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§0. Introduction.

Let 2 be a bounded domain in R™ with C* boundary I’ of dimension
m—1 and let there be given two differential operators A on 2=02VU T,

(0.1) A= % Dla, 9D,
pl, bl =1

and B, on I,

02) B,=a,(x) 2 +b(x, D),

where n denotes the exterior normal of /7 and b(x, D) is a tangential differ-
ential operator of first order on I'. The notations are the usual ones: y=
(vy, =+, ¥n) With non-negative integers v;, |v|=v,+ --- +v,, D=(Dy, -, D,) with
D;=—id/0x; and D*=Di*--- D;». All coefficients are assumed to be complex-
valued and C* in their sets of definition indicated. It is also assumed that
A is elliptic and moreover that a,(x)#0 for all xeI'.

Many authors had studied the mixed problem: To find u such that

Au=f in £
(0.3) Bu=0 on I,
u=9_ on I,

when f is given, where I', and [', are two open sets of I” such that [, UT,
=1[" and I'y\V[',=9. But it seems to be more natural to replace and gen-
eralize [0.3] with

Au=f in &

(0.4)
aBu+pu=0 on I,

where a and $ are two functions on /7 such that «a =0, 8=0 and a+f=1
on I'. The first reason is that for the problem no regularity can hold,
i.e. even if f is smooth, © may not be smooth (this fact is pointed out in
[1, 5]), while the regularity holds for the problem [0.4), provided a is smooth.
The second is that all solutions of are approximated by solutions u, of
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with a=a, such that a,=1 on I, and a@,—0 on [, as n—oco (see
[Theorem 4). To establish this regularity is the main purpose of this paper.
This kind of mixed-type boundary conditions, however, has been thoroughly
studied by Itd [3]. Here he uses fundamental solutions of parabolic differ-
ential equations. Recently Hayashida treated again this problem from
the viewpoint of functional analysis, but he had to assume that 3 is sufficiently
large, in order to assure the regularity of solutions. In this paper we shall
also use the tool of functional analysis and our main results are stated in
Theorems 1~6.

The plan of the present paper is the following. In Section 1 we shall
show the existence of the Green kernels G and G for the systems (A, B)
and (A¥, B*), respectively, in a weak sense. Here it is only assumed that
« is measurable. The definition of weak solutions is introduced in Section
2, where Theorem 4 is stated. We shall discuss in Section 3 the regularity
of G and G when ac 8¥I), i.e. if f& HY(Q), then Gf and Gf are in H¥Q).
Section 4 is continued from the preceding section and is devoted to the
further regularity of G and 5, i.e. fe H**(Q; p) implies that Gf and 5f are
in H%2; p), if a= 8*["), k=3, and if Condition (H) (see §4) is satisfied.
It should be noticed that Condition (H) is verified in [2, 3]. If Condition (H)
is not satisfied, we must further assume, in order to establish the above
regularity, that vVa € 8*["). These regularities will be obtained in both
cases by using what is called elliptic regularization technique. To do so we
introduce, in Appendix, the extensions ¢ and p of a and Ve, respectively,
and their mollifiers ¢. and p..

The author would like to express his hearty thanks to Professor Haya-
shida for the valuable discussions with him.

§ 1. Existence of the Green kernels.

Let B[u,v] be a differential bilinear form associated with the differential
operator A of (0.1) presented in Introduction,

Blu, v]= > a,(x)D*u-DPv dx
2 bl ig=1
and B, is the differential operator (0.2). Throughout the present paper we
assume that there exists a positive constant ¢, such that
Re 3 @, (0 =¢lE|?, E&R™

vl = pl=1

for all x= 2. Then it follows that there exist a nonvanishing function a(x)
in C*(2) and a first order tangential differential operator 7(x, D) on I satis-
fying for all u, ve C*(RQ)
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(L1) Blu, v]+ j 7(x, Dyu-vdo = (Au, v)+ f (a)Bu-vda

where (u, v) is the usual inner product in L,(2). In practice we have

U= 2 Gn/a(x).

Ivl=lpl=1
Moreover we can easily find another differential operator B[ on I" similar to
such that for all u, ve C=(Q)
1.1%*) Blu, v]—l—f 7(x, D)u-vdo = (u, A*v) —{—‘fra(x)uf%?da
r

where A* is the formal adjoint of A. As a matter of fact we have only to
take as

Bi= @) L +0/(x, D),
b’(x, D) being an appropriate first order tangential differential operator on /.
Now let @ and B8 be two functions on /" satisfying
(1.2) az20, =0 and a+p=1 on ['.
Throughout this section we assume a to be measurable on I'. Setting
Bu=aBu-+tpu
{ B*u = aBju+-pu
we introduce two function spaces,
Dp={ucs H¥Q); Bu=0 on [}
{ Dpo={uc H¥(Q); B*u=0 on I},

where and from now on by H(), s real, we mean the set of all ue 92'(Q)
such that there exists a distribution U € H*(R™) with U=wu in £. The norm
of u is defined by

leells,e = inf | Ulls,

the infimum being taken over all such U. Similarly we can define the space
H*(I") and the norm ||-||;,r. It is well-known by the trace operator theorems
that if s> 0, u e H***(Q) implies u € H*(I") and there really exists a positive
constant C; such that

(L.3) lulls,r = Clltllssvn,a,  us H™X(D).

Put for u e H¥Q)
p=u—Bu on [I'.
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Then it follows from that ¢ € HY%(I") and that
u= But+agp
B,u= Bu— B¢

(1.4)

on I'. Similarly putting for v € H*Q)
¢=v—DB on I’
we have ¢ € HV(I"), and on I’

’

v= B*vta¢
(1.4%) {

= B*v—8¢.

PROPOSITION 1.1. Let Q[u, v] be an integro-differential bilinear form de-
fined by

_ B oaus
(1.5) Q[u, v1= Blu, v]+ jrr(x, Dyu-v'do+ jrl . qu-9 do,
where
I'={xel; a(x)#0}.
Then we have for all u, ve H¥Q)

(Au, v)—l—f V%aBu-z‘)da, if veED\J Dp.
Iy

QLu, v]=
(u, A*v)—kj Lau-B*v do , if ueDp\JDp..
Iy 144

PROOF. Let u€ H*Q) and v 95\J Dp.. From [1.4), (1.4*%) we have

1 _
j aBiu-0do= j — a(Bu— Bu)v do

:f —LaBu-ﬁda—-f Jiau-@ do,
I a I'; a
and hence by and
QLu, v]=(Au, v)+j —LaBu-ﬁ do.
Iy «

The same argument as above and the use of (1.1*) complete the proof.

