Mixed-type boundary conditions for second order elliptic differential equations

By Yoshio KATO

(Received March 5, 1973)

§ 0. Introduction.

Let Ω be a bounded domain in R^m with C^∞ boundary Γ of dimension m-1 and let there be given two differential operators A on $\bar{\Omega} = \Omega \cup \Gamma$,

(0.1)
$$A = \sum_{|\mu|, |\nu| \le 1} D^{\mu} a_{\nu\mu}(x) D^{\nu},$$

and B_1 on Γ ,

$$(0.2) B_1 = a_0(x) \frac{\partial}{\partial n} + b(x, D),$$

where n denotes the exterior normal of Γ and b(x,D) is a tangential differential operator of first order on Γ . The notations are the usual ones: $\nu = (\nu_1, \cdots, \nu_m)$ with non-negative integers ν_j , $|\nu| = \nu_1 + \cdots + \nu_m$, $D = (D_1, \cdots, D_m)$ with $D_j = -i\partial/\partial x_j$ and $D^{\nu} = D_1^{\nu_1} \cdots D_m^{\nu_m}$. All coefficients are assumed to be complex-valued and C^{∞} in their sets of definition indicated. It is also assumed that A is elliptic and moreover that $a_0(x) \neq 0$ for all $x \in \Gamma$.

Many authors had studied the mixed problem: To find u such that

(0.3)
$$\begin{cases} Au = f & \text{in } \Omega \\ B_1 u = 0 & \text{on } \Gamma_1 \\ u = 0 & \text{on } \Gamma_2 \end{cases}$$

when f is given, where Γ_1 and Γ_2 are two open sets of Γ such that $\overline{\Gamma}_1 \cup \overline{\Gamma}_2 = \Gamma$ and $\Gamma_1 \cup \Gamma_2 = \emptyset$. But it seems to be more natural to replace and generalize (0.3) with

$$\begin{cases}
Au = f & \text{in } \Omega \\
\alpha B_1 u + \beta u = 0 & \text{on } \Gamma,
\end{cases}$$

where α and β are two functions on Γ such that $\alpha \ge 0$, $\beta \ge 0$ and $\alpha + \beta = 1$ on Γ . The first reason is that for the problem (0.3) no regularity can hold, i.e. even if f is smooth, u may not be smooth (this fact is pointed out in [1, 5]), while the regularity holds for the problem (0.4), provided α is smooth. The second is that all solutions of (0.3) are approximated by solutions u_n of

(0.4) with $\alpha=\alpha_n$ such that $\alpha_n=1$ on Γ_1 and $\alpha_n\to 0$ on Γ_2 as $n\to\infty$ (see Theorem 4). To establish this regularity is the main purpose of this paper. This kind of mixed-type boundary conditions, however, has been thoroughly studied by Itô [3]. Here he uses fundamental solutions of parabolic differential equations. Recently Hayashida [2] treated again this problem from the viewpoint of functional analysis, but he had to assume that β is sufficiently large, in order to assure the regularity of solutions. In this paper we shall also use the tool of functional analysis and our main results are stated in Theorems $1\sim 6$.

The plan of the present paper is the following. In Section 1 we shall show the existence of the Green kernels G and \widetilde{G} for the systems (A_λ, B) and (A_λ^*, B^*) , respectively, in a weak sense. Here it is only assumed that α is measurable. The definition of weak solutions is introduced in Section 2, where Theorem 4 is stated. We shall discuss in Section 3 the regularity of G and \widetilde{G} when $\alpha \in \mathcal{B}^2(\Gamma)$, i. e. if $f \in H^0(\Omega)$, then Gf and $\widetilde{G}f$ are in $H^2(\Omega)$. Section 4 is continued from the preceding section and is devoted to the further regularity of G and \widetilde{G} , i. e. $f \in H^{k-2}(\Omega; p)$ implies that Gf and $\widetilde{G}f$ are in $H^k_B(\Omega; p)$, if $\alpha \in \mathcal{B}^k(\Gamma)$, $k \geq 3$, and if Condition (H) (see § 4) is satisfied. It should be noticed that Condition (H) is verified in [2, 3]. If Condition (H) is not satisfied, we must further assume, in order to establish the above regularity, that $\sqrt{\alpha} \in \mathcal{B}^k(\Gamma)$. These regularities will be obtained in both cases by using what is called elliptic regularization technique. To do so we introduce, in Appendix, the extensions q and p of α and $\sqrt{\alpha}$, respectively, and their mollifiers q_ε and p_ε .

The author would like to express his hearty thanks to Professor Hayashida for the valuable discussions with him.

§ 1. Existence of the Green kernels.

Let B[u, v] be a differential bilinear form associated with the differential operator A of (0.1) presented in Introduction,

$$B[u, v] = \int_{\Omega} \sum_{|\nu|, |\mu| \le 1} a_{\nu\mu}(x) D^{\nu} u \cdot \overline{D^{\mu} v} \ dx$$

and B_1 is the differential operator (0.2). Throughout the present paper we assume that there exists a positive constant c_0 such that

$$\mathcal{R}_{e} \sum_{|\nu| = |\mu| = 1} a_{\nu\mu}(x) \xi^{\nu+\mu} \ge c_0 |\xi|^2, \qquad \xi \in \mathbb{R}^m$$

for all $x \in \bar{\Omega}$. Then it follows that there exist a nonvanishing function a(x) in $C^{\infty}(\bar{\Omega})$ and a first order tangential differential operator $\gamma(x, D)$ on Γ satisfying for all $u, v \in C^{\infty}(\bar{\Omega})$

(1.1)
$$B[u, v] + \int_{\Gamma} \gamma(x, D) u \cdot \bar{v} d\sigma = (Au, v) + \int_{\Gamma} a(x) B_1 u \cdot \bar{v} d\sigma,$$

where (u, v) is the usual inner product in $L_2(\Omega)$. In practice we have

$$a(x) = \sum_{|\nu| = |\mu| = 1} a_{\nu\mu}(x) n^{\nu+\mu} / a_0(x)$$
.

Moreover we can easily find another differential operator B_i' on Γ similar to (0.2) such that for all $u, v \in C^{\infty}(\bar{\Omega})$

(1.1*)
$$B[u, v] + \int_{r} \gamma(x, D) u \cdot \bar{v} d\sigma = (u, A^*v) + \int_{r} a(x) u \overline{B_1'v} d\sigma$$

where A^* is the formal adjoint of A. As a matter of fact we have only to take as

$$B_1' = \overline{a_0(x)} \cdot \frac{\partial}{\partial n} + b'(x, D)$$
,

b'(x, D) being an appropriate first order tangential differential operator on Γ . Now let α and β be two functions on Γ satisfying

(1.2)
$$\alpha \ge 0$$
, $\beta \ge 0$ and $\alpha + \beta = 1$ on Γ .

Throughout this section we assume α to be measurable on Γ . Setting

$$\begin{cases}
Bu = \alpha B_1 u + \beta u \\
B^* u = \alpha B_1' u + \beta u
\end{cases}$$

we introduce two function spaces,

$$\left\{ \begin{array}{ll} \mathscr{D}_{B} = \{u \in H^{2}(\Omega) \; ; \; Bu = 0 \quad \text{on} \quad \Gamma \} \\ \\ \mathscr{D}_{B^{\bullet}} = \{u \in H^{2}(\Omega) \; ; \; B^{*}u = 0 \quad \text{on} \quad \Gamma \} \; , \end{array} \right.$$

where and from now on by $H^s(\Omega)$, s real, we mean the set of all $u \in \mathcal{D}'(\Omega)$ such that there exists a distribution $U \in H^s(\mathbb{R}^m)$ with U = u in Ω . The norm of u is defined by

$$||u||_{s,o} = \inf ||U||_{s}$$

the infimum being taken over all such U. Similarly we can define the space $H^s(\Gamma)$ and the norm $\|\cdot\|_{s,\Gamma}$. It is well-known by the trace operator theorems that if s>0, $u\in H^{s+1/2}(\Omega)$ implies $u\in H^s(\Gamma)$ and there really exists a positive constant C_s such that

(1.3)
$$||u||_{s,\Gamma} \leq C_s ||u||_{s+1/2,Q}, \quad u \in H^{s+1/2}(\Omega).$$

Put for $u \in H^2(\Omega)$

$$\varphi = u - B_1 u$$
 on Γ .

Then it follows from (1.3) that $\varphi \in H^{1/2}(\Gamma)$ and that

(1.4)
$$\begin{cases} u = Bu + \alpha \varphi \\ B_1 u = Bu - \beta \varphi \end{cases}$$

on Γ . Similarly putting for $v \in H^2(\Omega)$

$$\phi = v - B_1'v$$
 on Γ ,

we have $\phi \in H^{1/2}(\Gamma)$, and on Γ

(1.4*)
$$\left\{ \begin{array}{l} v = B^*v + \alpha \psi \\ B_1'v = B^*v - \beta \psi \end{array} \right. .$$

PROPOSITION 1.1. Let Q[u, v] be an integro-differential bilinear form defined by

(1.5)
$$Q[u, v] = B[u, v] + \int_{\Gamma} \gamma(x, D) u \cdot \bar{v}_{\bullet}^{3} d\sigma + \int_{\Gamma_{1}} \frac{\beta}{\alpha} au \cdot \bar{v} d\sigma,$$

where

$$\Gamma_1 = \{ x \in \Gamma ; \ \alpha(x) \neq 0 \}$$
.

Then we have for all $u, v \in H^2(\Omega)$

$$Q[u,v] = \begin{cases} (Au,v) + \int_{\Gamma_1} \frac{1}{\alpha} aBu \cdot \overline{v} d\sigma, & \text{if } v \in \mathcal{D}_B \cup \mathcal{D}_{B^*} \\ (u,A^*v) + \int_{\Gamma_1} \frac{1}{\alpha} au \cdot \overline{B^*v} d\sigma, & \text{if } u \in \mathcal{D}_B \cup \mathcal{D}_{B^*}. \end{cases}$$

PROOF. Let $u \in H^2(\Omega)$ and $v \in \mathcal{D}_B \cup \mathcal{D}_{B^*}$. From (1.4), (1.4*) we have

$$\int_{\Gamma} aB_1 u \cdot \bar{v} \ d\sigma = \int_{\Gamma_1} \frac{1}{\alpha} a(Bu - \beta u) \bar{v} \ d\sigma$$

$$= \int_{\Gamma_1} \frac{1}{\alpha} aBu \cdot \bar{v} \ d\sigma - \int_{\Gamma_1} \frac{\beta}{\alpha} au \cdot \bar{v} \ d\sigma ,$$

and hence by (1.1) and (1.5)

$$Q[u, v] = (Au, v) + \int_{\Gamma_1} \frac{1}{\alpha} aBu \cdot \bar{v} d\sigma$$
.

The same argument as above and the use of (1.1*) complete the proof.

Q. E. D.

CONDITION 1. The integro-differential bilinear form defined by

(1.6)
$$Q^{0}[u, v] = B[u, v] + \int_{\Gamma} \gamma(x, D) u \cdot \bar{v} d\sigma$$

is coercive over \mathcal{D}_B , i. e. there exist two positive constants c_1 and C such that

$$\mathcal{R}_{e}Q^{0}[u, u] \geq c_{1}\|u\|_{1, \mathbf{Q}}^{2} - C\|u\|_{0, \mathbf{Q}}^{2}, \quad u \in \mathcal{D}_{B}$$

CONDITION 1*. The form Q[u, v] is coercive over \mathcal{D}_{B^*} .

This kind of the coerciveness is characterized in [4] when α is a characteristic function of an open set of Γ .

CONDITION 2. There exists a positive constant c_2 such that

$$\mathcal{R}_e \ a(x) \geq c_2$$
, $x \in \Gamma$.

