h_{r}^{-}$ .
Since

$\int(f+h_{r})dm=\int T_{\gamma}fdm\leqq\int fdm$ ,

it follows that

$\int h_{r}^{+}dm\leqq\int h_{r}^{-}dm\leqq\int|g_{r}|dm$ .

This means that

$\Vert T_{r}f-f\Vert=\Vert h_{r}\Vert=\int h_{r}^{+}dm+\int h_{r}^{-}dm\leqq 2\Vert g_{r}\Vert=2\Vert T_{\gamma}f-f\Vert$ .

LEMMA 4. The strong limit

(9) s-
$\lim_{r\sim t,r\in Q}fi_{r}f$

exists for any $t\geqq 0$ and $f\in L_{1}(X)$ .
We define $\mathcal{T}_{t}f$ by (9) for any $t\geqq 0$ and $f\in L_{1}(X)$ .
PROOF. We can assume $f\geqq 0$ . We have by Lemma 3

$\Vert T_{r}f-7_{s}f\Vert\leqq\Vert T_{|r- s|}f-f\Vert\leqq 2\Vert T_{|r-s|}f-f\Vert$

for $r,$ $s\in Q$ . Hence the assertion follows from the strong continuity of $(T_{t})$ .
LEMMA 5. $(\tilde{T}_{t})(t\geqq 0)$ is a pOsitive contraction semi-group on $L_{1}(X)$ .
We call the positive contraction semi-group $(\tilde{T}_{t})$ the linear modulus of $(T_{t})$ .
PROOF. It follows easily from the definition and Lemma 3 that $\tilde{T}_{t}$ is a

positive contraction for any $t\geqq 0$ . The semi-group property of $(\tilde{T}_{t})$ can be
proved by an argument similar to Lemma 3. Since we obtain from (7) of
Lemma 3

$\Vert T_{t}f-f\Vert\leqq 2\Vert T_{t}f-f\Vert$ for $f\geqq 0$ ,

$(T_{t})$ is strongly continuous.
PROOF OF THEOREM 1. It follows from (1) and (8) that

$|T_{r}f|\leqq|T_{r}||f|\leqq T_{r}|f|$ $(r\in Q)$
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for any $f\in L_{1}(X)$ . Hence we have (1.1) by the strong continuity of $(T_{t})$ and
$(\tilde{T}_{t})$ . Suppose that a family $(P_{t})$ is $(T_{t})$-admissible. Let $|f|\leqq P_{s}$ . If $|g|\leqq|f|$ ,

then $|T_{t}g|\leqq P_{s+t}$ . Therefore we have

(10) $|T_{t}||f|=\sup_{|q|\leqq|f|}|T_{t}g|\leqq P_{s+t}$ .

If $T$ is a positive bounded linear operator, $|Tf|\leqq T|f|$ . Hence if $r\in Q$ , then

$||T_{1/2^{n}}|^{2}n_{r}f|\leqq|T_{1/2}n|^{2^{n}r}|f|\leqq P_{s+r}$

for large $n$ . We have by making $n$ tend to infinity

$|\tilde{T}_{r}f|\leqq\tilde{T}_{r}|f|\leqq P_{s+r}$ for any $r\in Q$ .
Therefore

$|7_{t}^{\backslash }f|\leqq P_{s+t}$ for any $t\geqq 0$ .

\S 4. Proof of Theorem 2.

In this section we shall prove Theorem 2 and its corollaries. U. Krengel
and D. Ornstein proved the following $[9, 13]$ .

LEMMA 6 (Local ergodic theorem). Let $(T_{t})(t\geqq 0)$ be a positive contraction
semi-group on $L_{1}(X)$ . Then for any $f\in L_{1}(X)$ we have

$\lim_{\alpha\rightarrow 0}\frac{1}{\alpha}\int_{0}^{\alpha}(T_{t}f)(x)dt=f(x)$ $a$ . $e$ .

REMARK. The author proved the local ergodic theorem for a one-parameter
semi-group of positive bounded linear operators on $L_{p}(X)(p\geqq 1)$ which are not
necessarily contractions $[11, 12]$ .

LEMMA 7. Let $(T_{t})$ be a contraction semi-group on $L_{1}(X)$ . If $f\in L_{1}(X)$ ,
then for almost all $s\geqq 0$ we have

$\lim_{\alpha\rightarrow 0}\frac{1}{\alpha}\int_{0}^{\alpha}(T_{t+s}f)(x)dt=(T_{s}f)(x)$ $a$ . $e$ .

The proof is found in the proof of Lemma 2 of U. Krengel [9], (Lemma 7
is not necessary for a proof of Theorem 2. See below and Y. Kubokawa [11].)