Q.E.D.
CONDITION 1. The integro-differential bilinear form defined by

(1.6) Q'Lu, v]= BLu, v+ [ r(x Dyu-vdo

is coercive over 9p, i.e. there exist two positive constants ¢; and C such
that
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ReQ'Lu, ul z cif|lufli,g—Cllulleg, uEDp.

CONDITION 1*, The form Q[u, v] is coercive over Dg..

This kind of the coerciveness is characterized in[4] when « is a charac-
teristic function of an open set of I

CONDITION 2. There exists a positive constant ¢, such that

Re a(x) = ¢, , xel .

PROPOSITION 1.2. Suppose that Conditions 1 and 2 (resp. 1* and 2) hold.
Then we can find two positive constants ¢, A such that

R QLu, ulze(lulto+| —Llul*ds)—Alulig, ueDp (resp. uc Dp).
I
PROOF. From and we have for any u< 93 (or u < 9p.)
Re O, u]= Re 0T, u]+jr £ R alul*do
1
= R Q[x, u]+jr 71}—5%6 a]u[z—jr Re alu|®do
1 1
= clull, o~ Cluliotca| — ul*do—max| Real | |u|*do
= Ciilull,g natle) 2 cal) .

Using an inequality well known in the theory of trace operators; for any
0 >0 there exists a constant Cs; >0 such that

(L7) J 111%do <3l /104 Col flha,  fE HY@),

we can assert the proposition. Q.E.D.
PROPOSITION 1.3. If we denote by V the Banach space obtained by the
completion of Dy with respect to the norm ||-|| defined by

Il = it g+§ —-lul'do,

it then follows that Dpg. is a dense subset of V.
PROOF. For any u< 9z, we can choose a sequence {v,} in H*£) so
that
Bv, = Bu on I’
(1.8) {
lWal] —>0  (n—o00).
In fact, from B*u=0 on I' we have

Bu = Bu— B*u = a(B,u— Bju) on I'.



410 Y. KaTo

It then follows from that

o= (Byu—Bu)| e H*(").
Hence we can find ve H* Q) so that

[ Buv=¢g

v=0
on I'. Letting

Qn={x€9;dis(x,F)>%}, n=1,2, -,

we introduce function {,(x) € C*(R™) such that 0=, (x)=<1 on R™ {,(x)=0
in £, and =1 in R™—&. Thus
V="V
satisfies
Bv,=Bv=ap=Bu on I’
and

llvall = llvall,e = 1Cavll,g —> 0 (n—00),

since v, =0 on I' and a Poincaré-type inequality

196,0-00 =~ 0], - go

holds with a constant M independent of » and v. In a way quite similar to
the above we can show that for any u € 95 there exists a sequence {v,} in
H*(2) such that

B*v, = B*u on I’
{1.8*)
[lvall —> 0 (n—00).

Now let u € 95. and {v,} be a sequence satisfying [1.8) Set u,=u—v,.
It then easily follows that u, € 9p and [[u—u,||—0 (n—oc0). This asserts ueV
and hence 93.C V.

Next we shall prove that 9Dp. is dense in V. Let u V and {u,} be a
‘sequence in 9y converging to # in V. For each u, there exists a sequence
{Um,n} in H*R) satisfying (1.8%). Set Upn=Un—Vny Then Uy, € Dp. and
lttg—ttp nll —0 (n—c0). Hence for each m there exists an integer m’ such
that

1
”Ium_um,m’m < _7};— .

‘Therefore
Nt — s | < Nt — sl +Hlltte— eyl —> 0 (m—00) .

‘This completes the proof. Q.E.D.
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Denote by V’ the dual space of V with norm

1/l = sap LD

oxecy V]l

It is easily seen that V and H°(2) are contained continuously in H*(2) and
V', respectively, i.e.
lully,@ = lluil, ueV

i =1sle,  feHYQ).

THEOREM 1. Suppose that Conditions 1 and 2 hold. Then there exists an
isomorphism G of V' onto V, which is called a Green kernel for the system
(A;, B), such that for every f V’

Ql[Gf,v]:(f,v>, UEV,

where A is the constant which appeared in Proposition 1.2 and we set A;=A-+2
and

(1.9)

Ql[u: 'U:] - Q[uv U]‘i‘l(u, U) .
PROOF. From Propositions and we have

(1.10) Re QLu, ul=cllull*, uecV
and
(1.11) |Qilu, v]| = const. flull-llvll, u, veV.

Using the theorem of Lax-Milgram, we can assert that for every f< V’ there
exists the unique u € V such that

QR[uyv]:(fvv)) UEV.
We now define G by u=G/f. Applying this to v=Gf, we get by [(1.10)
clGfI =M.

If Gf=0, it follows that (f, v)=0 for every v V and hence f=0. Finally
we shall show that G is onto and its inverse is continuous. Let u< V and
{u,} be a sequence in 9Dp such that u,—u in V as n—co, By proposition 1.1,

(1'12) (Alun) v) - Qll:um U] y ve QB
and hence by (1.11)
1Az, —Azuq |l = const. |u,—unll .

Therefore A;u, converges to some f<= V’. Thus, as n— oo, (1.12) becomes

(f7v>:Ql[uyv]9 UEQB-
Hence
A1l < const. |fj]f .
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These show that u=Gf and G™! is continuous. Q.E.D.

THEOREM 1*. Suppose that Conditions 1* and 2 hold. Then there exists
an isomorphism G of V' onto V, the Green kernel for the system (A¥, B*), such
that for every g V’

Qfu, Ggl=(u,8), wueV.
The proof can be done in quite parallel with one of [Theorem 1l.
THEOREM 2. Suppose that Conditions 1, 1* and 2 hold, and let G and G
be the isomorphisms which appeared in Theorems 1 and 1%, respectively. If we
consider G, G as operators of H(Q) to itself, then they are completely con-
tinuous and G is equal to G* which is defined by

(Gf,8)=(f,G*g)  for f, g€ H'(Q).
PrROOF. From (1.9) and Theorems 1, 1* we have
IGfll;,g=const. || fllye, f& H(2),
|Gellso=<const. |gloge, g HY(2).
Hence G and G are completely continuous on H°(£2), for the injection: H'(£)
— H%(8) is completely coxltinuous.
We shall now prove G=G*. It follows from Theorems 1 and 1* that for
every f, g€ H(Q) N .
(Gf, 8) =QiLGf, Ggl= (], Gg).
This shows G*g:ég for every g H(Q). Q.E.D.

