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§0. Introduction.

In this paper, we consider a certain kind of periodicity by Fubini’s theo-
rem. Next in such a point of view, we prove the following inequality.

Fn/2/2v7 (/2 < _max | S al Sl

where a; (j=1, 2, ---, p) is a real n-dimensional vector (n=2).
For example, A. Pietsch used the lemma such that for any set of
complex numbers {a,=C; je ]}, where | 3 a;|=<r for all finite subset [ of
=y

J, we have Z}IIaiféllr for all I.

We can take 7 in place of 4, and this estimate is the best, moreover this
is the generalization of Blaschke’s theorem on the oval.

§1. Periodicity and Fubini’s theorem.

THEOREM 1. Let H(X, Y) be (1) real valued bounded measurable function
on R"XR" (2) HX, Y)=H(Y, X), (3) there exist M and

Ty Tn
M= lim (2"T,T, Tn)-lj j H(X, Y)dY,
-T -Tn

Tl’ T2v ey, Tn_aoq

and this convergence is uniform. Let B be [0,17*, n=1. Let Cy be the set
of all once continuously differentiable functions on B. Then

sup inf fBH(f(Z), Y)dZ=M= inf sup fBH(f(Z), Y)dZ.

120y v=R® reck, vern

PROOF. For any f=C%, any T, T, -, T, >0, H(f(Z),Y) is a bounded
measurable function on BX[—T, T\JX[—T, Ty]1X -+ X[—T,, T,]. By
Fubini’s theorem, we have

(2T\T, - To)| TT fTT [ H(A2), v)dzdy

= @711, T~ T;I T: H(AZ), Y)dYdZ .
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By Lebesgue’s theorem, it holds that

T]_ TTL
lim  (2"T,T, - T”)_IJ-T{"{_T fBH(f(Z), Y)dZdY =M,

Ty,To, -, Tp—oo

for all f=C%. Then we have
sup inf j H(f(Z), Y)dZ<M< inf sup j H(AZ), Y)dZ.
recy, yern” B recy y=rn B

Next, by the condition (3), for any ¢ >0, there exist T,, Ty, -+, T, >0, such
that

Ty Typ
M—e < (2"T,T, - T,J-lj j H(X, Y)dY < M+e,
-T1 ~-Tn
for all X R". By the change of variables such that Z,=(Y,—T,)/2T,,
j=1,2, -, n, we obtain
1 1
M—c={ [ H(X,2TZ+T)dZ < M+,
0 0
and then

M—egj HQTZ+T, Y)dZ < M+e,
B
for all Y € R*. Hence we have

M—¢ < inf j HQTZ+T, Y)dZ < sup j HQTZ+T, Y)dZ < M+e.
Y B B
Therefore

inf sup jBH(f(Z), Y)dZ< M= sup inf fBH(f(Z), Y)dZ.

—al
recy r=cy

This completes the proof.

REMARK. If H(X, Y) is continuous, then we can take the set of all
measurable functions on B, in place of CL. If H(X, Y) and f are Borel mea-
surable, then we can prove the theorem as above and the following.

DEFINITION. H(x) is said to be almost periodic, if for any ¢>0, there
exists a number d.>0, such that for any real number 7, there exists v &
[r, r+d.], which satisfies

sup | Hx+v)—H(x)|=e.
(See, A.S. Besicovith, [1].)

THEOREM 2. Let H(x) be almost periodic real valued measurable function,
then
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sup inf | OIH( fx)+2)dx = lim (2T) _TTH<x)dx

ol vs
T=0G0, 13

= inf sup j:H( Ax)+y)dx .