PROOF OF THEOREM 2. Let $\epsilon$ be a positive number and let $f\in L_{1}(X)$ . By
Lemma 7 and the strong continuity of $(T_{t})$ , there exists a function $g$ such that

$\lim_{\alpha\rightarrow 0}\frac{1}{\alpha}\int_{0}^{\alpha}(T_{t}g)(x)dt=g(x)$ $a$ . $e$ .
and

$\Vert g-f\Vert<\epsilon^{2}$

Indeed choose $g=T_{s}f$ for a suitable $s$ . $(We$ can choose $g=\div\int_{0}^{s}T_{t}fdt$ , where

$s$ satisfies $\sup_{0\leqq\iota\leqq s}\Vert T_{t}f-f\Vert<\epsilon^{2}$ , without employing Lemma $7.)$ We have
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$|\frac{1}{\alpha}\int_{0}^{\alpha}(T_{t}f)(x)dt-f(x)_{1}|$

$\leqq|\frac{1}{\alpha}\int_{0}^{\alpha}(T_{t}(f-g)(x)dt|+\vdash\alpha 1\int_{0}^{\alpha}(T_{t}g)(x)dt-g(x)|+|g(x)-f(x)|$ .

Let $(\tilde{T}_{t})$ be the linear modulus of $(T_{t})$ . By Theorem 1 we have (see the remark
preceding Theorem 1)

$|\frac{1}{\alpha}\int_{0}^{\alpha}T_{t}(f-g)(x)dt|\leqq\frac{1}{\alpha}\int_{0}^{\alpha}T_{t}|f-g|(x)dt$ ,

which tends to $|f(x)-g(x)|a$ . $e$ . as $\alpha\rightarrow 0$ by Lemma 6 applied to $(T_{t})$ . Hence

$\lim_{\alpha\rightarrow}\sup_{0}|\frac{1}{\alpha}\int_{0}^{\alpha}(T_{t}f)(x)dt-f(x)|\leqq 2|f(x)-g(x)|$ .

We have $|f(x)-g(x)|<\epsilon$ for any $x$ except on a set with measure less than $\epsilon$ .
$Since^{\Re}\epsilon-$ is arbitrary, we have Theorem 2.

PROOF OF COROLLARY 1. From the assumption (F) we can define a con-
traction semi-group $(S_{t})$ by $S_{t}f=e^{-\beta t}T_{t}f$. We have

$\frac{1}{\alpha}\int_{0}^{\alpha}(T_{t}f)(x)dt=\frac{1}{\alpha}\int_{0}^{\alpha}(e^{\beta t}-1)(S_{t}f)(x)dt+\frac{1}{\alpha}\int_{0}^{\alpha}(S_{t}f)(x)dt$ .

Let $(S_{t})$ be the linear modulus of $(S_{t})$ . We have by Theorem 1

$|\frac{1}{\alpha}\int_{0}^{\alpha}(e^{\beta t}-1)(S_{t}f)(x)dt|\leqq\frac{e^{\beta\alpha}-1}{\alpha}\int_{0}^{\alpha}(S_{t}|f|)(x)dt$ ,

which tends to zero by Theorem 2 as $\alpha\rightarrow 0$ . We get the conclusion by

Theorem 2.
Corollary 2 follows from Corollary 1.

\S 5. Proof of Theorem 3.

We define a sequence $(Q_{n})(n=0,1, 2, )$ of non-negative functions in $L_{1}(X)$

by $Q_{n}(x)=\int_{n}^{n+1}P_{t}(x)dt$ and a function $f_{0}(x)=\int_{0}^{1}(T_{t}f)(x)dt$ for any $f\in L_{1}(X)$ .
Then we have the following.

LEMMA 8. The sequence $(Q_{n})(n=0,1, 2, )$ is $T_{1}$-admissible.
PROOF. We assume that $|f|\leqq Q_{n}$ for some $n$ . Then by (1) and the posi-

tivity of $|T_{1}|$ ,
$|T_{1}f|\leqq|T_{1}||f|\leqq|T_{1}|Q_{n}$ .

Since we have $|T_{1}|P_{t}\leqq P_{t+1}$ by (10)

$|T_{1}|Q_{n}=\int_{n}^{n+1}|T_{1}|P_{t}(x)dt\leqq\int_{n}^{n+1}P_{t+1}(x)dt=Q_{n+1}$ .
We have
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$\int_{n}^{n\vdash 1}(T_{t}f)(x)dt=T_{1}^{n}f_{0}$ , $\int_{0}^{n+1}(T_{t}f)(x)dt=\sum_{k=0}^{n}T_{1}^{k}f_{0}$ ,

$\int_{0}^{n+1}P_{t}(x)dt=\sum_{k=0}^{n}Q_{k}$ . Since the sequence $(Q_{n})$ is $T_{1}$-admissible we have the fol-

lowing Lemma 9 and Lemma 10 by applying Lemma 1 of Chacon [5] and
Chacon’s ratio ergodic theorem [5], respectively.