REMARK 1. Proposition 1.3 guarantees that Conditions 1 and 1* are equi-
valent.

REMARK 2. The form Q[u, v] defined by (1.5) is hermitian if a,.(x) =a,.(x)
for all v, ¢ such that |v|, {¢|=<1, y(x, D)*=7(x, D) and a,(x)=a,(x). Then it
immediately follows that A*=A and Bj= B, and hence B*=B. Thus G=0G.

Hence it follows from Theorem 2 that G is self-adjoint as an operator on
H(Q).

§2. Weak solutions and mixed problems.

As in the preceding section we assume a and S to be measurable and
satisfy (1.2), and the notations are all the same as there. Moreover we as-
sume that Conditions 1, 1* and 2 hold.

Now we shall say u to be a weak solution of Problem

Au=Ff in 2
Bu=0 on I,

L4, 1]

if u is a square integrable function on £ and if
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2.1) (u, A*)=(f,v), vEDp
is valid. We shall also say v to be a weak solution of Problem
_ A*v=g in 2
[A* g]
B* =0 on I,
if v is a square integrable function on £ and if
(Au, U)-:(u, g)y uE-@B

is valid. We denote by Dp the set of # such that there exists a sequence
u; € Pp satisfying
e, —ulls —> 0

[Au;—Auglo —> 0

as j, k—oo. Then we set
Au=1lim Au,.
J—oo
PROPOSITION 2.1. Let uc V and f V/. Then the u is a weak solution
of Problem [A, f] if and only if
(2.2) QLu,vl=(f,v), wveV

holds.
PrROOF. Let u,= Dp such that u,—uin V as n—oo. By [Proposition 1.]|

Ql:uny 'U] = (unr A*U) s ve QB' ’

and hence
QLu, v]=(u, A*v), vE Dp..

This shows that and are equivalent, for 9. is dense in V.
Q.E.D.
PROPOSITION 2.2. If ue Dp, the u is a weak solution of Problem [A, Au]
and moreover is in V.,
PROOF. Setting for u, v € H*Q)

SDZu—Blu’ g[):U—BiU on F,

we have ¢, ¢ € HY*(I") and moreover and (1.4*) are valid. From
and (1.1%)
(Au, v)=(u, A*v) = | (x)uBy—Byu-)do.
Thus
uBjv—Byu-5 = (Bu+ap)(B*v—B¢)—(Bu—po)(B*v+ag)
= @F’@—Bu-gﬁ )
Hence
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(2.3) (Au, v)=(u, A*0)= | a(x)(pB*v—Bu-§)do .

Now let u € Dp and let u; € 95 be such that

”uj_u“o —>0

HAu,-—Euﬂo —> 0
as j—oo. Applying (2.3), we have
(Au]': v)_(ujv A*U) =0 y RS QB* .

Letting J tend to infinity, we can see that u is a weak solution of Problem
[A, Au]l.
It easily follows from ((1.10) and [(1.11) that

cllull = Aull” = const. lull, ueDg.
In particular
(2.4) clull=Aull,, ueDp,
from which we can assert the proposition. Q.E.D.

PROPOSITION 2.3. Every weak solution of Problem [A,f] belonging to
H*) is in Dp and Au=f in Q, provided a € H**(I").
PROOF. Let u be a weak solution of [A, f] such that u= H*{). Then
we have by (2.3)
(Au, v)—(f, v)=0, ve CR(80).

This means Au=f in £, which implies
(2.5) | ax)Buv=B)do =0, v E Dy,

Let X be arbitrarily given in C<(I'). Then we can easily find a function
ve H*(2) such that
t Blv=—px

v=alX

on I, since aX and BX are belonging to H'**(['). It is clear that v € 9.
and v—Bw=2 on I'. This together with [2.5) yields Bu=0 on I, i.e. u€ 9.
THEOREM 3. Denoting by Np. the set of weak solutions of Problem [A*, (],
we have
H(Q2)=Ay(Dg)® Np-..

PROOF. We have only to prove that A;(Dp) is the closure of A, 9p) in
HY$). This is easily shown by [2.4). Q.E.D.

Now we consider the mixed problem [0.3). Here we assume that ', I,
is C= of dimension m—2. Then we can prove
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THEOREM 4. Let a=1on I';, =0 o0on I'y, and B=1—a. For each n=1,
2, -+, we introduce two measurable functions a,, B, satisfying (1.2) and that
a,=1on I'y and =0 for every x& I'y such that dis(x, ['}))=1/n. Then for
every fe H'(Q), G,f converges to Gf weakly in HY(Q), where G, is the Green
kernel for the system (A, B,= a,B;+S,).
PROOF. Let V, be the completion of 95, with respect to the norm
R e R I

n
and

Qlu, v1=Qiu, v1+{ _ -muads.
an¥0 Ay
For fe HO(‘Q)y we put Up = an- Then

Q% Lun, v1=(f,v), veEV,.
By [(1.9) and [1.10) we have

cllualla=1751s.

Therefore there exists a subsequence #,. such that

(2.6) Upr —> U in HY(Q).

Now using the same argument as in Proof of [Proposition 1.3 we can
assert 95 C V,. Hence

Q%[un’ U]:<f’v)y UEQB’

since B,=0 on /', and v=0o0n /',. Thus it follows from (2.6) that u € H'(2),
u=0 on I, and

(2'7) Ql[uy 'U] = (fy U) s ve V .
The use of Lemma 5.2 in guarantees u< V. This together with
shows u=Gf/. Q.E.D.

§3. Regularity of the Green kernels, 1.