_ ver
TS0 7

PROOF. We can apply to E(x,y)=H(x+y). It is clear that
E(x,y) is bounded, and E(x, y)= E(y, x). We must prove that the condition
{3) is satisfied. For any ¢ >0, there exist T, N, such that 4|H|d./T,<Ze,
3|H|/N,=<e. Then for any X,, X, = N,T,, we have

Xy Xy
|@%)7[" Het)dy—@X) [ Hxky)dy| < 4e.
-X1 ~-X2
{See, A.S. Besicovith, [1].)
THEOREM 3. Let H(X) be (1) real valued bounded measurable function on

R" (2) periodic function; its period is L= (L,, L,, -, L,). Let M be

(LiLy - Ly o [ "H(X)AX,
0 0
then we have

sup infj H(AZ)+Y)dZ =M= inf supj H(AZ)+Y)dZ,
f v JB fr v Jp
and the following three propositions are equivalent, if H(X) is continuous.
() sup [ HAZ)+Y)dZ=M,
Y B
(b) infj HAZ)+Y)dZ=M,
Y B
(©) LH(f(Z)—I—Y)dZ:M, for all Y.
PrROOF. By Fubini’s theorem
L L,
(LiLy - LY [ o ([ HOAZ)+Y )dzdY
0 1} B
L1 Ly,
:f (L,L, -.-Ln)~1j - f H(f(Z)+Y)deZ:j MdZ=M,
B 0 0 B
for all feC4 Then we have
sup inff HAZ)+Y)dZ <M< inf supj H(AZ)+Y)dZ.
f Y VB r Y B

Here the equivalence relation is clear. On the other hand,
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Ly Ly
M=(L,L, Ln)—lj j HQLZ+L+Y)dY
[ 0
:5 HQLZ+L+Y)dZ,
B

for all Y, and the theorem is proved.

§2. Periodicity on S.

We use the notations below.
R ; real n-dimensional euclidean space.
(X,Y)>; inner product in R™

S ; {XeR"; | X||=1}.
m ; surface measure on S.
Qn ; I'(n/2)/2vn T'(n+1)/2).

As in the following lemma, the family of functionson S, {|<X, Y>|;Y S},
has a certain kind of periodicity.

LEMMA 4. L(Y)zf <X, Y>|dm is a constant function on S. Denote this
S
constant by number R,, then we have Rn/f dm=2Q,.
S

PROOF. For any Y, Y,e8, {Xe8;{X Y,>)=cosf} is congruent with
{Xe8;<{X, Y,)=cos 8} by therotation y; y(Y;)=7Y,. Let mesq-, be (n—2)-
dimensional euclidean measure, then for any Y8

L(Y):SSKX, Y>(dm:foﬂ]cosﬁ]mesm_g){XeS; (X, V> =cos6}df.

So L(Y) is independent of Y. If we set Y,=(0,0, ---,0,1), then by the n-
dimensional polar co-ordinate method, we have

T T2 .
R,,:jsm]dm:jo--- jo jo |cos 6,_, |sin 0, sin®6, - sin™20,,_,d6,db, - db,,_, .
On the other hand
[ am=["["f sin 6, sin®f, - sin"*A,_,d6,d6, - db,_, .
S 0vYo 0
Therefore
R, / j dm= jo cos 8,_, sin™0,_,d#,_, / jo sin"%4,_, df,_,

= omcos 0 sin**0 do| | " 5in"%0 do

=20(n/2)/(n—1)Vr I'(n—1)/2)=2Q, .
This completes the proof.
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THEOREM 5. Let C; C=C(t) be normal curve in R™ namely, —"— 1is

continuous function and never vanishes, n=2, and its length be 1. Let C; be
the length of the locus of C on a line L, (see the proof), then there exist lines
Ly, L,, such that C;,<2Q,=<C.,, and the following three propositions are equi-
valent, for the normal curve C.

(a) sup C.=20Q,. (b) iILlf C.=20Q,. (¢) CpL=2Q.,, for all line L.

dC(t)

t
PrOOF. We can assume that tzj' Hdt The line L can be con-
0

sidered to be oriented. Let Y, be L’s orlented unit vector, then

1
C=Crp=Cr= < EUN Y>ldt.

By Fubini’s theorem

< de(t)

< dQ(l‘) , >‘dm dt = j:Rndt.