PROPOSITION 1.2. Suppose that Conditions 1 and 2 (resp. 1* and 2) hold. Then we can find two positive constants c, λ such that

$$\mathcal{R}_e Q[u, u] \ge c \Big(\|u\|_{1, \mathbf{Q}}^2 + \int_{\Gamma_1} \frac{1}{\alpha} |u|^2 d\sigma \Big) - \lambda \|u\|_{0, \mathbf{Q}}^2, \quad u \in \mathcal{D}_B \text{ (resp. } u \in \mathcal{D}_{B^{\bullet}}).$$

PROOF. From (1.2) and (1.5) we have for any $u \in \mathcal{D}_B$ (or $u \in \mathcal{D}_{B^*}$)

$$\begin{aligned} \mathcal{R}_{e} \ Q[u, u] &= \mathcal{R}_{e} \ Q^{0}[u, u] + \int_{\Gamma_{1}} \frac{\beta}{\alpha} \, \mathcal{R}_{e} \ a|u|^{2} d\sigma \\ &= \mathcal{R}_{e} \ Q^{0}[u, u] + \int_{\Gamma_{1}} \frac{1}{\alpha} \, \mathcal{R}_{e} \ a|u|^{2} - \int_{\Gamma_{1}} \mathcal{R}_{e} \ a|u|^{2} d\sigma \\ &\geq c_{1} \|u\|_{1, \mathbf{Q}}^{2} - C\|u\|_{0, \mathbf{Q}}^{2} + c_{2} \int_{\Gamma_{1}} \frac{1}{\alpha} |u|^{2} d\sigma - \max_{\Gamma} |\mathcal{R}_{e} \ a|\int_{\Gamma} |u|^{2} d\sigma \,. \end{aligned}$$

Using an inequality well known in the theory of trace operators; for any $\delta > 0$ there exists a constant $C_{\delta} > 0$ such that

(1.7)
$$\int_{\Gamma} |f|^2 d\sigma \leq \delta \|f\|_{1,\mathbf{Q}}^2 + C_{\delta} \|f\|_{0,\mathbf{Q}}^2, \quad f \in H^1(\Omega),$$

we can assert the proposition.

Q. E. D.

PROPOSITION 1.3. If we denote by V the Banach space obtained by the completion of \mathcal{D}_B with respect to the norm $\|\cdot\|$ defined by

$$|||u|||^2 = ||u||_{1, \mathbf{Q}}^2 + \int_{\Gamma_1} \frac{1}{\alpha} |u|^2 d\sigma,$$

it then follows that \mathcal{D}_{B^*} is a dense subset of V.

PROOF. For any $u\in\mathcal{D}_{B^{\bullet}}$, we can choose a sequence $\{v_n\}$ in $H^2(\Omega)$ so that

(1.8)
$$\begin{cases} Bv_n = Bu & \text{on } \Gamma \\ \|v_n\| \longrightarrow 0 & (n \to \infty). \end{cases}$$

In fact, from $B^*u=0$ on Γ we have

$$Bu = Bu - B^*u = \alpha(B_1u - B_1'u)$$
 on Γ .

410 Y. KATO

It then follows from (1.3) that

$$\varphi = (B_1 u - B_1' u)|_{\Gamma} \in H^{1/2}(\Gamma)$$
.

Hence we can find $v \in H^2(\Omega)$ so that

$$\begin{cases} B_1 v = \varphi \\ v = 0 \end{cases}$$

on Γ . Letting

$$Q_n = \left\{ x \in \mathcal{Q}; \operatorname{dis}(x, \Gamma) > \frac{1}{n} \right\}, \quad n = 1, 2, \dots,$$

we introduce function $\zeta_n(x) \in C^{\infty}(\mathbb{R}^m)$ such that $0 \le \zeta_n(x) \le 1$ on \mathbb{R}^m , $\zeta_n(x) = 0$ in Ω_n and =1 in $\mathbb{R}^m - \Omega$. Thus

$$v_n = \zeta_n v$$

satisfies

$$Bv_n = Bv = \alpha \varphi = Bu$$
 on Γ

and

$$|||v_n||| = ||v_n||_{1,\mathbf{Q}} = ||\zeta_n v||_{1,\mathbf{Q}} \longrightarrow 0 \qquad (n \longrightarrow \infty)$$
,

since $v_n = 0$ on Γ and a Poincaré-type inequality

$$||v||_{0,\mathcal{Q}-\mathcal{Q}_n} \leq \frac{M}{n} ||v||_{1,\mathcal{Q}-\mathcal{Q}_n}$$

holds with a constant M independent of n and v. In a way quite similar to the above we can show that for any $u \in \mathcal{D}_B$ there exists a sequence $\{v_n\}$ in $H^2(\Omega)$ such that

(1.8*)
$$\begin{cases} B^*v_n = B^*u & \text{on } \Gamma \\ \|v_n\| & \longrightarrow 0 & (n \to \infty) \end{cases}.$$

Now let $u \in \mathcal{D}_{B^*}$ and $\{v_n\}$ be a sequence satisfying (1.8). Set $u_n = u - v_n$. It then easily follows that $u_n \in \mathcal{D}_B$ and $||u - u_n|| \to 0$ $(n \to \infty)$. This asserts $u \in V$ and hence $\mathcal{D}_{B^*} \subset V$.

Next we shall prove that $\mathcal{D}_{B^{\bullet}}$ is dense in V. Let $u \in V$ and $\{u_m\}$ be a sequence in \mathcal{D}_B converging to u in V. For each u_m there exists a sequence $\{v_{m,n}\}$ in $H^2(\Omega)$ satisfying (1.8*). Set $u_{m,n}=u_m-v_{m,n}$. Then $u_{m,n}\in \mathcal{D}_{B^{\bullet}}$ and $\||u_m-u_{m,n}||\to 0$ $(n\to\infty)$. Hence for each m there exists an integer m' such that

$$|||u_m-u_{m,m'}|||<\frac{1}{m}.$$

Therefore

$$||u - u_{m,m'}|| \le ||u - u_m|| + ||u_m - u_{m,m'}|| \longrightarrow 0 \quad (m \to \infty).$$

This completes the proof.

Q.E.D.

Denote by V' the dual space of V with norm

$$|||f||' = \sup_{\mathbf{0} \neq v \in V} \frac{|(f, v)|}{||v||}.$$

It is easily seen that V and $H^0(\Omega)$ are contained continuously in $H^1(\Omega)$ and V', respectively, i.e.

(1.9)
$$\left\{ \begin{array}{ll} \|u\|_{1,\mathcal{Q}} \leq \|\|u\|, & u \in V \\ \|\|f\|' \leq \|f\|_{0}, & f \in H^{0}(\Omega). \end{array} \right.$$

THEOREM 1. Suppose that Conditions 1 and 2 hold. Then there exists an isomorphism G of V' onto V, which is called a Green kernel for the system (A_2, B) , such that for every $f \in V'$

$$Q_{\lambda} \lceil Gf, v \rceil = (f, v), \quad v \in V,$$

where λ is the constant which appeared in Proposition 1.2 and we set $A_{\lambda}=A+\lambda$ and

$$Q_{\lambda}[u, v] = Q[u, v] + \lambda(u, v)$$
.

PROOF. From Propositions 1.2 and 1.3 we have

and

$$(1.11) |Q_{\lambda}[u, v]| \leq \text{const.} ||u|| \cdot ||v||, \quad u, v \in V.$$

Using the theorem of Lax-Milgram, we can assert that for every $f \in V'$ there exists the unique $u \in V$ such that

$$Q_{\lambda} \lceil u, v \rceil = (f, v), \quad v \in V.$$

We now define G by u = Gf. Applying this to v = Gf, we get by (1.10)

$$c|||Gf||| \leq |||f|||'$$
.

If Gf=0, it follows that (f, v)=0 for every $v \in V$ and hence f=0. Finally we shall show that G is onto and its inverse is continuous. Let $u \in V$ and $\{u_n\}$ be a sequence in \mathcal{D}_B such that $u_n \to u$ in V as $n \to \infty$. By proposition 1.1,

$$(1.12) (A_{\lambda}u_n, v) = Q_{\lambda}[u_n, v], v \in \mathcal{D}_B$$

and hence by (1.11)

$$|||A_{\lambda}u_n - A_{\lambda}u_m|||' \leq \text{const.} |||u_n - u_m|||$$

Therefore $A_{\lambda}u_n$ converges to some $f \in V'$. Thus, as $n \to \infty$, (1.12) becomes

$$(f, v) = Q_{\lambda}[u, v], \quad v \in \mathcal{D}_B.$$

Hence

$$|||f|||' \leq \text{const.} |||u|||$$
.

These show that u = Gf and G^{-1} is continuous.

Q. E. D.

THEOREM 1*. Suppose that Conditions 1* and 2 hold. Then there exists an isomorphism \tilde{G} of V' onto V, the Green kernel for the system (A_{λ}^*, B^*) , such that for every $g \in V'$

$$Q_{\lambda}[u, \tilde{G}g] = (u, g), \quad u \in V.$$

The proof can be done in quite parallel with one of Theorem 1.

Theorem 2. Suppose that Conditions 1, 1* and 2 hold, and let G and G be the isomorphisms which appeared in Theorems 1 and 1*, respectively. If we consider G, \widetilde{G} as operators of $H^0(\Omega)$ to itself, then they are completely continuous and \widetilde{G} is equal to G^* which is defined by

$$(Gf,g) = (f, G*g)$$
 for $f, g \in H^0(\Omega)$.

PROOF. From (1.9) and Theorems 1, 1* we have

$$\|Gf\|_{1,\mathcal{Q}} \leq \text{const.} \|f\|_{0,\mathcal{Q}}, \qquad f \in H^0(\mathcal{Q}),$$

 $\|\widetilde{G}g\|_{1,\mathcal{Q}} \leq \text{const.} \|g\|_{0,\mathcal{Q}}, \qquad g \in H^0(\mathcal{Q}).$

Hence G and \widetilde{G} are completely continuous on $H^0(\Omega)$, for the injection: $H^1(\Omega) \to H^0(\Omega)$ is completely continuous.

We shall now prove $\widetilde{G}=G^*$. It follows from Theorems 1 and 1* that for every $f,\ g\in H^0(\Omega)$

$$(Gf, g) = Q_{\lambda} [Gf, \widetilde{G}g] = (f, \widetilde{G}g).$$

This shows $G^*g = \widetilde{G}g$ for every $g \in H^0(\Omega)$.

Q.E.D.

REMARK 1. Proposition 1.3 guarantees that Conditions 1 and 1^* are equivalent.

REMARK 2. The form Q[u,v] defined by (1.5) is hermitian if $\overline{a_{\nu\mu}(x)}=a_{\mu\nu}(x)$ for all ν , μ such that $|\nu|$, $|\mu| \leq 1$, $\gamma(x,D)^*=\gamma(x,D)$ and $\overline{a_0(x)}=a_0(x)$. Then it immediately follows that $A^*=A$ and $B_1'=B_1$ and hence $B^*=B$. Thus $\widetilde{G}=G$. Hence it follows from Theorem 2 that G is self-adjoint as an operator on $H^0(\Omega)$.

§ 2. Weak solutions and mixed problems.

As in the preceding section we assume α and β to be measurable and satisfy (1.2), and the notations are all the same as there. Moreover we assume that Conditions 1, 1* and 2 hold.

Now we shall say u to be a weak solution of Problem

$$[A, f]$$

$$\begin{cases} Au = f & \text{in } \Omega \\ Bu = 0 & \text{on } \Gamma, \end{cases}$$

if u is a square integrable function on Ω and if

$$(2.1) (u, A*v) = (f, v), v \in \mathcal{D}_{B^{\bullet}}$$

is valid. We shall also say v to be a weak solution of Problem

$$\left\{ \begin{array}{ll} A^*v=g & \text{ in } \ \mathcal{Q} \\ B^*v=0 & \text{ on } \ \varGamma \,, \end{array} \right.$$

if v is a square integrable function on Ω and if

$$(Au, v) = (u, g), \quad u \in \mathcal{D}_B$$

is valid. We denote by D_B the set of u such that there exists a sequence $u_j \in \mathcal{D}_B$ satisfying

$$\left\{ \begin{array}{l} \|u_j - u\|_0 \longrightarrow 0 \\ \|Au_j - Au_k\|_0 \longrightarrow 0 \end{array} \right.$$

as $j, k \to \infty$. Then we set

$$\bar{A}u = \lim_{j \to \infty} Au_j$$
.

PROPOSITION 2.1. Let $u \in V$ and $f \in V'$. Then the u is a weak solution of Problem [A, f] if and only if

$$Q[u, v] = (f, v), \quad v \in V$$

holds.