By #*(I"), s=1, 2, ---, we denote the set of s-times differentiable functions
on I" whose derivatives of order s are all bounded on I'. Let «, 8 be func-
tions on I satisfying and assume that a< 3%*{"). By ¢ we denote,
throughout the present paper, positive numbers not greater than 1. All other
notations are the same as in §1. Now let ¢.(x) be a C*-function on R™ de-
fined in Lemma A.2 of Appendix, and denote by «a. the restriction of ¢. onto
I', and set

Be=14e—a..

Then if follows that a. and B. are in C*(I") and uniformly convergent to «
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and B on I' as e—0, and that their derivatives are all uniformly bounded on
I’ with respect to ¢, and moreover that e<a.<1+e¢ and a.=a on I for
every ¢. Accordingly 0=8.=1 on [

PROPOSITION 3.1. Let Qu, v] be an integro-differential bilinear form de-
fined by

QTu, v1=Q'w, v1+ | P2 axus do,
r %
and set

j B.u=a.Bu+tBu
| Bfu=a.Bu+pu.

Then we have for every u, ve H*L)
QTu, v]=(Au, )+ | ~L-aBu-vdo
r Qe

= (u, A¥)+ -c%—au-B—?_ﬁdo.
I &

The proof may be done by the same argument as in Proposition 1.1\
Throughout this section we must assume Condition 2 as well as the follow-
ing one, stronger than Conditions 1 and 1*.

CONDITION 3. The form Qu, v] is coercive over H*({2), i.e. there exist
positive constants ¢, and C such that

Re QCu, ul Z cif|ulf,g—Cllull,g, uesH(2).

PROPOSITION 3.2. Suppose that Conditions 2 and 3 hold. Then we can find
{wo positive constants ¢, A independent of ¢ such that

R QTu, w12 c(lult+[ o lul'de)=2lulhg, ueHD).

The proof is immediately obtained in parallel with one of [Proposition 1.2,
For each ¢, the completion of C*(£2) with respect to the norm

Nl = ullo+f ——luldo
is obviously equal to H'(Q).

PROPOSITION 3.3. Suppose that Conditions 2 and 3 hold. Then it follows
that for every fe C*(Q) there exists the unique u, < HY(Q) such that

3.1 Qilu, vl=(f,v), veH(Q),

and moreover that u, is in C*(2) and satisfies
Au.=f in Q
Bau,=0 on I’

(3.2)
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and

(3.3) clluclle= 11 f oo,

where A and c¢ are the constants which appeared in Proposition 3.2.
PrROOF. We have from [Proposition 3.2

(3.4) Re Qilw, ulzcllullz, weH(Q),

and immediately

|Q3[w, vII = Cllulldivil, —u veHY(Q)

with a constant C> 0 not depending on &. These inequalities assert the uni-
que existence of u.€ H'({) such that is valid. Obviously fe C=(2)
implies u, € C*(2) and [Proposition 3.]] assures [3.2). From and

cllulle =1(f, ud [ =1 fllo,allttcllo,0

and hence follows from [ucllo,o < Il u.|l.. Q.E.D.

Let 2, be an open subset of £ and assume that there exists a C*-coordi-
nate transformation y=#(x) such that £, is mapped in a one-to-one way
onto an open portion 3 of a half space ¥, >0and I',=2,N I is transformed
onto an open portion ¢ of y,=0. For functions # on £ and ¢ on I', we
write

i@(y)=u(e~'()) for yel
$(y)=o& X)) for ¥ =(y, ", Im-1)EO
and assume that the form Qj[u, v] is altered by the transformation £ to
Pela, 9= PyLd, o]+ Py 4, 7],
provided u, v HY(£) and supp[v]C 2,V I,. Here

Pla,5]1={ = b y)D*uD%dy+| a(y, Dii-idy’,

Z bhilpl=1
PiLa, 3]= | = b(y)isdo,

all coefficients being infinitely differentiable and o6(y/, D’) of first order in
D'=(Dy, -+, D,_,). In the following propositions we always assume Condi-
tions 2 and 3. Then it follows from [Proposition 3.2 that there exists a posi-
tive constant ¢’/ such that

(35) ®e L, 01z (Jals+ |~ 1a1%ay)

for every u e HY(Q) satisfying supp[u]C 2, .
Now let £ C§(82,J Iy and assume { =0 there, and put
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PROPOSITION 3.4. There exist a constant C, >0 such that for every uc
C=(2)
| PLT#, Tal—P,Ld, T*Ta]l < il | Tdl,,x
PROOF. For the sake of simplicity, we shall write # as u and set
R=b,(yD"

S=D*  (lv], lpl=1).
Thus

(RTu, STw) = (TRu, STu)+([R, T Ju, STu)
= (Ru, T*STu)+(R, T Ju, STu)
= (Ru, ST*Tu)-+(Ru, [T* S1Tu)+([R, TJu, STw),

where [A, B] denotes a commutator AB—BA and (u, v) does the usual inner
product in L,(2). Hence

(3.6) |(RTu, STu)—(Ru, ST*Tu)| = K, |[ully,= [ Tul,,s .

In this section we always denote by K, a positive constant not depending on
U or e.

Now,
(0Tu, Tu)e=(Tou, Tu),-+ (o, T Ju, Tu),

= (0u, T*Tu),~+ (6, T Ju, Tu),,
and hence by

(3.7) |(6Tu, Tu)e—(0u, T*Tu)e| = K,U0, T Jull-1y5,0l Tttll 112,

< Kllullyz [ Tully,s

where and in the following we put
(u, v),,:f uvdy’ .

The proof is completed by and [(3.7). Q.E.D.
PROPOSITION 3.5. There exists a constant C,>0 such that for every fe&
C=(2) and every ¢

| P§LTii., Ta.]—Ps[d., T*Ti.]|
<G(f -Llaiay+] | Bulray) ([ Lorarar)”,

u. being a C™-function on Q settled in Proposition 3.3.
PROOF. In the proof we omit the wave sign ~. Thus
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Pg[Tus, Tus:l—Pg[ue, T*Tue]:‘f [ gs

b, T]us- Tu.dy’
= G—O}T[ﬁsb, T JuTuidy'+ | [71~ T|(8.bu)Tudy' .
By

Bebu. = —ba.Byu. on o.
Hence

[ 1w =T, —i—](basBlue)
=[D;, | Cba B

D« D«

. b = — e
o .Bu

aZ C smte a.

{bBu, .