LEMMA 9. Let $(T_{t})(t\geqq 0)$ be a contraction semi-group on $L_{1}(X)$ . If $(P_{t})$

is $(T_{t})$ -admissible, then for any $f\in L_{1}(X)$

$\lim_{n\rightarrow\infty}\frac{\int_{n}^{n+1}(T_{t}f)(x)dt}{\int_{0}^{n+1}P_{t}(x)dt}=0$ $a$ . $e$ .

on the set where $\int_{0}^{n}P_{t}(x)dt>0$ for some $n$ .
LEMMA 10. Assume the same conditions as in Lemma 9. Then for any

$f\in L_{1}(X)$ , the limit

$\lim_{m\infty}\frac{\int_{0}^{n+1}(T_{t}f)(x)dt}{\int_{0}^{n+1}P_{t}(x)dt}$

exists and is finite almost everywhere on the set where $\int_{0}^{n}P_{t}(x)dt>0$ for some $n$ .
PROOF OF THEOREM 3. Let $r$ be a positive integer. It is enough to give

proof on the set where $\int_{0}^{r}P_{t}(x)dt>0$ . Let $\alpha\geqq r$. We choose an integer $n$ with
$n\leqq\alpha<n+1$ . We have

$|\frac{\int_{0}^{\alpha}(T_{t}f)(x)dt}{\int_{0}^{\alpha}P_{t}(x)dt}-\frac{\int_{0}^{n}(T_{t}f)(x)dt}{\int_{0}^{n}P_{t}(x)dt}|$

$\leqq|\frac{\int_{n}^{\alpha}(T_{t}f)(x)dt}{\int_{0}^{n}P_{t}(x)dt}|+|\frac{\int_{0}^{n}(T_{t}f)(x)dt}{\int_{0}^{n}P_{t}(x)dt}$ . $\frac{\int_{n}^{\alpha}P_{t}(x)dt}{\int_{0}^{\alpha}P_{t}(x)dt}|$ .

Let $(F_{t})$ be the linear modulus of $(T_{t})$ . Then the right-hand side does not
exceed

$\frac{\int_{n-1}^{n}(T_{t}\circ i_{1}^{*}|f|)(x)dt}{\int_{0}^{n}P_{t}(x)dt}+|\frac{\int_{0}^{n}(T_{t}f)(x)dt}{\int_{0}^{n}P_{t}(x)dt}|\cdot\frac{\int_{n}^{\alpha}P_{t}(x)dt}{\int_{0}^{\alpha}P_{t}(x)dt}$ .

Since $P_{t}(t\geqq 0)$ is $(T_{t})$ -admissible by Theorem 1, the first term tends to zero
$a$ . $e$ . as $\alpha\rightarrow\infty$ by Lemma 9. The second term also tends to zero $a$ . $e$ . on the

set where $\lim_{n\rightarrow\infty}\int_{0}^{n}(T_{t}f)(x)dt/\int_{0}^{n}P_{t}(x)dt=0$ . Consider the set where
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$\lim_{n\rightarrow\infty}\int_{0}^{n}(T_{t}f)(x)dt/\int_{0}^{n}P_{t}(x)dt\neq 0$ .
We have

$\underline{\int_{\leqq}^{\alpha_{P_{t}(x)dt\underline{\int_{n}^{n+1}P_{t}(x)dt}}}n}$

$\int_{0}^{\alpha}P_{t}(x)dt$ $\int_{0}^{n}P_{t}(x)dt$

$=\frac{\int_{0}^{n+1}P_{t}(x)dt}{\int_{0}(T_{t}^{1}f)(x)dt}$ . $\frac{\int_{0}^{n}(T_{t}f)(x)dt+\int_{n}^{n+1}(T_{t}f)(x)dt}{\int_{0}^{n}P_{t}(x)dt}-1$ ,

which tends to zero $a$ . $e$ . on the set by Lemma 9 and Lemma 10. Hence we
have

$\lim_{\alpha\rightarrow\infty}|\frac{\int_{0}^{\alpha}(T_{t}f)(x)dt}{\int_{0}^{\alpha}P_{t}(x)dt}-\frac{\int_{0}^{n}(T_{t}f)(x)dt}{\int_{0}^{n}P_{t}(x)dt}|=0$ $a$ . $e$ .

By Lemma 10 this completes proof of Theorem 3.
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REMARK. After the author proved Theorem 3, S. Tsurumi generalized it
[17].
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