PROOF. Let $u_n \in \mathcal{D}_B$ such that $u_n \to u$ in V as $n \to \infty$. By Proposition 1.1

$$Q[u_n, v] = (u_n, A^*v), \quad v \in \mathcal{D}_{B^*},$$

and hence

$$Q[u, v] = (u, A*v), \quad v \in \mathcal{D}_{B*}.$$

This shows that (2.1) and (2.2) are equivalent, for \mathcal{D}_{B^*} is dense in V.

Q. E. D.

PROPOSITION 2.2. If $u \in D_B$, the u is a weak solution of Problem $[A, \overline{A}u]$ and moreover is in V.

PROOF. Setting for $u, v \in H^2(\Omega)$

$$\varphi = u - B_1 u$$
, $\psi = v - B_1' v$ on Γ ,

we have φ , $\psi \in H^{1/2}(\Gamma)$ and moreover (1.4) and (1.4*) are valid. From (1.1) and (1.1*)

$$(Au, v) = (u, A*v) = \int_{\Gamma} a(x)(u\overline{B'_1v} - B_1u \cdot \overline{v})d\sigma$$
.

Thus

$$u \overline{B_1'v} - B_1 u \cdot \overline{v} = (Bu + \alpha \varphi)(\overline{B^*v - \beta \psi}) - (Bu - \beta \varphi)(\overline{B^*v + \alpha \psi})$$
$$= \varphi \overline{B^*v} - Bu \cdot \overline{\psi} .$$

Hence

414 Ү. Като

(2.3)
$$(Au, v) - (u, A*v) = \int_{\Gamma} a(x) (\varphi \overline{B*v} - Bu \cdot \overline{\psi}) d\sigma.$$

Now let $u \in D_B$ and let $u_j \in \mathcal{D}_B$ be such that

$$\begin{cases}
 \|u_j - u\|_0 \longrightarrow 0 \\
 \|Au_j - \overline{A}u\|_0 \longrightarrow 0
\end{cases}$$

as $j \rightarrow \infty$. Applying (2.3), we have

$$(Au_i, v) - (u_i, A*v) = 0, \quad v \in \mathcal{D}_{B^*}.$$

Letting j tend to infinity, we can see that u is a weak solution of Problem $[A, \overline{A}u]$.

It easily follows from (1.10) and (1.11) that

$$c \| \| u \| \le \| A_{\lambda} u \|' \le \text{const.} \| \| u \|, \quad u \in \mathcal{D}_B.$$

In particular

$$(2.4) c||u|| \leq ||A_{\lambda}u||_{0}, u \in \mathcal{D}_{B},$$

from which we can assert the proposition.

Q. E. D.

PROPOSITION 2.3. Every weak solution of Problem [A, f] belonging to $H^2(\Omega)$ is in \mathcal{D}_B and Au = f in Ω , provided $\alpha \in H^{1+1/2}(\Gamma)$.

PROOF. Let u be a weak solution of [A, f] such that $u \in H^2(\Omega)$. Then we have by (2.3)

$$(Au, v) - (f, v) = 0$$
, $v \in C_0^{\infty}(\Omega)$.

This means Au = f in Ω , which implies

(2.5)
$$\int_{\Gamma} a(x)Bu(\overline{v-B_1'v})d\sigma = 0, \quad v \in \mathcal{D}_{B^*}.$$

Let $\mathcal X$ be arbitrarily given in $C^\infty(\varGamma)$. Then we can easily find a function $v\in H^2(\varOmega)$ such that

$$\begin{cases} B_1'v = -\beta \chi \\ v = \alpha \chi \end{cases}$$

on Γ , since $\alpha \chi$ and $\beta \chi$ are belonging to $H^{1+1/2}(\Gamma)$. It is clear that $v \in \mathcal{D}_{B^*}$ and $v - B'_1 v = \chi$ on Γ . This together with (2.5) yields Bu = 0 on Γ , i.e. $u \in \mathcal{D}_{B^*}$

THEOREM 3. Denoting by N_{B^*} the set of weak solutions of Problem [A*, 0], we have

$$H^0(\Omega) = \overline{A}_{\lambda}(D_B) \oplus N_{B^*}$$
.

PROOF. We have only to prove that $\overline{A}_{\lambda}(D_B)$ is the closure of $A_{\lambda}(\mathcal{Q}_B)$ in $H^0(\Omega)$. This is easily shown by (2.4). Q. E. D.

Now we consider the mixed problem (0.3). Here we assume that $\bar{\Gamma}_1 \cap \bar{\Gamma}_2$ is C^{∞} of dimension m-2. Then we can prove

THEOREM 4. Let $\alpha=1$ on Γ_1 , =0 on Γ_2 and $\beta=1-\alpha$. For each n=1, $2, \cdots$, we introduce two measurable functions α_n , β_n satisfying (1.2) and that $\alpha_n=1$ on Γ_1 and =0 for every $x\in\Gamma_2$ such that $\mathrm{dis}\,(x,\Gamma_1)\geq 1/n$. Then for every $f\in H^0(\Omega)$, G_nf converges to Gf weakly in $H^1(\Omega)$, where G_n is the Green kernel for the system $(A_\lambda, B_n=\alpha_n B_1+\beta_n)$.

PROOF. Let V_n be the completion of \mathcal{D}_{B_n} with respect to the norm

$$|||u|||_n^2 = ||u||_{1,Q}^2 + \int_{\alpha_n \neq 0} \frac{1}{\alpha_n} |u|^2 d\sigma$$

and

$$Q_{\lambda}^{n}[u,v] = Q_{\lambda}^{0}[u,v] + \int_{\alpha_{n}\neq 0} \frac{\beta_{n}}{\alpha_{n}} u\bar{v}d\sigma$$
.

For $f \in H^0(\Omega)$, we put $u_n = G_n f$. Then

$$Q_{\lambda}^{n}[u_{n}, v] = (f, v), \quad v \in V_{n}.$$

By (1.9) and (1.10) we have

$$c \| u_n \|_n \leq \| f \|_0$$
.

Therefore there exists a subsequence $u_{n'}$ such that

$$(2.6) u_{n'} \longrightarrow u in H^1(\Omega).$$

Now using the same argument as in Proof of Proposition 1.3, we can assert $\mathcal{D}_B \subset V_n$. Hence

$$Q_{A}^{0} \lceil u_{n}, v \rceil = (f, v), \quad v \in \mathcal{D}_{B}$$

since $\beta_n=0$ on Γ_1 and v=0 on Γ_2 . Thus it follows from (2.6) that $u\in H^1(\Omega)$, u=0 on Γ_2 and

(2.7)
$$Q_{\lambda}[u,v] = (f,v), \quad v \in V.$$

The use of Lemma 5.2 in [4] guarantees $u \in V$. This together with (2.7) shows u = Gf. Q. E. D.

§ 3. Regularity of the Green kernels, I.

By $\mathscr{B}^s(\Gamma)$, $s=1, 2, \cdots$, we denote the set of s-times differentiable functions on Γ whose derivatives of order s are all bounded on Γ . Let α , β be functions on Γ satisfying (1.2) and assume that $\alpha \in \mathscr{B}^2(\Gamma)$. By ε we denote, throughout the present paper, positive numbers not greater than 1. All other notations are the same as in §1. Now let $q_{\varepsilon}(x)$ be a C^{∞} -function on R^m defined in Lemma A.2 of Appendix, and denote by α_{ε} the restriction of q_{ε} onto Γ , and set

$$\beta_{\varepsilon} = 1 + \varepsilon - \alpha_{\varepsilon}$$
.

Then if follows that α_{ε} and β_{ε} are in $C^{\infty}(\Gamma)$ and uniformly convergent to α

and β on Γ as $\varepsilon \to 0$, and that their derivatives are all uniformly bounded on Γ with respect to ε , and moreover that $\varepsilon \le \alpha_{\varepsilon} \le 1+\varepsilon$ and $\alpha_{\varepsilon} \ge \alpha$ on Γ for every ε . Accordingly $0 \le \beta_{\varepsilon} \le 1$ on Γ .

PROPOSITION 3.1. Let $Q^{e}[u, v]$ be an integro-differential bilinear form defined by

$$Q^{\varepsilon}[u, v] = Q^{0}[u, v] + \int_{\Gamma} \frac{\beta_{\varepsilon}}{\alpha_{\varepsilon}} a(x) u \bar{v} d\sigma$$
,

and set

$$B_{\varepsilon}u = \alpha_{\varepsilon}B_{1}u + \beta_{\varepsilon}u$$
$$B_{\varepsilon}^{*}u = \alpha_{\varepsilon}B_{1}'u + \beta_{\varepsilon}u.$$

Then we have for every $u, v \in H^2(\Omega)$

$$Q^{\varepsilon}[u, v] = (Au, v) + \int_{\Gamma} \frac{1}{\alpha_{\varepsilon}} aB_{\varepsilon} u \cdot \bar{v} \, d\sigma$$
$$= (u, A^*v) + \int_{\Gamma} \frac{1}{\alpha_{\varepsilon}} au \cdot \overline{B_{\varepsilon}^*v} \, d\sigma.$$

The proof may be done by the same argument as in Proposition 1.1. Throughout this section we must assume Condition 2 as well as the following one, stronger than Conditions 1 and 1*.

CONDITION 3. The form $Q^0[u, v]$ is coercive over $H^1(\Omega)$, i.e. there exist positive constants c_1 and C such that

$$\mathcal{R}_{\epsilon} \ Q^0 \llbracket u, \, u \rrbracket \geqq c_1 \|u\|_{1, \mathbf{Q}}^2 - C \, \|u\|_{0, \mathbf{Q}}^2 \,, \qquad u \in H^1(\Omega) \,.$$

PROPOSITION 3.2. Suppose that Conditions 2 and 3 hold. Then we can find two positive constants c, λ independent of ε such that

$$\mathcal{R}_{e} Q^{\epsilon}[u, u] \geq c \Big(\|u\|_{1, \mathbf{Q}}^{2} + \int_{\Gamma} \frac{1}{\alpha_{\epsilon}} |u|^{2} d\sigma \Big) - \lambda \|u\|_{0, \mathbf{Q}}^{2}, \qquad u \in H^{1}(\Omega).$$

The proof is immediately obtained in parallel with one of Proposition 1.2. For each ε , the completion of $C^{\infty}(\bar{\Omega})$ with respect to the norm

$$|||u|||_{\varepsilon}^{2} = ||u||_{1,Q}^{2} + \int_{\Gamma} \frac{1}{\alpha_{\varepsilon}} |u|^{2} d\sigma$$

is obviously equal to $H^1(\Omega)$.

PROPOSITION 3.3. Suppose that Conditions 2 and 3 hold. Then it follows that for every $f \in C^{\infty}(\bar{\Omega})$ there exists the unique $u_{\varepsilon} \in H^{1}(\Omega)$ such that

$$Q_{\lambda}^{\varepsilon}[u_{\varepsilon}, v] = (f, v), \quad v \in H^{1}(\Omega),$$

and moreover that u_{ε} is in $C^{\infty}(\bar{\Omega})$ and satisfies

(3.2)
$$\begin{cases} A_{\lambda}u_{\varepsilon} = f & in \quad \Omega \\ B_{\varepsilon}u_{\varepsilon} = 0 & on \quad \Gamma \end{cases}$$

and

$$(3.3) c \| u_{\varepsilon} \|_{\varepsilon} \leq \| f \|_{0, \boldsymbol{Q}},$$

where λ and c are the constants which appeared in Proposition 3.2.

PROOF. We have from Proposition 3.2

$$(3.4) \mathcal{R}_{\epsilon} Q_{\lambda}^{\epsilon}[u, u] \geq c ||u||_{\epsilon}^{2}, u \in H^{1}(\Omega),$$

and immediately

$$|Q_{\lambda}^{\varepsilon}[u, v]| \leq C ||u||_{\varepsilon} ||v||_{\varepsilon}, \quad u, v \in H^{1}(\Omega)$$

with a constant C>0 not depending on ε . These inequalities assert the unique existence of $u_{\varepsilon} \in H^1(\Omega)$ such that (3.1) is valid. Obviously $f \in C^{\infty}(\bar{\Omega})$ implies $u_{\varepsilon} \in C^{\infty}(\bar{\Omega})$ and Proposition 3.1 assures (3.2). From (3.1) and (3.4)

$$c \| u_{\varepsilon} \|_{\varepsilon}^2 \leq |(f, u_{\varepsilon})| \leq \| f \|_{0, \boldsymbol{\alpha}} \| u_{\varepsilon} \|_{0, \boldsymbol{\alpha}}$$

and hence (3.3) follows from $||u_{\varepsilon}||_{0,\mathbf{Q}} \leq |||u_{\varepsilon}||_{\varepsilon}$.