Therefore by the Schwarz inequality and by Remark 1 in Appendix we can
conclude the proposition. Q.E.D.

PROPOSITION 3.6. Under the same situation as in Proposition 3.5, we can
find a constant C, >0 such that for every fe C=(2) and every

o 1 ~ ;
38) 1T+ § —5 1Ty < C(I S Mo+ | Baal*do).
PROOF. Applying to ## = T#., we obtain
¢ (IT8: +f ——ITi.|%dy) < Re PLTi, Tit]
<|PLTa,, Ta]—PIa, T*Ta]+| P, T*Tad].
Let v.e C3(2,U I, be such that #,=T*T4%.on 2. Then from [Proposition 3.3

PeLi,, T*Ti)= Qi us, vl=(f, vo).

Thus by Propositions 3.4, and the Cauchy inequality we obtain that the
left hand side of

< K,(1tdis+ | - laul2dy +{ 1 Biul*dy +1718s ).
This together with completes the proof. Q.E.D.

PROPOSITION 3.7. Under the same situation as in Proposition 3.5, we can
find a constant C,>0 such that for every fe C*(2) and every ¢

1
el gt oI Dee]*do = Cil Fla,

where D, denotes the tangential derivative of first order.
PROOF. Rewriting as T,=D,f,j=1, ---, m—1, we get for every u< C=(2)
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1Zul s —Kf,(lICuII]erE 1T 52,2 -+ DR (@)l )

and from and the ellipticity of A

| D2(Cul3,s < Kol £ 13,07+ Iuellt, o+ Z} 17 jticl,2) -

These together with [Proposition 3.6 and [3.3) give

(39) Gl = Ko(IF 1,0+ | Biwel*do) .

Now again from [Proposition 3.6 and
1 .
a &6

(3.10)

el dy 2 2f ——| T, 1%y +2f ——IDZ Il dy

< K,(1/I,0+ | Bawel*do).

Using the partition of unity of £, we obtain by and (3.10)

g+ | | Detel*do = K1/ .0+ | Bl do).

Applying to f= B,u.,, we can assert the proposition. Q.E.D.
PROPOSITION 3.8. If fe C*(Q), then Gf is contained in Dy and A,Gf=f
in £2. Moveover it follows that there exists a constant Cy >0 such that for
every fe C~(Q2)
1GSl2,0= Csll fllo,a -

PROOF. From [Proposition 3.7]

luli,e=Cil S0 -

It then follows from the theorem of Banach-Sacks that there exists a decreas-
ing sequence ¢y, &,, --» converging to zero such that

u31+ ot +us£_

n— u

converges to some % in H*(2) by the norm |-|,,. Thus, from [Proposition 3.3,

Ap,=f in £
and

Bu=-1- 3 {(a—a.) By +(8—B. g}

Jj=1

Hence, letting n tend to infinity, we obtain
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Az'l/t:f in £
Bu=0 on I,

which shows that u=G/f and hence A;Gf=/f in 2. The latter half of the
proposition is obvious. Q.E.D.

THEOREM 5. Suppose that a < B*I") and that Conditions 2 and 3 hold.
Then the Green kernel G stated in Theorem 1 is also an isomorphism of H(Q)
onto Dy with G'=A,, provided Dy is equipped with the norm |||, g.

PROOF. Let f be arbitrarily given in H°(2) and let f; € C=(Q), j=1, 2, -,
such that f;—f in H({2). [Proposition 3.8 guarantees that Gf; < 9z, A,Gf;
=f; in £ and

IG(f3—f2,0 = Csll £;—fillo,g -
Hence Gfe 95, A;Gf=/f in £ and

IGS 12,0 = Csll fllo,g -

Now for any u & 95, wWe set
U= GA;M .
Clearly U< 93, for A;us HY(2). Moreover

AzU:Azu in Q2
and U—ue 95, Thus u=GA,u and

[ Azulls,0 = Kiollull,o .
Q.E.D.

THEOREM 5*. Under the same supposition as in Theorem 5, it follows that
the Green kernel G stated in Theorem 1* is also an isomorphism of H(R) onto
Dy with G* 1= A¥, provided Dp. 1s equipped with the norm ||, g.

The proof is just the same as one of [Theorem 5.

REMARK 1. It follows from Theorems 5, 5* that there exists a constant
C>0 such that

lull=Cllulse, u€Dp\JDp..

But this fact immediately follows from (1.4) and (1.4%) too.

REMARK 2. In Theorems 5 and 5% we can replace a< B*[") with
va € 8(I"). Then we must use the ¢.(x) defined in Remark 2 of Appendix,
instead of one defined in Lemma A.2 there.

COROLLARY. Every weak solution of Problem [A, [ (resp. [A*, g]) which
belongs to V is in @5 and Au=7f in 2, if f< H(Q) (resp. g H'(Q)).

PrOOF. Let u< V be a weak solution of [A4, f] with f€ H%({), i.e. from
Proposition 2.1, we assume that the u satisfies
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QLu, vl=(fiv), veV.
Accordingly

Ql[uy U]:(f_}_zu, U), ve V-
Thus u=G(f+2u). Hence by we have u € Dy and Au=f+u.

§4. Regularity of the Green kernels, II.

This section is continued from the preceding section, that is, we shall
discuss the further regularity of the Green kernels G and G. Thus let % be
a fixed integer such that 2 =3. We always assume that @« € 8%(I") when the
bilinear form Q°[u, v] defined by satisfies the following condition :

CONDITION (H). For all x= £ and all v, ¢ such that [v]|=|g|=1

(%) = (%)

is valid, and y(x, D)—7y(x, D)* is of order zero.

Then ¢ and ¢. are functions defined in Lemma A.2, and p and p. are
defined by (A.4) in Remark 1 of Appendix. When Condition (H) is not satisfied,
we must further assume va € 8*(I"). Then p and p. are functions defined
in Remark 2 of Appendix, and ¢ and ¢. are defined by (A.5). In either case
we denote by a, the restriction of ¢.onto I" and set f.=14¢e—a.. All other

notations are the same as in § 3 and we always assume Conditions 2 and 3.
Put for any integer r =1

MTZ| ‘ZS sup|D*p.(x)]
{ Nr:[ Zér sup|D*q(x)],

the supremum being taken over all x= 2 and all ¢ such that 0<e=<1. It then
follows from Appendix that M; and N, are finite when a € 8*(I") and that
M,, N, are finite when va € 8%I"). In the following we denote by C; and
L; positive constants not depending on # or e. Their dependencies on M,,
N are denoted by C;(M,, N;) and L;(M,, Nj).