Therefore

inf cyj dm<R,< gugcyj dm,
S = S

YeS
and hence by

inf Cy =20, = sup Cy.
Yes

By the continuity on the compact set S, there exist Y,, Y, &S, such that
Cy,=2Q,=Cy,. The others are clear.

DEFINITION. Let ay, a,, --+, a, be n-dimensional vectors. By the notation
La,, @y, -+, a,]z, we mean the sum of the length of the shaddow of a; (j=1, 2,
.-, p) on the line L.

THEOREM 6. For any integer n=2, and any positive number ¢ >0, there
exist finite number of n-dimensional vectors ay, G, -+, ap, such that

Y4
][alr gy -+ ’ ap]L/§1||ajll_2in <e ’
for all line L.
PrROOF. {|<X,Y>|; Y 8} is uniformly compact in Cz(S). m is a posi-

tive measure on S. Then for any ¢ > 0, there exists w, positive point measure
on S, such that

US|<X, Yy ldw—{ 1<X, ¥ ldm| < (e/2) [ dm,

for all Y8, and
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2
— 1 -1
“de jsdm|<mm{2 § am, /2R )([ dm)}.
We assume thatj dw=p;>0, j=1,2, -, p, and ]]wl{:——ﬁp,-. Let a; be
4 =1
pj—O—A_:, =12, -+, p, then for any line L, we have
- 14 P —
[ay, @ -, ayJi= 3 Koy, Yid|= T 0,1 <OA;, Yidl=[ KX, Yoy ldw.
= =

Therefore

Cas -+, 012 [ 1a,1-2Qs

=[], 1 o 1dw [f aw—f 1<x, V> 1am[f an|

f o= nl

j'sdwfsdm’

— J‘S<X7 YL>ldW—js[<X, YL>ldm|/j‘de+Rn

<eg/2+e/2=¢.

This completes the proof.

COROLLARY 7. For any curve C with length 1 in R*, n=2, we have
inf C;, £2Q,<sup C;, and this estimate is the best. Moreover the following
L L

three propositions are equivalent.
(a) sup Cr=2Q,. (b) iilf C,=2Q,. (¢) Cr=2Q,, for all line L.

PROOF. For any curve C with length /, its length can be approximated
by the zigzag line method. Conversely, the length of any zigsag line can be
approximated by the normal curve. Then the corollary is proved by Theorems
5 and 6.

So far, we have considered the family of functions {|<X, Y>|; Y 8},
and proved Lemma 4, Theorems 5, 6, and Corollary 7. On the family of
functions on 8, {KX, Y *=(|{X, Y |+<{X, Y>)/2; Y =8}, we can prove the

same lemma, theorems and corollary. In this case, we have f (X, Y tdm
=R,/ s

Particularly, it is clear that for any n-dimensional vectors ¢, d,, ---, ap,
there exists Y, S such that

? P
Q= 3 ¢a, Yo! Sl
j=1 i=1
On the other hand, we can assume that Y, satisfies the following relation.

P P '
>:<a;, Yoyt =max > {a;, Y )*= max
=1 ves j=1 Ici1, 2,

IS al.

» D
Therefore
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Qn = max | 3 a2 oyl

In the same way as the proof of we can prove that this
estimate is the best. And by we can prove that this inequality
is strict. So the following theorem and its corollary are obtained.

THEOREM 8. For any n-dimensional vectors, a,, a,, -+, p, 1 =2, we have

D
Q< max | Sail /3l
I 1=I j=1
and this estimate is the best,
COROLLARY 9. For any complex numbers, a,, a,, -+, a,, we have
P
1/7 < max| 3 ai[/z a1,
I < j=1
and this estimate is the best.

REMARK. If n=1, then Q,=I'(1/2)/24/7 I'(1)=1/2. Here, it is clear that
for any 1l-dimensional vectors, a,, a,, -+, d,, we have

1/25max | 3 ad [ la).

I am grateful to referee.
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