Q.E.D.

Let Ω_0 be an open subset of Ω and assume that there exists a C^∞ -coordinate transformation $y=\kappa(x)$ such that Ω_0 is mapped in a one-to-one way onto an open portion Σ of a half space $y_m>0$ and $\Gamma_0=\bar{\Omega}_0\cap\Gamma$ is transformed onto an open portion σ of $y_m=0$. For functions u on Ω and φ on Γ , we write

$$\begin{cases} \tilde{u}(y) = u(\kappa^{-1}(y)) & \text{for } y \in \Sigma \\ \tilde{\varphi}(y') = \varphi(\kappa^{-1}(y')) & \text{for } y' = (y_1, \dots, y_{m-1}) \in \sigma \end{cases}$$

and assume that the form $Q_{\lambda}^{\varepsilon}[u,v]$ is altered by the transformation κ to

$$P^{\epsilon} \lceil \tilde{u}, \tilde{v} \rceil = P_1 \lceil \tilde{u}, \tilde{v} \rceil + P_2^{\epsilon} \lceil \tilde{u}, \tilde{v} \rceil$$

provided $u, v \in H^1(\Omega)$ and supp $[v] \subset \Omega_0 \cup \Gamma_0$. Here

$$P_1[\tilde{u}, \tilde{v}] = \int_{\Sigma} \sum_{|\nu|, |\mu| \leq 1} b_{\nu\mu}(y) D^{\nu} \tilde{u} \, \overline{D^{\mu} \tilde{v}} \, dy + \int_{\sigma} \delta(y', D') \tilde{u} \cdot \bar{\tilde{v}} \, dy',$$

$$P_{2}^{\epsilon}[\tilde{u}, \tilde{v}] = \int_{\sigma} \frac{\tilde{\beta}_{\epsilon}}{\tilde{\alpha}_{\epsilon}} b(y') \tilde{u}\bar{\tilde{v}} d\sigma$$
,

all coefficients being infinitely differentiable and $\delta(y', D')$ of first order in $D' = (D_1, \dots, D_{m-1})$. In the following propositions we always assume Conditions 2 and 3. Then it follows from Proposition 3.2 that there exists a positive constant c' such that

(3.5)
$$\mathcal{R}_{e} P^{\varepsilon} [\tilde{u}, \tilde{u}] \geq c' \Big(\|\tilde{u}\|_{1,\Sigma}^{2} + \int_{\sigma} \frac{1}{\tilde{\alpha}_{\varepsilon}} |\tilde{u}|^{2} dy' \Big)$$

for every $u \in H^1(\Omega)$ satisfying supp $[u] \subset \Omega_0 \cup \Gamma_0$.

Now let $\zeta \in C_0^\infty(\Omega_0 \cup \Gamma_0)$ and assume $\zeta \geqq 0$ there, and put

$$T = D_i \tilde{\zeta}$$
 $(D_i = -i\partial/\partial y_i)$, $j \neq m$.

PROPOSITION 3.4. There exist a constant $C_1 > 0$ such that for every $u \in C^{\infty}(\bar{\Omega})$

$$|P_1[T\tilde{u}, T\tilde{u}] - P_1[\tilde{u}, T^*T\tilde{u}]| \leq C_1 ||\tilde{u}||_{1,\Sigma} ||T\tilde{u}||_{1,\Sigma}$$
.

PROOF. For the sake of simplicity, we shall write \tilde{u} as u and set

$$\left\{ \begin{array}{ll} R = b_{\nu\mu}(y)D^{\nu} \\ S = D^{\mu} & (|\nu|, |\mu| \leq 1) \,. \end{array} \right.$$

Thus

$$(RTu, STu) = (TRu, STu) + ([R, T]u, STu)$$

$$= (Ru, T*STu) + ([R, T]u, STu)$$

$$= (Ru, ST*Tu) + (Ru, [T*, S]Tu) + ([R, T]u, STu),$$

where [A, B] denotes a commutator AB-BA and (u, v) does the usual inner product in $L_2(\Sigma)$. Hence

$$(3.6) |(RTu, STu) - (Ru, ST^*Tu)| \leq K_1 ||u||_{1,\Sigma} ||Tu||_{1,\Sigma}.$$

In this section we always denote by K_j a positive constant not depending on u or ε .

Now,

$$(\delta Tu, Tu)_{\sigma} = (T\delta u, Tu)_{\sigma} + ([\delta, T]u, Tu)_{\sigma}$$
$$= (\delta u, T^*Tu)_{\sigma} + ([\delta, T]u, Tu)_{\sigma},$$

and hence by (1.3)

(3.7)
$$|(\delta Tu, Tu)_{\sigma} - (\delta u, T^*Tu)_{\sigma}| \leq K_2 ||[\delta, T]u||_{-1/2, \sigma} ||Tu||_{1/2, \sigma}$$

$$\leq K_3 ||u||_{1, \Sigma} ||Tu||_{1, \Sigma} ,$$

where and in the following we put

$$(u, v)_{\sigma} = \int_{\sigma} u \bar{v} dy'$$
.

The proof is completed by (3.6) and (3.7).

Q. E. D

PROPOSITION 3.5. There exists a constant $C_2 > 0$ such that for every $f \in C^{\infty}(\bar{\Omega})$ and every ε

$$\begin{split} |P_{2}^{\epsilon}[T\widetilde{u}_{\epsilon}, T\widetilde{u}_{\epsilon}] - P_{2}^{\epsilon}[\widetilde{u}_{\epsilon}, T*T\widetilde{u}_{\epsilon}]| \\ & \leq C_{2} \left(\int_{\sigma} \frac{1}{\widetilde{\alpha}_{\epsilon}} |\widetilde{u}_{\epsilon}|^{2} dy' + \int_{\sigma} |\widetilde{B_{1}}\widetilde{u}_{\epsilon}|^{2} dy' \right)^{1/2} \left(\int_{\sigma} \frac{1}{\widetilde{\alpha}_{\epsilon}} |T\widetilde{u}_{\epsilon}|^{2} dy' \right)^{1/2}, \end{split}$$

 u_z being a C^{∞} -function on $\bar{\Omega}$ settled in Proposition 3.3.

PROOF. In the proof we omit the wave sign ~. Thus

$$P_{2}^{\varepsilon}[Tu_{\varepsilon}, Tu_{\varepsilon}] - P_{2}^{\varepsilon}[u_{\varepsilon}, T*Tu_{\varepsilon}] = \int_{\sigma} \left[\frac{\beta_{\varepsilon}}{\alpha_{\varepsilon}}b, T\right] u_{\varepsilon} \cdot \overline{Tu_{\varepsilon}} dy'$$

$$= \int_{\sigma} \frac{1}{\alpha_{\varepsilon}} [\beta_{\varepsilon}b, T] u_{\varepsilon} \overline{Tu_{\varepsilon}} dy' + \int_{\sigma} \left[\frac{1}{\alpha_{\varepsilon}}, T\right] (\beta_{\varepsilon}bu_{\varepsilon}) \overline{Tu_{\varepsilon}} dy'.$$

By (3.2)

$$\beta_{\varepsilon}bu_{\varepsilon} = -b\alpha_{\varepsilon}B_{1}u_{\varepsilon}$$
 on σ .

Hence

$$\begin{split} \left[\frac{1}{\alpha_{\varepsilon}}, T\right] &(\beta_{\varepsilon} b u_{\varepsilon}) = \left[T, \frac{1}{\alpha_{\varepsilon}}\right] (b \alpha_{\varepsilon} B_{1} u_{\varepsilon}) \\ &= \left[D_{j}, \frac{1}{\alpha_{\varepsilon}}\right] (\zeta b \alpha_{\varepsilon} B_{1} u_{\varepsilon}) \\ &= -\frac{D_{j} \alpha_{\varepsilon}}{\alpha_{\varepsilon}^{2}} \zeta b \alpha_{\varepsilon} B_{1} u_{\varepsilon} = -\frac{D_{j} \alpha_{\varepsilon}}{\alpha_{\varepsilon}} \zeta b B_{1} u_{\varepsilon}. \end{split}$$

Therefore by the Schwarz inequality and by Remark 1 in Appendix we can conclude the proposition. Q. E. D.

PROPOSITION 3.6. Under the same situation as in Proposition 3.5, we can find a constant $C_3 > 0$ such that for every $f \in C^{\infty}(\bar{\Omega})$ and every ε

PROOF. Applying (3.5) to $\tilde{u} = T\tilde{u}_{\varepsilon}$, we obtain

$$c'\Big(\|T\widetilde{u}_{\varepsilon}\|_{1,\Sigma}^{2} + \int_{\sigma} \frac{1}{\widetilde{\alpha}_{\varepsilon}} |T\widetilde{u}_{\varepsilon}|^{2} dy'\Big) \leq \mathcal{R}_{\varepsilon} P^{\varepsilon} [T\widetilde{u}_{\varepsilon}, T\widetilde{u}_{\varepsilon}]$$

$$\leq |P^{\varepsilon} [T\widetilde{u}_{\varepsilon}, T\widetilde{u}_{\varepsilon}] - P^{\varepsilon} [\widetilde{u}_{\varepsilon}, T^{*}T\widetilde{u}_{\varepsilon}]| + |P^{\varepsilon} [\widetilde{u}_{\varepsilon}, T^{*}T\widetilde{u}_{\varepsilon}]|.$$

Let $v_{\varepsilon} \in C_0^{\infty}(\Omega_0 \cup \Gamma_0)$ be such that $\tilde{v}_{\varepsilon} = T * T \tilde{u}_{\varepsilon}$ on Σ . Then from Proposition 3.3

$$P^{\varepsilon} \lceil \widetilde{u}_{\varepsilon}, T^*T\widetilde{u}_{\varepsilon} \rceil = Q^{\varepsilon} \lceil u_{\varepsilon}, v_{\varepsilon} \rceil = (f, v_{\varepsilon}).$$

Thus by Propositions 3.4, 3.5 and the Cauchy inequality we obtain that the left hand side of (3.8)

$$\leq K_4 \Big(\|\widetilde{u}_{\varepsilon}\|_{1,\Sigma}^2 + \int_{\sigma} \frac{1}{\widetilde{\alpha}_{\varepsilon}} |\widetilde{u}_{\varepsilon}|^2 dy' + \int_{\sigma} |\widetilde{B_1} u_{\varepsilon}|^2 dy' + \|\widetilde{f}\|_{0,\Sigma}^2 \Big).$$

This together with (3.3) completes the proof.

Q.E.D

PROPOSITION 3.7. Under the same situation as in Proposition 3.5, we can find a constant $C_4 > 0$ such that for every $f \in C^{\infty}(\bar{\Omega})$ and every ε

$$||u_{\varepsilon}||_{2,\mathbf{Q}}^2 + \int_{\Gamma} \frac{1}{\alpha_{\varepsilon}} |D_{\tau}u_{\varepsilon}|^2 d\sigma \leq C_4 ||f||_{0,\mathbf{Q}}^2,$$

where D_{τ} denotes the tangential derivative of first order.