PROPOSITION 4.1. There exists a constant C,=C(M,)>0 such that for
every ue C>(2) and every ¢

] Qil:peuy peu]——Qi[uy QEu] I
= Gi(llullo,oll perells, @+ 1uellf, @+ el -aro,rll Detill i) -

PROOF. Setting
R=a,,(x)D”

S=D* (v, lpl=D),
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we have

(Rpeu, Speu) = (pRu, Spau)+([R, p.Ju, Speu)
= (Ru, Sptu)+(Ru, [p, S1pu)+([R, pcJu, Sp.u)
= (Ru, Spau)+(Rp.u, L p., STu)+(Lpe, RIu, Lpe, STu)
+(R, plu, Speu).

Thus
|(Rpeu, Spau)—(Ru, Spiu)| < L,(llullo,oll perell i, o+ lul, ) -
Now
(7peu, psu)l" = (psru; psu)l"—l—([Ty ps]u, peu)l"
= (yu, pauw)p+{Lr, pelu, pu)r,
and hence

|(rpeu, peu)p—(ru, piu)p| = Lollull - vo,rll Dettllvve,r -
Q.E.D.
Let £ C(2,UTI,) and assume =0 there. Put

T=D¢, |ol=r,

where p,=0 and 2=r=< k—1.
PROPOSITION 4.2. There exists a constant C,= Cy(M,, N..;) >0 such that
for every ue C*(Q) and every ¢

Re {P[Ti, g.Tii1— PLii, §.T*Ti]}
= Glalyz 1 pTaly - 1207,2) -

In particular C,=C,(M,, N,,;) when Condition (H) is satisfied.
PROOF. For the sake of simplicity we omit the wave sign ~ and set

{ R=0b,,(y)D*

S=D* (lv], [pl=1).
Then

(RTwu, Sq.Tu)=(TRu, Sq.Tu)+(R, T Ju, Sq.Tu)
= (Ru, T*Sq.Tu)+ (R, T Ju, Sq.Tu)
= (Ru, Sq.T*Tu)+(Ru, [T*, Sqg.JTu)+(R, T Ju, Sq.Tu)
= (Ru, Sq.T*Tu)+(Ru, [T*, S1q.Tu)+ (LR, T Ju, Sq.Tu)

+(Ru, S[T*, ¢.1Tu) .
Hence

“4.1) Re {(RTu, Sq.Tu)—(Ru, Sq.T*Tu)}
= Ly(M)llullyz | peTully,z +Re (Ru, SLT*, q.1Tu) .
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Now
(0Tu, q.Tu)e=(Tou, 9.Tw),+([d, T Ju, ¢.Tu)s
= (0u, T*q.Tu)s+([6, T Ju, ¢.Tu),
=(0u, ¢.T*Tu);+(0u, [T*, ¢.1Tw),+(L6, T Ju, ¢.Tu), .
Hence

Re {(0Tu, q.Tu)s—(0u, q.T*Tu),}

= L(Mllully,s | pTuly,s +Re (0u, [T*, ¢.1Tu), .
This together with gives
(4.2) Re {P,[Tu, ¢.Tul—P,[u, ¢.T*Tul}

= L(M)lully,s | pTully,s +Re Pilu, [T*, q.1Tu].

1) Case in which Condition (H) is not satisfied:
SLT*, g J=LT* p]S+LS, [T, pe]]
=2{T* pe1pS+LD., [T*, p.JISHLS, [TH, pel]

=2LT*, pJSp+2LT*, pILpe, S1+L b, [T*, pJIS+LS, [T, p217.
Thus
Re (Ru, S[T*, q.1Tu) = L(|ully,z 19 Tully > +llull,s)

with Ls= LgM,, N,.,;). By the similar argument as above

Re (0u, [T*, ¢ JTw)s = Ly(llullr,s 1 Tulls,s +1lull?,s)
with L,=L,(M,). Hence
(4.3) Re Pilu, [T*, ¢ 1Tul < Le(lullr,s 10 Tully,s +llul?s)

with Lg= Lg(M,, N,.,)
2) Case in which Condition (H) is satisfied: Put

v=[T% ¢.]JTu.

It follows from Condition (H) that, denoting by P? and ¢° the principal parts
of the form P, and d, we have

(4.4) Re PiLu, v]= Re Pu, v]+Re {P,[u, v]—Pilu, v}

= L (PIu, v14 Py, w]) + 0, 5%)—(8%, w)

+Re {P\[u, v]—Piu, v]}.
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(i) (Ru, Sv)+(Rv, Su)=(Ru, [T*, ¢.]TSu)

+(Ru, (S, [T*, ¢1T Ju)+(LT*, ¢.JTRu, Swy+([R, [T*, ¢.1T Ju, Su)
= (Ru, [T*, ¢.JTSu)+(Ru, T*[q., TISw)+O0(llull?,s) .

Here
LT* ¢.JT+T*Lq., T1=[LD?, q.1D*C+LDLq., D°C]
= CLD?, q.1D°C+LDLq., DL
={(D*, ¢.1D°+DrLq., D*I)C
= C(D*Lg., D¥]—-T4q., D*1D?){
=D, Ug., DFIIC.
Hence

|(Ru, Sv)—(Rv, Su)| = Lo(Nripllul?s -

(i) (0", v)o+(8", u)e = (8"LT*, ¢:1Tu, w)e+(T* g, T 10", u)s .