PROOF. Rewriting as $T_j = D_j \zeta$, $j = 1, \dots, m-1$, we get for every $u \in C^{\infty}(\bar{\Omega})$

420 Y. KATO

$$\|\widetilde{\zeta u}\|_{2,\Sigma}^2 \leq K_5(\|\widetilde{\zeta u}\|_{1,\Sigma}^2 + \sum_{j=1}^{m-1} \|T_j \widetilde{u}\|_{1,\Sigma}^2 + \|D_m^2(\widetilde{\zeta u})\|_{0,\Sigma}^2)$$

and from (3.2) and the ellipticity of A

$$||D_m^2(\widetilde{\zeta}u_{\varepsilon})||_{0,\Sigma}^2 \leq K_6(||f||_{0,\mathbf{Q}}^2 + ||u_{\varepsilon}||_{1,\mathbf{Q}}^2 + \sum_{j=1}^{m-1} ||T_j\tilde{u}_{\varepsilon}||_{1,\Sigma}^2).$$

These together with Proposition 3.6 and (3.3) give

(3.9)
$$\|\widetilde{\zeta u_{\varepsilon}}\|_{2,\Sigma}^{2} \leq K_{7} \Big(\|f\|_{0,\mathbf{Q}}^{2} + \int_{\Gamma} |B_{1}u_{\varepsilon}|^{2} d\sigma\Big).$$

Now again from Proposition 3.6 and (3.3)

$$(3.10) \qquad \int_{\sigma} \frac{1}{\tilde{\alpha}_{\varepsilon}} \tilde{\zeta}^{2} |D_{j} \tilde{u}_{\varepsilon}|^{2} dy' \leq 2 \int_{\sigma} \frac{1}{\tilde{\alpha}_{\varepsilon}} |T_{j} \tilde{u}_{\varepsilon}|^{2} dy' + 2 \int_{\sigma} \frac{1}{\tilde{\alpha}_{\varepsilon}} |D_{j} \tilde{\zeta}|^{2} |\tilde{u}_{\varepsilon}|^{2} dy'$$

$$\leq K_{8} \Big(\|f\|_{0, \mathbf{Q}}^{2} + \int_{\mathcal{D}} |B_{1} u_{\varepsilon}|^{2} d\sigma \Big).$$

Using the partition of unity of $\bar{\Omega}$, we obtain by (3.9) and (3.10)

$$\|u_{\varepsilon}\|_{2,\mathbf{Q}}^{2}+\int_{\Gamma}\frac{1}{\alpha_{\varepsilon}}|D_{\tau}u_{\varepsilon}|^{2}d\sigma \leq K_{9}(\|f\|_{0,\mathbf{Q}}^{2}+\int_{\Gamma}|B_{1}u_{\varepsilon}|^{2}d\sigma).$$

Applying (1.7) to $f = B_1 u_{\varepsilon}$, we can assert the proposition. Q. E. D.

PROPOSITION 3.8. If $f \in C^{\infty}(\bar{\Omega})$, then Gf is contained in \mathcal{D}_B and $A_{\lambda}Gf = f$ in Ω . Moreover it follows that there exists a constant $C_5 > 0$ such that for every $f \in C^{\infty}(\bar{\Omega})$

$$||Gf||_{2,\mathbf{Q}} \leq C_5 ||f||_{0,\mathbf{Q}}$$
.

PROOF. From Proposition 3.7

$$||u_{\varepsilon}||_{2,\mathbf{Q}}^{2} \leq C_{4}||f||_{0,\mathbf{Q}}^{2}$$
.

It then follows from the theorem of Banach-Sacks that there exists a decreasing sequence ε_1 , ε_2 , ... converging to zero such that

$$v_n = \frac{u_{\varepsilon_1} + \dots + u_{\varepsilon_n}}{u}$$

converges to some u in $H^2(\Omega)$ by the norm $\|\cdot\|_{2,\Omega}$. Thus, from Proposition 3.3,

$$A_{\lambda}v_{n} = f$$
 in Ω

and

$$Bv_n = \frac{1}{n} \sum_{j=1}^n \left\{ (\alpha - \alpha_{\varepsilon_j}) B_1 u_{\varepsilon_j} + (\beta - \beta_{\varepsilon_j}) u_{\varepsilon_j} \right\}$$
.

Hence, letting n tend to infinity, we obtain

$$\begin{cases}
A_{\lambda}u = f & \text{in } \Omega \\
Bu = 0 & \text{on } \Gamma,
\end{cases}$$

which shows that u = Gf and hence $A_{\lambda}Gf = f$ in Ω . The latter half of the proposition is obvious. Q. E. D.

THEOREM 5. Suppose that $\alpha \in \mathcal{B}^2(\Gamma)$ and that Conditions 2 and 3 hold. Then the Green kernel G stated in Theorem 1 is also an isomorphism of $H^0(\Omega)$ onto \mathcal{D}_B with $G^{-1} = A_{\lambda}$, provided \mathcal{D}_B is equipped with the norm $\|\cdot\|_{2,\Omega}$.

PROOF. Let f be arbitrarily given in $H^0(\Omega)$ and let $f_j \in C^{\infty}(\bar{\Omega})$, $j=1, 2, \cdots$, such that $f_j \to f$ in $H^0(\Omega)$. Proposition 3.8 guarantees that $Gf_j \in \mathcal{D}_B$, $A_{\lambda}Gf_j = f_j$ in Ω and

$$||G(f_j-f_i)||_{2,\mathbf{Q}} \leq C_5 ||f_j-f_i||_{0,\mathbf{Q}}$$
.

Hence $Gf \in \mathcal{D}_B$, $A_{\lambda}Gf = f$ in Ω and

$$||Gf||_{2,\mathbf{Q}} \leq C_5 ||f||_{0,\mathbf{Q}}$$
.

Now for any $u \in \mathcal{D}_B$, we set

$$U = GA_2u$$
.

Clearly $U \in \mathcal{D}_B$, for $A_{\lambda}u \in H^0(\Omega)$. Moreover

$$A_{\lambda}U = A_{\lambda}u$$
 in Ω

and $U-u \in \mathcal{D}_B$. Thus $u = GA_{\lambda}u$ and

$$||A_{\lambda}u||_{0,\mathbf{Q}} \leq K_{10}||u||_{2,\mathbf{Q}}$$
.

Q.E.D.

THEOREM 5*. Under the same supposition as in Theorem 5, it follows that the Green kernel \widetilde{G} stated in Theorem 1* is also an isomorphism of $H^0(\Omega)$ onto \mathcal{D}_{B^*} with $G^{*-1} = A_{\lambda}^*$, provided \mathcal{D}_{B^*} is equipped with the norm $\|\cdot\|_{2,\Omega}$.

The proof is just the same as one of Theorem 5.

REMARK 1. It follows from Theorems 5, 5^* that there exists a constant C>0 such that

$$|||u||| \le C ||u||_{2,\mathbf{Q}}, \quad u \in \mathcal{D}_B \cup \mathcal{D}_{B^*}.$$

But this fact immediately follows from (1.4) and (1.4*) too.

REMARK 2. In Theorems 5 and 5*, we can replace $\alpha \in \mathcal{B}^2(\Gamma)$ with $\sqrt{\alpha} \in \mathcal{B}^1(\Gamma)$. Then we must use the $q_{\varepsilon}(x)$ defined in Remark 2 of Appendix, instead of one defined in Lemma A.2 there.

COROLLARY. Every weak solution of Problem [A, f] (resp. $[A^*, g]$) which belongs to V is in \mathcal{Q}_B and Au = f in Ω , if $f \in H^0(\Omega)$ (resp. $g \in H^0(\Omega)$).

PROOF. Let $u \in V$ be a weak solution of [A, f] with $f \in H^0(\Omega)$, i. e. from Proposition 2.1, we assume that the u satisfies

$$Q[u, v] = (f, v), \quad v \in V.$$

Accordingly

$$Q_{\lambda}[u, v] = (f + \lambda u, v), \quad v \in V.$$

Thus $u = G(f + \lambda u)$. Hence by Theorem 5 we have $u \in \mathcal{D}_B$ and $A_{\lambda}u = f + \lambda u$.

§ 4. Regularity of the Green kernels, II.

This section is continued from the preceding section, that is, we shall discuss the further regularity of the Green kernels G and \widetilde{G} . Thus let k be a fixed integer such that $k \ge 3$. We always assume that $\alpha \in \mathcal{B}^k(\Gamma)$ when the bilinear form $Q^0[u, v]$ defined by (1.6) satisfies the following condition:

CONDITION (H). For all $x \in \overline{\Omega}$ and all ν , μ such that $|\nu| = |\mu| = 1$

$$a_{\nu\mu}(x) = \overline{a_{\mu\nu}(x)}$$

is valid, and $\gamma(x, D) - \gamma(x, D)^*$ is of order zero.

Then q and q_{ε} are functions defined in Lemma A.2, and p and p_{ε} are defined by (A.4) in Remark 1 of Appendix. When Condition (H) is not satisfied, we must further assume $\sqrt{\alpha} \in \mathcal{B}^k(\Gamma)$. Then p and p_{ε} are functions defined in Remark 2 of Appendix, and q and q_{ε} are defined by (A.5). In either case we denote by α_{ε} the restriction of q_{ε} onto Γ and set $\beta_{\varepsilon} = 1 + \varepsilon - \alpha_{\varepsilon}$. All other notations are the same as in § 3 and we always assume Conditions 2 and 3. Put for any integer $r \ge 1$

$$\begin{cases} M_r = \sum_{|\nu| \le r} \sup |D^{\nu} p_{\varepsilon}(x)| \\ N_r = \sum_{|\nu| \le r} \sup |D^{\nu} q_{\varepsilon}(x)|, \end{cases}$$

the supremum being taken over all $x \in \Omega$ and all ε such that $0 < \varepsilon \le 1$. It then follows from Appendix that M_1 and N_k are finite when $\alpha \in \mathcal{B}^k(\Gamma)$ and that M_k , N_k are finite when $\sqrt{\alpha} \in \mathcal{B}^k(\Gamma)$. In the following we denote by C_j and L_j positive constants not depending on u or ε . Their dependencies on M_r , N_s are denoted by $C_j(M_r, N_s)$ and $L_j(M_r, N_s)$.

Proposition 4.1. There exists a constant $C_1 = C_1(M_1) > 0$ such that for every $u \in C^{\infty}(\bar{\Omega})$ and every ε

$$\begin{aligned} |Q_{\lambda}^{\varepsilon}[p_{\varepsilon}u, p_{\varepsilon}u] - Q_{\lambda}^{\varepsilon}[u, q_{\varepsilon}u]| \\ &\leq C_{1}(\|u\|_{0, \mathbf{Q}}\|p_{\varepsilon}u\|_{1, \mathbf{Q}} + \|u\|_{0, \mathbf{Q}}^{2} + \|u\|_{-1/2, \Gamma}\|p_{\varepsilon}u\|_{1/2, \Gamma}). \end{aligned}$$

PROOF. Setting

$$\left\{ \begin{array}{ll} R = a_{\nu\mu}(x)D^{\nu} \\ S = D^{\mu} & (|\nu|, |\mu| \leq 1), \end{array} \right.$$

we have

$$(Rp_{\varepsilon}u, Sp_{\varepsilon}u) = (p_{\varepsilon}Ru, Sp_{\varepsilon}u) + ([R, p_{\varepsilon}]u, Sp_{\varepsilon}u)$$

$$= (Ru, Sp_{\varepsilon}^{2}u) + (Ru, [p_{\varepsilon}, S]p_{\varepsilon}u) + ([R, p_{\varepsilon}]u, Sp_{\varepsilon}u)$$

$$= (Ru, Sp_{\varepsilon}^{2}u) + (Rp_{\varepsilon}u, [p_{\varepsilon}, S]u) + ([p_{\varepsilon}, R]u, [p_{\varepsilon}, S]u)$$

$$+ ([R, p_{\varepsilon}]u, Sp_{\varepsilon}u).$$

Thus

$$|(Rp_{\varepsilon}u, Sp_{\varepsilon}u) - (Ru, Sp_{\varepsilon}^2u)| \leq L_1(\|u\|_{0,\mathbf{Q}}\|p_{\varepsilon}u\|_{1,\mathbf{Q}} + \|u\|_{0,\mathbf{Q}}^2).$$

Now

$$\begin{split} (\gamma p_{\varepsilon} u, p_{\varepsilon} u)_{\Gamma} &= (p_{\varepsilon} \gamma u, p_{\varepsilon} u)_{\Gamma} + ([\gamma, p_{\varepsilon}] u, p_{\varepsilon} u)_{\Gamma} \\ &= (\gamma u, p_{\varepsilon}^{2} u)_{\Gamma} + ([\gamma, p_{\varepsilon}] u, p_{\varepsilon} u)_{\Gamma} \,, \end{split}$$

and hence

$$|(\gamma p_{\varepsilon} u, p_{\varepsilon} u)_{\Gamma} - (\gamma u, p_{\varepsilon}^2 u)_{\Gamma}| \leq L_2 ||u||_{-1/2, \Gamma} ||p_{\varepsilon} u||_{1/2, \Gamma}.$$

Q.E.D.

Let $\zeta \in C_0^{\infty}(\Omega_0 \cup \Gamma_0)$ and assume $\zeta \geq 0$ there. Put

$$T = D^{\rho} \xi$$
, $|\rho| = r$,

where $\rho_m = 0$ and $2 \le r \le k-1$.

PROPOSITION 4.2. There exists a constant $C_2 = C_2(M_r, N_{r+1}) > 0$ such that for every $u \in C^{\infty}(\bar{\Omega})$ and every ε

$$\begin{split} \mathcal{R}_{\varepsilon} & \{ P^{\varepsilon} [T\tilde{u}, \tilde{q}_{\varepsilon} T\tilde{u}] - P^{\varepsilon} [\tilde{u}, \tilde{q}_{\varepsilon} T^{*} T\tilde{u}] \} \\ & \leq C_{2} (\|\tilde{u}\|_{r, \Sigma} \|p_{\varepsilon} T\tilde{u}\|_{1, \Sigma} + \|\tilde{u}\|_{r, \Sigma}^{2}) . \end{split}$$

In particular $C_2 = C_2(M_1, N_{r+1})$ when Condition (H) is satisfied.

PROOF. For the sake of simplicity we omit the wave sign ~ and set

$$\begin{cases}
R = b_{\nu\mu}(y)D^{\nu} \\
S = D^{\mu} \quad (|\nu|, |\mu| \leq 1).
\end{cases}$$

Then

$$(RTu, Sq_{\varepsilon}Tu) = (TRu, Sq_{\varepsilon}Tu) + ([R, T]u, Sq_{\varepsilon}Tu)$$

$$= (Ru, T^*Sq_{\varepsilon}Tu) + ([R, T]u, Sq_{\varepsilon}Tu)$$

$$= (Ru, Sq_{\varepsilon}T^*Tu) + (Ru, [T^*, Sq_{\varepsilon}]Tu) + ([R, T]u, Sq_{\varepsilon}Tu)$$

$$= (Ru, Sq_{\varepsilon}T^*Tu) + (Ru, [T^*, S]q_{\varepsilon}Tu) + ([R, T]u, Sq_{\varepsilon}Tu)$$

$$+ (Ru, S[T^*, q_{\varepsilon}]Tu).$$

Hence

(4.1)
$$\mathcal{R}_{e} \left\{ (RTu, Sq_{\varepsilon}Tu) - (Ru, Sq_{\varepsilon}T^{*}Tu) \right\}$$

$$\leq L_{s}(M_{1}) \|u\|_{r, \Sigma} \|p_{\varepsilon}Tu\|_{1, \Sigma} + \mathcal{R}_{e} (Ru, S[T^{*}, q_{\varepsilon}]Tu) .$$

424 Ү. Като

Now

$$(\delta Tu, q_{\varepsilon}Tu)_{\sigma} = (T\delta u, q_{\varepsilon}Tu)_{\sigma} + ([\delta, T]u, q_{\varepsilon}Tu)_{\sigma}$$

$$= (\delta u, T * q_{\varepsilon}Tu)_{\sigma} + ([\delta, T]u, q_{\varepsilon}Tu)_{\sigma}$$

$$= (\delta u, q_{\varepsilon}T * Tu)_{\sigma} + (\delta u, [T *, q_{\varepsilon}]Tu)_{\sigma} + ([\delta, T]u, q_{\varepsilon}Tu)_{\sigma},$$

Hence

$$\begin{split} \mathcal{R}_{e} & \{ (\delta Tu, q_{\varepsilon} Tu)_{\sigma} - (\delta u, q_{\varepsilon} T^{*} Tu)_{\sigma} \} \\ & \leq L_{4}(M_{1}) \|u\|_{\tau, \Sigma} \|p_{\varepsilon} Tu\|_{1, \Sigma} + \mathcal{R}_{e} (\delta u, [T^{*}, q_{\varepsilon}] Tu)_{\sigma}. \end{split}$$

This together with (4.1) gives

$$(4.2) \qquad \mathcal{R}_{\epsilon} \left\{ P_{1} [Tu, q_{\epsilon}Tu] - P_{1} [u, q_{\epsilon}T^{*}Tu] \right\}$$

$$\leq L_{5}(M_{1}) \|u\|_{\tau, \Sigma} \|p_{\epsilon}Tu\|_{1, \Sigma} + \mathcal{R}_{\epsilon} P_{1} [u, [T^{*}, q_{\epsilon}]Tu].$$

1) Case in which Condition (H) is not satisfied:

$$\begin{split} S \llbracket T^*, \, q_{\varepsilon} \rrbracket &= \llbracket T^*, \, p_{\varepsilon}^2 \rrbracket S + \llbracket S, \, \llbracket T^*, \, p_{\varepsilon}^2 \rrbracket \rrbracket \\ &= 2 \llbracket T^*, \, p_{\varepsilon} \rrbracket p_{\varepsilon} S + \llbracket p_{\varepsilon}, \, \llbracket T^*, \, p_{\varepsilon} \rrbracket \rrbracket S + \llbracket S, \, \llbracket T^*, \, p_{\varepsilon}^2 \rrbracket \rrbracket \\ &= 2 \llbracket T^*, \, p_{\varepsilon} \rrbracket S p_{\varepsilon} + 2 \llbracket T^*, \, p_{\varepsilon} \rrbracket \llbracket p_{\varepsilon}, \, S \rrbracket + \llbracket p_{\varepsilon}, \, \llbracket T^*, \, p_{\varepsilon} \rrbracket \rrbracket S + \llbracket S, \, \llbracket T^*, \, p_{\varepsilon}^2 \rrbracket \rrbracket . \end{split}$$

Thus

$$\mathcal{R}_{\epsilon}\left(Ru, S[T^*, q_{\epsilon}]Tu\right) \leq L_{\epsilon}(\|u\|_{r, \Sigma}\|p_{\epsilon}Tu\|_{1, \Sigma} + \|u\|_{r, \Sigma}^2)$$

with $L_6 = L_6(M_r, N_{r+1})$. By the similar argument as above

$$\mathcal{R}_{\epsilon}(\delta u, [T^*, q_{\epsilon}]Tu)_{\sigma} \leq L_{\tau}(\|u\|_{\tau, \Sigma} \|p_{\epsilon}Tu\|_{1, \Sigma} + \|u\|_{\tau, \Sigma}^2)$$

with $L_7 = L_7(M_r)$. Hence

$$(4.3) \mathcal{R}_{e} P_{1} \llbracket u, \llbracket T^{*}, q_{\varepsilon} \rrbracket T u \rrbracket \leq L_{8} (\Vert u \Vert_{r, \Sigma} \Vert p_{\varepsilon} T u \Vert_{1, \Sigma} + \Vert u \Vert_{r, \Sigma}^{2})$$

with $L_8 = L_8(M_r, N_{r+1})$

2) Case in which Condition (H) is satisfied: Put

$$v = [T^*, q_{\varepsilon}]Tu$$
.

It follows from Condition (H) that, denoting by P_1^0 and δ^0 the principal parts of the form P_1 and δ , we have

$$(4.4) \qquad \mathcal{R}_{e} P_{1}[u, v] = \mathcal{R}_{e} P_{1}^{0}[u, v] + \mathcal{R}_{e} \{P_{1}[u, v] - P_{1}^{0}[u, v]\}$$

$$= \frac{1}{2} \{P_{1}^{0}[u, v] + P_{1}^{0}[v, u]\} + (v, \delta^{0}u) - (\delta^{0}v, u)$$

$$+ \mathcal{R}_{e} \{P_{1}[u, v] - P_{1}^{0}[u, v]\}.$$

(i)
$$(Ru, Sv)+(Rv, Su) = (Ru, [T^*, q_{\varepsilon}]TSu)$$

 $+(Ru, [S, [T^*, q_{\varepsilon}]T]u)+([T^*, q_{\varepsilon}]TRu, Su)+([R, [T^*, q_{\varepsilon}]T]u, Su)$
 $=(Ru, [T^*, q_{\varepsilon}]TSu)+(Ru, T^*[q_{\varepsilon}, T]Su)+O(\|u\|_{r, \Sigma}^2).$

Here

$$\begin{split} [T^*,\,q_\varepsilon]T + T^*[q_\varepsilon,\,T] &= [\zeta D^\rho,\,q_\varepsilon]D^\rho\zeta + \zeta D^\rho[q_\varepsilon,\,D^\rho\zeta] \\ &= \zeta[D^\rho,\,q_\varepsilon]D^\rho\zeta + \zeta D^\rho[q_\varepsilon,\,D^\rho]\zeta \\ &= \zeta([D^\rho,\,q_\varepsilon]D^\rho + D^\rho[q_\varepsilon,\,D^\rho])\zeta \\ &= \zeta(D^\rho[q_\varepsilon,\,D^\rho] - [q_\varepsilon,\,D^\rho]D^\rho)\zeta \\ &= \zeta[D^\rho,\,[q_\varepsilon,\,D^\rho]]\zeta \;. \end{split}$$

Hence

$$|(Ru, Sv) - (Rv, Su)| \leq L_9(N_{r+1}) ||u||_{r,\Sigma}^2$$
.

(ii)
$$(\delta^0 u, v)_{\sigma} + (\delta^0 v, u)_{\sigma} = (\delta^0 \Gamma T^*, q_{\varepsilon}) T u, u)_{\sigma} + (T^* \Gamma q_{\varepsilon}, T^*) \delta^0 u, u)_{\sigma}.$$

Now

$$\begin{split} \delta^{\scriptscriptstyle{0}} & [T^*,\,q_{\scriptscriptstyle{\varepsilon}}] T + T^* [q_{\scriptscriptstyle{\varepsilon}},\,T\,] \delta^{\scriptscriptstyle{0}} \\ & = \delta^{\scriptscriptstyle{0}} ([T^*,\,q_{\scriptscriptstyle{\varepsilon}}] T + T^* [q_{\scriptscriptstyle{\varepsilon}},\,T\,]) + [T^* [q_{\scriptscriptstyle{\varepsilon}},\,T\,],\,\delta^{\scriptscriptstyle{0}}] \\ & = \delta^{\scriptscriptstyle{0}} \zeta [D^{\scriptscriptstyle{\rho}},\,[q_{\scriptscriptstyle{\varepsilon}},\,D^{\scriptscriptstyle{\rho}}]] \zeta + [T^* [q_{\scriptscriptstyle{\varepsilon}},\,T\,],\,\delta^{\scriptscriptstyle{0}}] \,. \end{split}$$

Hence

$$|(\delta^0 u, v) + (\delta^0 v, u)| \leq L_{10}(N_{r+1}) ||u||_{r, \Sigma}^2$$
.

(iii)
$$|P_1[u, v] - P_1[u, v]| \le L_{11}(N_{r+1}) ||u||_{r, \Sigma}^2$$
.

Accordingly by (4.4), (i), (ii) and (iii)

$$\mathcal{R}_{e} P_{1} \lceil u, \lceil T^{*}, q_{\varepsilon} \rceil T u \rceil \leq L_{12}(N_{r+1}) \|u\|_{r, \Sigma}^{2}$$
.

This together with (4.2) and (4.3) establishes

$$\mathcal{R}_{e} \left\{ P_{1} [Tu, q_{\varepsilon}Tu] - P_{1} [u, q_{\varepsilon}T^{*}Tu] \right\}$$

$$\leq L_{13} (\|u\|_{\tau, \Sigma} \|p_{\varepsilon}Tu\|_{1, \Sigma} + \|u\|_{\tau, \Sigma}^{2})$$

with $L_{13} = L_{13}(M_r, N_{r+1})$ in Case 1) and $= L_{13}(M_1, N_{r+1})$ in Case 2). Thus the proposition immediately follows from the following:

$$\begin{split} P_{2}^{\bullet} & [Tu, q_{\varepsilon}Tu] - P_{2}^{\bullet} [u, q_{\varepsilon}T^{*}Tu] \\ &= (\beta_{\varepsilon}bTu, Tu)_{\sigma} - (\beta_{\varepsilon}bu, T^{*}Tu)_{\sigma} = ([\beta_{\varepsilon}b, T]u, Tu)_{\sigma}. \end{split}$$
 Q. E. D.