Now
o°LT*, q.]JT+T*q., T 10°

=0(LT*, ¢.JT+T*q., TD+[T*q., T ], 0°]

=0°CLD*, [g., D°TILALT*(q., T], 0°].
Hence

1(6°u, v)+(0%, u)| = Lio(Npr)|ull?,:
(i)  [Plw, vI=Pilu, v]| < Liy(Np)llull,:
Accordingly by [(4.4), (i), (ii) and (iii)
Re PiLu, [T*, ¢.1Tul < Lip(NpiDlullf s
This together with and establishes
Re {P,[Tu, ¢.Tu]—P,[u, ¢.T*Tul}

= Li(lully s 1pTully,s +llul?,s)

with L;;= L;(M,, N,,,) in Case 1) and = L;;(M,, N,,,) in Case 2).
Thus the proposition immediately follows from the following :

PiTu, ¢.Tul—Pilu, ¢.T*Tu]

= (B:bTu, Tu)o—(Bbu, T*Tu)e=(LB:b, T Ju, Tu), .
Q.E.D.
PROPOSITION 4.3, There exists a constant Cy3>0 such that for every f&
C=(2) and every
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| BTallte +( |Ta|%dy’
S CEl e+ 2 NBD Floys 1 Fllr-orwms Velroamys)

where u, is a function introduced in Proposition 3.3.
PROOF. In the proof we omit again the wave sign ~ like in the preced-
ing one. Substituting p.Tu. for u in [35), we obtain

(45) ¢/(Ip.Tuall,s + | | Tu|*dy) < Re PLp.Tu, 5T

From [Proposition 4.1,

Re {Pe[paTue; psTus]—PE[Tus’ quus]}
é L14(“us”r,z‘ ”peTueul,S +”ue”$,2‘) .

“Thus with the aid of [(4.5) and [Proposition 4.2l we obtain, by using the Cauchy
inequality,

(4.6) I eTuel?,x -+ Ll Tue|*dy’ < Lys(luel?s +1 PeLue, ¢.T*Tudl) .

Now from [(3.1) in [Proposition 3.3
P, .7 Tu]=(Jf, o.T*Tw)  (7=|-35))
=(Jf, LD Tu)=(f, JaLD* DTu,)  (D°=D*D, |p’|=r—1)
=(pD*f, JEp.DTu)+(f, LJq.L, D I1DTu.)
= (CpD°'f, ID(pTu))+ (L pD? f, JLDe DITus)
+(f, LJaL, D#1DTu,).

Hence
| PCtie, qT *Tu]| < Lis{I1C 0D fllo,z (| DeTtells,s + 11 Tttello,z )
+“f“r—2+1/2,z ”Tusnllz,z} .

“This together with guarantees the proposition. Q.E.D.
PROPOSITION 4.4. There exists a constant C,>0 such that for every fe
L£=(2) and every ¢

IVIEZkHPD”usH%,g+ lttell3-172,0 = Gl 2 pD?f 13,01 flli-2-1r0,0) -

PrOOF. With the aid of [Proposition 4.3 we have for j=1,2, -+, n

’

| 5D, T+ |Ta.| dy

= Ll’z(”ue“q%,.a'l‘]ylgr_l”psDyf“%,g‘}‘”f“r—2+1/2,9”us”r+1/2,9)
(=LuF).



Mixed-type boundary conditions 427

Thus
@ 2 (2 15D D G5+ [ | D) *dy) S LigF

=r lyl=1
Pm—o

It now follows from ((3.2) and the ellipticity of A that D? (Cua) is expressed
by a linear combination of the terms

D,Dy¢u), DDyCu) (A<j k=m—1),
D) (1=j=m),

—————

Gie  CF,  [As (..

Hence, operating p.D°(|p|=r—1, p»=0) to D} (Cue) and using (4.7), we get

> E l p DODV(Cue)Ho = L,F.

lol=r—11v|=2
om=0

Similarly, operating $.D°D,, (lp|=7—2, pn=20) to D: (Cue) we obtain

> E I psD‘oDU(Cus)Ho s = LyoF.

| r—2 |y|=3
i
Successive repetition of this process gives us
L2 18D U+ 2 [ 1DeGu,|2dy < Lo F .
pm=0 *
By the use of the partition of unity of 2 we obtain, noting 0< p(x) =< p.(x)
in 2,

(4.8) 2 2D udd gt luely,r = Lo F -

vl=rt+
Here we shall use the coercive estimate:
llu!|3+1/z,g = const. (llAzu]|3-2+1/z,g+ ”unﬁ,[’) ’ ue Cu(2) ’

and the interpolation inequality: For any é > 0 there exists a constant C; >0
such that
Ilullr,g < 0| ulferre,0tCollulteg, ueC(2).

With the aid of [(3.3), [4.8) and the Cauchy inequality as well as the above
two inequalities, we can conclude the proposition, since p <p. in 2 and r was
arbitrarily fixed so that r<k—1. Q.E.D.
Let s be an integer such that s=1. By H*(£;p) we denote the Banach
space obtained by the completion of C=(2) with respect to the norm |- ; pl,
defined by
fus Plls,g— 2 oD ullg, g+ 1ull3-1,0 -
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For s=3, we set
{ $(2;p)={ueH(2;p); Bu=0 on I}
W2 p)={ues HQ;p); Bsu=0 on I}.
PROPOSITION 4.5. 1) For s=1,
l H(Q)C H*(Q; p)C H*¥(Q)
H(Q;:p V.

2) The space Hy(2; p) and H%.(2 ;p) are closed subspaces of H(L2;p)
when s=3.

3) For s=3,

‘ 2(2;p)CV
H3.(2:p)C V.

Here the injections are all continuous.

PROOF. 1) is easily proved by the above definition and [1.9). 2) follows
from [1.3). With the aid of Remark 1 in §3 we may prove 3). Q.E.D.

PROPOSITION 4.6. If feC>(Q), then Gf is contained in H%R2;p) and

A,Gf=f in 2. Moreover it follows that there exists a constant C;> 0 such
that for every fe C=(Q)

(4.9) 1GF; plle=Csll 15 Plla-z -

PROOF. Let f& C=(2). Then from [Proposition 4.4 it follows that [u.; p|.
is bounded with respect to ¢, for p. is bounded on . Making use of the
theorem of Banach-Sacks, we can find a decreasing sequence {¢;}, converging
to zero, such that

Uyt e HFug,
n“‘—En*‘
converges to some u in H*(2;p) by the norm |-;p|,. By the same argu-
ment as in [Proposition 3.8, we can assert that u=Gf e HiL2 ; p) and A,Gf=f
in £. To complete the proof we must show [4.9). Now the use of Proposi-

tion 4.4 gives us

n

1
“vn ; p”k § n j§1 ”usj ’ p“k
C 3 v
=202 10,0°718,0+ 1 f li-e-12,0)"" -
J=1 |pl=k~2
Letting n tend to infinity we obtain [4.9). Q.E.D.

THEOREM 6. Let k be an integer such that k=3. Suppose that a & B*(I")
when Condition (H) is satisfied, that ~va  8¥I") when Condition (H) is not
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satisfied, and that Conditions 2 and 3 hold. Then the Green kernel G stated in
Theorem 1 is also an isomorphism of H* ¥ Q; p) onto HEL ; p) with G 1= A,

PROOF, The proof may be done in a way quite similar to one of Theo-
rem 5. To do so, we have only to notice that if ue H(;p) with s=2,
then Du e H*"'(£;p) and the mapping #— Du is continuous. Q.E.D.

THEOREM 6*. Under the same supposition as in Theorem 6, it follows that
the Green kernel G stated in Theorem 1% is also an isomorphism of H®*Q2; p)
onto HE(Q; p) with G* 1= A¥.

The proof is just the same as one of

COROLLARY. FEvery weak solution of Problem [A, f] (resp. [A*, g1) which
belongs to V is in HEQ;p) (resp. HE(2:p)), if feH"%Q;p) (resp. g
H %2 ; p)).

PROOF. Let u <V be a weak solution of [A4, /] with f€ H**2; p), i.e.
from [Proposition 2.1, we assume that the u satisfies

QLu, vl=(f,v), wveV.

Accordingly
Qlu, vl=_+iu,v), velV.

Thus u=G(f+Au). Hence by we have ue HY(2:p) and Au=
f+2u, since f+Aues H(L2;p). If k—2>1, we can assert, by the same argu-
ment as above, u € H4(£2; p). After repeating this process, we finally obtain
ue HY 2 ; p). Q.E.D.

Appendix.
LEMMA A.l. Let f be in B*(R™) such that f(x)=0 in R™ Then

(A1) ’jfi(x) ‘<oK f(x) xe R™
. ax] = J ’ ’
where
_ 0°f
K;= SUP |52 (x)‘.

PROOF. We first prove (A.l) when m=1, i.e.
(A2) F@IFS2supl(0]-fx), xR,

It is trivial at x= x, such that f/(x,) =0. We hence assume f/(x,) # 0. Clearly
f(x,) > 0. By the Taylor expansion formula,

=Ry = fx) = hf ()t 7t 0),
with 0 <6 <1. Here, putting
h= 200 /f (),
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we obtain, by using the fact f(x,—h)=0,

$x) = 5 (BEELY fr(xy—20 1) 1)

from which it follows
F(x0) = 217 (x0=201(x0) [ /(%)) f(20)
This proves (A.2).
Now we shall prove in general case. Let f< B%(R™) be such that f(x)=0

in R™ We consider f(x,, -+, x,) as a function of a variable x;, freezing the
remainder. Applying (A.2), we obtain, for every x= R"™,

of 2 0*f

an (xly 0y xm)l ézstgg mﬁ(xh "ty t; Tty xm) f(xh Tty xm)

= 2K, f(x).
Q.E.D.
Let 2 and I" be the same as in Introduction and let there be given a
function A(x) on I' such that he B*I"), k=0, and 0= h(x)<1 on I'. We
can then easily find a function H(x) in 8*R™) (an extension of & on the
whole space R™) such that

0=ZHx=1 on R™
H(x)>0 in £
(A.3)
H(x)= h(x) on I’
supp LH ] is compact.
Let f(t)e C*(R) such that f({)=0 for t=0 and =¢" for t<0. Using
this, we define a function {(x) in C§(R™) by
L) =1 x1 =1/ f( x| =1)dx
and set
ps=0"C(5),  8>0.
It then follows that ps(x) =0 in R™, ps(x)=0 for |x|=0 and

{ api@dr=1.

LEMMA A2. Let a = B%I), k=1, be such that 0Za<1 on I' and q(x)
be an extension of a on R™ satisfying (A.3). Then a mollifier q., ¢ >0, of ¢
defined by the convolution

¢.=@®+e)xpr  (L=3 sup

j=1 scR™

% 5))

0x;
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ts in C*(R™) and uniformly convergent to q(x) on R™, and its derivatives of
orders up to k are all uniformly bounded on R™ with respect to e. Moreover
it follows that e < q(x)<1+¢ and q.=q on R™ for every > (.

PROOF. The first half of the lemma is well-known. So we only prove
the latter half. For ¢>0,

=g ={ _ {ax=3)+e=a(0)}pur()dy.

Thus

lg(x—y)—q(x)| = Lly|.
Hence

g(x—y)+e—q(x)=0 if |y|=Ze/L.
This assert ¢.(x)—¢(x)=0 for all x& R™ From the fact ¢<q(x)+e=<1+e
for all x= R™, it follows ¢ < ¢.(x) <1+¢ for all x& R™ and all ¢> 0.
Q.E.D.
REMARK 1. If we set on R™

()= vg(x)

p(x)=+q(x),
it follows from Lemma All that p.(x) is uniformly convergent to p(x) on R™,
and that its derivatives are uniformly bounded on R™ with respect to ¢>0

if k=2, and moreover Ve <p.(x) < V1+e and p.(x)=p(x) on R™ for every
e>0. In fact we have

(A4)

0p. __ 0q.
axj (x)— axj (x)/ps(x)
and
09 /5|2 0% .|, n
|52 o] =2sup| S| -0, xR

REMARK 2. Let va € #*(I'), k=1. Then we can assert the following
in quite parallel with Lemma A.2: A mollifier p., ¢ >0, of » (an extension of

va on R™ satisfying (A.3)) defined by
op
axJ- (X)D

=W+ xomu (7=IFe—1, M=3 sup.
is in C*(R™) and uniformly convergent to p(x) on R™, and its derivatives
of orders up to % are all uniformly bounded on R™ with respect to ¢>0.
Moreover it follows that v14+e —1=p.(x) < +1+¢ and p(x)=p(x) on R™ for
every ¢ > 0.

If we set on R™

q(x) = p(x)*
qe(x) = ps(x)z ’

(A.5)



432 Y. KaTo

the ¢.(x) has the same property as that defined in Lemma A.2 with (vV1+¢e —1)?
=< q.(x)=1+c¢ instead of e=q.(x)<1+¢ on R™
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