Proposition 4.3. There exists a constant $C_3>0$ such that for every $f\in C^\infty(\bar\Omega)$ and every ε

$$\begin{split} \| \, \tilde{p}_{\varepsilon} T \tilde{u}_{\varepsilon} \|_{1,\Sigma}^{2} + & \int_{\sigma} | \, T \tilde{u}_{\varepsilon} |^{\, 2} dy' \\ & \leq C_{3} (\| \tilde{u}_{\varepsilon} \|_{r,\Sigma}^{2} + \sum_{|\nu| = r-1} \| \, \tilde{p}_{\varepsilon} D^{\nu} \tilde{f} \|_{0,\Sigma} + \| \, \tilde{f} \, \|_{r-2+1/2,\Sigma} \, \| \tilde{u}_{\varepsilon} \|_{r+1/2,\Sigma}) \,, \end{split}$$

where u_{ε} is a function introduced in Proposition 3.3.

PROOF. In the proof we omit again the wave sign \sim like in the preceding one. Substituting $p_{\varepsilon}Tu_{\varepsilon}$ for u in (3.5), we obtain

$$(4.5) c'\Big(\|p_{\varepsilon}Tu_{\varepsilon}\|_{1,x}^2 + \int_{\sigma} |Tu_{\varepsilon}|^2 dy'\Big) \leq \Re e \ P^{\varepsilon}[p_{\varepsilon}Tu_{\varepsilon}, p_{\varepsilon}Tu_{\varepsilon}].$$

From Proposition 4.1,

$$\mathcal{R}_{\varepsilon} \left\{ P^{\varepsilon} [p_{\varepsilon} T u_{\varepsilon}, p_{\varepsilon} T u_{\varepsilon}] - P^{\varepsilon} [T u_{\varepsilon}, q_{\varepsilon} T u_{\varepsilon}] \right\}$$

$$\leq L_{14} (\|u_{\varepsilon}\|_{T, \Sigma} \|p_{\varepsilon} T u_{\varepsilon}\|_{1, \Sigma} + \|u_{\varepsilon}\|_{T, \Sigma}^{2}).$$

Thus with the aid of (4.5) and Proposition 4.2 we obtain, by using the Cauchy inequality,

Now from (3.1) in Proposition 3.3

$$P^{\varepsilon}[u_{\varepsilon}, q_{\varepsilon}T^{*}Tu_{\varepsilon}] = (Jf, q_{\varepsilon}T^{*}Tu_{\varepsilon}) \qquad \left(J = \left|\frac{\partial x}{\partial y}\right|\right)$$

$$= (Jf, q_{\varepsilon}\zeta D^{\rho}Tu_{\varepsilon}) = (f, Jq_{\varepsilon}\zeta D^{\rho'}DTu_{\varepsilon}) \qquad (D^{\rho} = D^{\rho'}D, |\rho'| = r - 1)$$

$$= (p_{\varepsilon}D^{\rho'}f, J\zeta p_{\varepsilon}DTu_{\varepsilon}) + (f, [Jq_{\varepsilon}\zeta, D^{\rho'}]DTu_{\varepsilon})$$

$$= (\zeta p_{\varepsilon}D^{\rho'}f, JD(p_{\varepsilon}Tu_{\varepsilon})) + (\zeta p_{\varepsilon}D^{\rho'}f, J[p_{\varepsilon}, D]Tu_{\varepsilon})$$

$$+ (f, [Jq_{\varepsilon}\zeta, D^{\rho'}]DTu_{\varepsilon}).$$

Hence

$$|P^{\varepsilon}[u_{\varepsilon}, q_{\varepsilon}T^{*}Tu_{\varepsilon}]| \leq L_{1\varepsilon}\{\|\zeta p_{\varepsilon}D^{\rho'}f\|_{0,\Sigma}(\|p_{\varepsilon}Tu_{\varepsilon}\|_{1,\Sigma} + \|Tu_{\varepsilon}\|_{0,\Sigma}) + \|f\|_{r-2+1/2,\Sigma}\|Tu_{\varepsilon}\|_{1/2,\Sigma}\}.$$

This together with (4.6) guarantees the proposition. Q. E. D.

Proposition 4.4. There exists a constant $C_4>0$ such that for every $f\in \mathcal{C}^\infty(\bar{\Omega})$ and every ε

$$\sum_{\|\nu\|=k} \|pD^{\nu}u_{\varepsilon}\|_{0,\mathbf{Q}}^{2} + \|u_{\varepsilon}\|_{k-1/2,\mathbf{Q}}^{2} \le C_{4} \left(\sum_{\|\nu\|=k-2} \|p_{\varepsilon}D^{\nu}f\|_{0,\mathbf{Q}}^{2} + \|f\|_{k-2-1/2,\mathbf{Q}}^{2}\right).$$

PROOF. With the aid of Proposition 4.3 we have for $j=1, 2, \dots, n$

$$\begin{split} \| \, \tilde{p}_{\varepsilon} D_{j} T \tilde{u}_{\varepsilon} \|_{0}^{2} + \int_{\sigma} |T \tilde{u}_{\varepsilon}|^{2} dy' \\ & \leq L_{17} (\| u_{\varepsilon} \|_{r, \mathbf{Q}}^{2} + \sum_{|\nu| \leq r-1} \| \, p_{\varepsilon} D^{\nu} f \, \|_{0, \mathbf{Q}}^{2} + \| \, f \, \|_{r-2+1/2, \mathbf{Q}} \| \, u_{\varepsilon} \|_{r+1/2, \mathbf{Q}}) \\ & (= L_{17} F) \, . \end{split}$$

Thus

$$(4.7) \qquad \sum_{\substack{|\rho|=r\\ \rho_m=0}} (\sum_{|\nu|=1} \|\widetilde{p}_{\varepsilon} D^{\rho} D^{\nu} (\widetilde{\zeta u_{\varepsilon}})\|_{0,\Sigma}^2 + \int_{\sigma} |D^{\rho} (\widetilde{\zeta u_{\varepsilon}})|^2 dy') \leq L_{18} F.$$

It now follows from (3.2) and the ellipticity of A that $D_m^2(\widetilde{\zeta u_{\varepsilon}})$ is expressed by a linear combination of the terms

$$\begin{cases}
D_n D_j(\widetilde{\zeta u_{\varepsilon}}), & D_j D_k(\widetilde{\zeta u_{\varepsilon}}) & (1 \leq j, k \leq m-1), \\
D_j(\widetilde{\zeta u_{\varepsilon}}) & (1 \leq j \leq m), \\
\widetilde{\zeta u_{\varepsilon}}, & \widetilde{\zeta f}, & \widehat{A_j, \zeta \exists u_{\varepsilon}}.
\end{cases}$$

Hence, operating $\tilde{\rho}_{\varepsilon}D^{\rho}(|\rho|=r-1, \rho_m=0)$ to $D_m^2(\widetilde{\zeta u_{\varepsilon}})$ and using (4.7), we get

$$\sum_{\substack{|
ho|=r-1\ a_m=0}}\sum_{|
u|=2}\|\widetilde{p}_{arepsilon}D^{
ho}D^{
u}(\widetilde{\zeta u}_{arepsilon})\|_{0,arepsilon}^2 \leq L_{19}F$$
 .

Similarly, operating $\tilde{p}_{\varepsilon}D^{\rho}D_{m}$ ($|\rho|=r-2$, $\rho_{m}=0$) to $D_{m}^{2}(\widetilde{\zeta u_{\varepsilon}})$ we obtain

$$\sum_{\substack{|\,\rho\,|\, = r-2\\ \rho\, m = 0}} \sum_{|\,\nu\,|\, = 3} \parallel \widetilde{p}_{\varepsilon} D^{\rho} D^{\nu} (\widetilde{\zeta u_{\varepsilon}}) \parallel_{0, \mathfrak{T}}^{2} \leqq L_{20} F.$$

Successive repetition of this process gives us

$$\textstyle\sum_{|\, \nu\, | = r+1} \! \|\, \hat{p}_{\varepsilon} D^{\nu}(\widetilde{\zeta u_{\varepsilon}}) \|_{0,\Sigma}^2 + \sum_{\substack{\rho\, | = r \\ \rho_m = 0}} \! \int_{\sigma} \! |\, D^{\rho} \widetilde{\zeta u_{\varepsilon}}|^{\, 2} dy' \leqq L_{21} F \,.$$

By the use of the partition of unity of $\bar{\Omega}$ we obtain, noting $0 < p(x) \leq p_{\epsilon}(x)$ in Ω ,

(4.8)
$$\sum_{|u|=r+1} \|p_{\varepsilon}D^{\nu}u_{\varepsilon}\|_{0,\mathbf{Q}}^{2} + \|u_{\varepsilon}\|_{r,\Gamma}^{2} \leq L_{22}F.$$

Here we shall use the coercive estimate:

$$||u||_{r+1/2,Q}^2 \le \text{const.}(||A_{\lambda}u||_{r-2+1/2,Q}^2 + ||u||_{r,\Gamma}^2), \qquad u \in C_{\infty}(\bar{\Omega}),$$

and the interpolation inequality: For any $\delta>0$ there exists a constant $C_\delta>0$ such that

$$||u||_{r,\mathbf{Q}}^2 \leq \delta ||u||_{r+1/2,\mathbf{Q}}^2 + C_\delta ||u||_{0,\mathbf{Q}}^2, \qquad u \in C^{\infty}(\bar{\Omega}).$$

With the aid of (3.3), (4.8) and the Cauchy inequality as well as the above two inequalities, we can conclude the proposition, since $p \le p_{\epsilon}$ in Ω and r was arbitrarily fixed so that $r \le k-1$.

Q. E. D.

Let s be an integer such that $s \ge 1$. By $H^s(\Omega; p)$ we denote the Banach space obtained by the completion of $C^{\infty}(\bar{\Omega})$ with respect to the norm $\|\cdot; p\|_s$ defined by

$$||u;p||_{s,Q}^2 = \sum_{|\nu|=s} ||pD^{\nu}u||_{0,Q}^2 + ||u||_{s-1/2,Q}^2$$

For $s \ge 3$, we set

$$\left\{ \begin{array}{ll} H^s_{\mathcal{B}}(\Omega\,;\,p) = \{u \in H^s(\Omega\,;\,p)\,;\;Bu = 0 & \text{on} \quad \varGamma\} \\ \\ H^s_{\mathcal{B}}(\Omega\,;\,p) = \{u \in H^s(\Omega\,;\,p)\,;\;B^*u = 0 & \text{on} \quad \varGamma\} \;. \end{array} \right.$$

PROPOSITION 4.5. 1) For $s \ge 1$,

$$\left\{ \begin{array}{l} H^s(\varOmega) \subset H^s(\varOmega \ ; \ p) \subset H^{s-1/2}(\varOmega) \\ H^s(\varOmega \ ; \ p) \subset V' \ . \end{array} \right.$$

- 2) The space $H^s_B(\Omega; p)$ and $H^s_{B^*}(\Omega; p)$ are closed subspaces of $H^s(\Omega; p)$ when $s \ge 3$.
 - 3) For $s \ge 3$,

$$\left\{\begin{array}{l} H^s_{\mathcal{B}}(\varOmega\,;\,p) \subset V \\ H^s_{\mathcal{B}^*}(\varOmega\,;\,p) \subset V \,. \end{array}\right.$$

Here the injections are all continuous.

PROOF. 1) is easily proved by the above definition and (1.9). 2) follows from (1.3). With the aid of Remark 1 in § 3 we may prove 3). Q. E. D.

PROPOSITION 4.6. If $f \in C^{\infty}(\bar{\Omega})$, then Gf is contained in $H_B^k(\Omega; p)$ and $A_{\lambda}Gf = f$ in Ω . Moreover it follows that there exists a constant $C_5 > 0$ such that for every $f \in C^{\infty}(\bar{\Omega})$

$$||Gf; p||_{b} \leq C_{5}||f; p||_{b-2}.$$

PROOF. Let $f \in C^{\infty}(\bar{\Omega})$. Then from Proposition 4.4 it follows that $\|u_{\varepsilon}; p\|_{k}$ is bounded with respect to ε , for p_{ε} is bounded on Ω . Making use of the theorem of Banach-Sacks, we can find a decreasing sequence $\{\varepsilon_{j}\}$, converging to zero, such that

$$v_n = \frac{u_{\varepsilon_1} + \dots + u_{\varepsilon_n}}{n}$$

converges to some u in $H^k(\Omega; p)$ by the norm $\|\cdot; p\|_k$. By the same argument as in Proposition 3.8, we can assert that $u = Gf \in H_B^k(\Omega; p)$ and $A_{\lambda}Gf = f$ in Ω . To complete the proof we must show (4.9). Now the use of Proposition 4.4 gives us

$$||v_n; p||_k \leq \frac{1}{n} \sum_{j=1}^n ||u_{\varepsilon_j}; p||_k$$

$$\leq \frac{C_4}{n} \sum_{j=1}^n (\sum_{|\nu|=k-2} ||p_{\varepsilon_j} D^{\nu} f||_{0, \mathbf{Q}}^2 + ||f||_{k-2-1/2, \mathbf{Q}}^2)^{1/2}.$$

Letting n tend to infinity we obtain (4.9). Q. E. D.

THEOREM 6. Let k be an integer such that $k \ge 3$. Suppose that $\alpha \in \mathcal{B}^k(\Gamma)$ when Condition (H) is satisfied, that $\sqrt{\alpha} \in \mathcal{B}^k(\Gamma)$ when Condition (H) is not

satisfied, and that Conditions 2 and 3 hold. Then the Green kernel G stated in Theorem 1 is also an isomorphism of $H^{k-2}(\Omega; p)$ onto $H_B^k(\Omega; p)$ with $G^{-1} = A_{\lambda}$.

PROOF. The proof may be done in a way quite similar to one of Theorem 5. To do so, we have only to notice that if $u \in H^s(\Omega; p)$ with $s \ge 2$, then $Du \in H^{s-1}(\Omega; p)$ and the mapping $u \to Du$ is continuous. Q. E. D.

THEOREM 6*. Under the same supposition as in Theorem 6, it follows that the Green kernel \tilde{G} stated in Theorem 1* is also an isomorphism of $H^{k-2}(\Omega; p)$ onto $H_B^k(\Omega; p)$ with $G^{*-1} = A_{\lambda}^*$.

The proof is just the same as one of Theorem 6.

COROLLARY. Every weak solution of Problem [A, f] (resp. $[A^*, g]$) which belongs to V is in $H_B^k(\Omega; p)$ (resp. $H_{B^*}^k(\Omega; p)$), if $f \in H^{k-2}(\Omega; p)$ (resp. $g \in H^{k-2}(\Omega; p)$).

PROOF. Let $u \in V$ be a weak solution of [A, f] with $f \in H^{k-2}(\Omega; p)$, i. e. from Proposition 2.1, we assume that the u satisfies

$$Q[u, v] = (f, v), \quad v \in V.$$

Accordingly

$$Q_{\lambda}[u, v] = (f + \lambda u, v), \quad v \in V.$$

Thus $u = G(f + \lambda u)$. Hence by Theorem 6 we have $u \in H_B^3(\Omega; p)$ and $A_{\lambda}u = f + \lambda u$, since $f + \lambda u \in H^1(\Omega; p)$. If k-2 > 1, we can assert, by the same argument as above, $u \in H_B^4(\Omega; p)$. After repeating this process, we finally obtain $u \in H_B^k(\Omega; p)$. Q. E. D.

Appendix.

LEMMA A.1. Let f be in $\mathcal{B}^2(\mathbb{R}^m)$ such that $f(x) \geq 0$ in \mathbb{R}^m . Then

(A.1)
$$\left|\frac{\partial f}{\partial x_j}(x)\right|^2 \leq 2K_j f(x), \quad x \in \mathbb{R}^m,$$

where

$$K_{j} = \sup_{x \in \mathbb{R}^{m}} \left| \frac{\partial^{2} f}{\partial x_{j}^{2}}(x) \right|.$$

PROOF. We first prove (A.1) when m=1, i.e.

(A.2)
$$|f'(x)|^2 \le 2 \sup_{t \in R} |f''(t)| \cdot f(x), \quad x \in R.$$

It is trivial at $x = x_0$ such that $f'(x_0) = 0$. We hence assume $f'(x_0) \neq 0$. Clearly $f(x_0) > 0$. By the Taylor expansion formula,

$$f(x_0-h) = f(x_0) - hf'(x_0) + \frac{h^2}{2}f''(x_0-\theta h)$$
,

with $0 < \theta < 1$. Here, putting

$$h = 2f(x_0)/f'(x_0)$$
,

we obtain, by using the fact $f(x_0 - h) \ge 0$,

$$f(x_0) \leq \frac{1}{2} \left(\frac{2f(x_0)}{f'(x_0)} \right)^2 f''(x_0 - 2\theta f(x_0) / f'(x_0)),$$

from which it follows

$$f'(x_0)^2 \le 2f''(x_0 - 2\theta f(x_0)/f'(x_0))f(x_0)$$
.

This proves (A.2).

Now we shall prove in general case. Let $f \in \mathcal{B}^2(R^m)$ be such that $f(x) \ge 0$ in R^m . We consider $f(x_1, \dots, x_m)$ as a function of a variable x_j , freezing the remainder. Applying (A.2), we obtain, for every $x \in R^m$,

$$\left|\frac{\partial f}{\partial x_{j}}(x_{1}, \dots, x_{m})\right|^{2} \leq 2 \sup_{t \in R} \left|\frac{\partial^{2} f}{\partial x_{j}^{2}}(x_{1}, \dots, t, \dots, x_{m})\right| f(x_{1}, \dots, x_{m})$$

$$\leq 2K_{j} f(x).$$

Q. E. D.

Let Ω and Γ be the same as in Introduction and let there be given a function h(x) on Γ such that $h \in \mathcal{B}^k(\Gamma)$, $k \ge 0$, and $0 \le h(x) \le 1$ on Γ . We can then easily find a function H(x) in $\mathcal{B}^k(R^m)$ (an extension of h on the whole space R^m) such that

(A.3)
$$\begin{cases} 0 \leq H(x) \leq 1 & \text{on } R^m \\ H(x) > 0 & \text{in } \Omega \\ H(x) = h(x) & \text{on } \Gamma \\ \text{supp} \llbracket H \rrbracket \text{ is compact.} \end{cases}$$

Let $f(t) \in C^{\infty}(R)$ such that f(t) = 0 for $t \ge 0$ and $= e^{1/t}$ for t < 0. Using this, we define a function $\zeta(x)$ in $C_0^{\infty}(R^m)$ by

$$\zeta(x) = f(|x|-1) / \int f(|x|-1) dx$$

and set

$$\rho_{\delta}(x) = \delta^{-m} \zeta\left(\frac{x}{\delta}\right), \quad \delta > 0.$$

It then follows that $\rho_{\delta}(x) \ge 0$ in R^m , $\rho_{\delta}(x) = 0$ for $|x| \ge \delta$ and

$$\int_{R^m} \rho_{\delta}(x) dx = 1.$$

LEMMA A.2. Let $\alpha \in \mathcal{B}^k(\Gamma)$, $k \geq 1$, be such that $0 \leq \alpha \leq 1$ on Γ and q(x) be an extension of α on R^m satisfying (A.3). Then a mollifier q_{ε} , $\varepsilon > 0$, of q defined by the convolution

$$q_{\varepsilon} = (q(x) + \varepsilon) * \rho_{\varepsilon/L}$$
 $\left(L = \sum_{j=1}^{m} \sup_{x \in \mathbb{R}^{m}} \left| \frac{\partial q}{\partial x_{j}}(x) \right| \right)$

is in $C^{\infty}(R^m)$ and uniformly convergent to q(x) on R^m , and its derivatives of orders up to k are all uniformly bounded on R^m with respect to ε . Moreover it follows that $\varepsilon \leq q_{\varepsilon}(x) \leq 1+\varepsilon$ and $q_{\varepsilon} \geq q$ on R^m for every $\varepsilon > 0$.

PROOF. The first half of the lemma is well-known. So we only prove the latter half. For $\varepsilon > 0$,

$$q_{\varepsilon}(x) - q(x) = \int_{|y| \leq \varepsilon/L} \{q(x-y) + \varepsilon - q(x)\} \rho_{\varepsilon/L}(y) dy.$$

Thus

$$|q(x-y)-q(x)| \leq L|y|$$
.

Hence

$$q(x-y)+\varepsilon-q(x) \ge 0$$
 if $|y| \le \varepsilon/L$.

This assert $q_{\varepsilon}(x) - q(x) \ge 0$ for all $x \in \mathbb{R}^m$. From the fact $\varepsilon \le q(x) + \varepsilon \le 1 + \varepsilon$ for all $x \in \mathbb{R}^m$, it follows $\varepsilon \le q_{\varepsilon}(x) \le 1 + \varepsilon$ for all $x \in \mathbb{R}^m$ and all $\varepsilon > 0$.

Q.E.D.

REMARK 1. If we set on R^m

(A.4)
$$\begin{cases} p(x) = \sqrt{q(x)} \\ p_{\epsilon}(x) = \sqrt{q_{\epsilon}(x)}, \end{cases}$$

it follows from Lemma A.1 that $p_{\varepsilon}(x)$ is uniformly convergent to p(x) on R^m , and that its derivatives are uniformly bounded on R^m with respect to $\varepsilon > 0$ if $k \ge 2$, and moreover $\sqrt{\varepsilon} \le p_{\varepsilon}(x) \le \sqrt{1+\varepsilon}$ and $p_{\varepsilon}(x) \ge p(x)$ on R^m for every $\varepsilon > 0$. In fact we have

$$\frac{\partial p_{\varepsilon}}{\partial x_{i}}(x) = -\frac{\partial q_{\varepsilon}}{\partial x_{i}}(x)/p_{\varepsilon}(x)$$

and

$$\left|\frac{\partial q_{\varepsilon}}{\partial x_{j}}(x)\right|^{2} \leq 2 \sup_{y \in \mathbb{R}^{m}} \left|\frac{\partial^{2} q}{\partial x_{j}^{2}}(y)\right| \cdot q_{\varepsilon}(x), \quad x \in \mathbb{R}^{m}.$$

REMARK 2. Let $\sqrt{\alpha} \in \mathcal{B}^k(\Gamma)$, $k \geq 1$. Then we can assert the following in quite parallel with Lemma A.2: A mollifier p_{ε} , $\varepsilon > 0$, of p (an extension of $\sqrt{\alpha}$ on R^m satisfying (A.3)) defined by

$$p_{\varepsilon} = (p(x) + \eta) * \rho_{\eta/M} \quad \left(\eta = \sqrt{1 + \varepsilon} - 1, M = \sum_{j=1}^{m} \sup_{x \in \mathbb{R}^{m}} \left| \frac{\partial p}{\partial x_{j}}(x) \right| \right)$$

is in $C^{\infty}(R^m)$ and uniformly convergent to p(x) on R^m , and its derivatives of orders up to k are all uniformly bounded on R^m with respect to $\varepsilon > 0$. Moreover it follows that $\sqrt{1+\varepsilon}-1 \le p_{\varepsilon}(x) \le \sqrt{1+\varepsilon}$ and $p_{\varepsilon}(x) \ge p(x)$ on R^m for every $\varepsilon > 0$.

If we set on R^m

(A.5)
$$\begin{cases} q(x) = p(x)^2 \\ q_{\epsilon}(x) = p_{\epsilon}(x)^2 \end{cases},$$

432 Ү. Като

the $q_{\varepsilon}(x)$ has the same property as that defined in Lemma A.2 with $(\sqrt{1+\varepsilon}-1)^2 \le q_{\varepsilon}(x) \le 1+\varepsilon$ instead of $\varepsilon \le q_{\varepsilon}(x) \le 1+\varepsilon$ on R^m .

References

- [1] G. Fichera, Sul problema della derivata obliqua e sul problema misto per l'equazione di Laplace, Boll. Un. Mat. Ital., 7 (1952), 367-377.
- [2] K. Hayashida, On the singular boundary value problem for elliptic equations, Trans. Amer. Math. Soc., 184 (1973), 205-221.
- [3] S. Ito, Fundamental solutions of parabolic differential equations and boundary value problems, Japan. J. Math., 27 (1957), 55-102.
- [4] Y. Kato, On the coerciveness for integro-differential quadratic forms, to appear in J. Analyse Math.
- [5] J. Peetre, Mixed problems for higher order elliptic equations in two variables, I, Ann, Scoula Norm. Sup. Pisa, 15 (1961), 337-353.

Yoshio KATO Mathematical Institute Nagoya University Furo-cho, Chikusa-ku Nagoya, Japan