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§ 1. Introduction and main result.

£

In recent years many researches are presented about “rate distortion
theory” or “e-entropy” or “information rate” in certain branches of information
theory. They are largely motivated by practical problems—for example,
data compression or coding of signals. The notion of ¢-entropy is originally
due to C. Shannon and is closely connected with his fundamental theorem.
We can regard the e-entropy of a stochastic process as a characteristic
quantity of the process—a certain index of complexity of the process in view
of finite-dimensional approximation.

It will be important to carry out estimates of e-entropy for basic stochastic
processes. For Gaussian processes Pinsker showed how to estimate the e-
entropy [5]. Many other researches are concentrated on the discussions about
Gaussian cases. On the other hand, we know few estimates for non-Caussian
processes: for a diffusion process [1] and for a process of jumping type
with discrete state space [3].

In the present paper we give an estimate for stable processes.

Let (2, 8, P) be a probability space. For random variables (stochastic
processes) &, 1, { etc., whose state spaces might be different measurable
spaces, Kolmogorov defined the amount of information /(&, ) and the average
conditional information EI(§, 7|¢). Though in the definition of EI(&, n|{) E
is simply a symbol and has no meaning of expectation, in our cases we may
consider it equal to the expectation of information between & and 7 under
the condition with respect to {. We list up several properties of them which
we shall use in the sequel without mention. We omit assumptions necessary
for the formulas since we shall deal with only the cases when the assump-
tions are satisfied. We refer readers to for assumptions and termino-
logies which we do not define here.

a) I(§,7)=0 if and only if £ and 7 are independent.

b) If (&, ) and (&,, 7,) are independent, then
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I((&4, &), (1, 1)) =1(&,, n)+1(&,, 1) .

¢) If f is a measurable mapping from the state space of » to a measur-
able space, then

I, fm) = 1§, 1),
EI, f(IO = EIE, 110 .

Especially if f is a one to one bimeasurable mapping, then equality holds in
the above formulas.
d) If 7 is subordinate to 7, in particular, if 7=/(») as in c), then

EIE, 71O =EIE, 71O+EIE, (& 7).

DEFINITION. Let £§={&(?); t=[0, T)} be a real-valued stochastic process
defined on the probability space (R™P, B¢, P:), where B; is the smallest Borel
field on R™7? generated by cylinder sets and P;: is the probability distribution
of £ on R™?, In the present paper we call HP(§) “e-entropy of &”;

HP(E) =inf {I(§, n); ne WP},
n={n(t); t= [0, T)}; 7 is a stochastic process on (R™7, B¢)

W) = and satisfies EJOT[ EN)—n(t)|dt=e ’

where expectation E is with respect to the joint distribution Pz, of (£, %) on
<REO.T) X REO,T), _@5 X Qé)-

The amount of information and hence e-entropy are essentially concerned
with the joint distribution of two random variables on the product space of
their state spaces. W {P(&) might be considered as the set of joint measures,
which have the marginal distribution Pz, on the product space of the sample
space of £.

We are interested in the speed of growth of H®(£) when ¢ tends to 0.

Our main result is the following.

THEOREM. Let £={&(); t[0, T)} be a stable process (symmetric or
asymmetric or one-sided) with exponent 1 <a <2. If ¢>0 is sufficiently small,
an asymptotic estimate of HP(E) is given as follows:

HP ()X e

D —_— (6]

that is 0< @_H%@§lim%<w.
e—0 &—0

In §2 and §3 we give preparatory upper estimates of ¢-entropy for a

certain process with stationary independent increments. An upper estimate

for symmetric stable processes is given in §4, where we apply the results

of §3 and the technique once applied for diffusion processes in [1]. §5

contains a lower estimate for symmetric stable processes and an estimate
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for the process considered in §2. Though the latter is quite an unsatisfac-
tory one, the result may be interesting by itself.

For simplicity of argument we suppose £(0)=0 a. a. for all the processes
under consideration.

§2. An upper estimate of c-entropy for a stationary independent
increments process with finite number of jumps.

In the present section we suppose £={&(f); t [0, T)} is such a process
with stationary independent increments as:

E 1658 — t iﬁu__l d ,
0= exp ()
where the Lévy measure n(du) satisfies the following conditions:
(i) B=n(R\{0}) < oo,
(i) 0<{ Juln(du)< oo,
R\{0}

(iii) n(du) has a density function n(x) and —J'R\{ )n(u) log n(u)du > —oo™®,
0

PROPOSITION 1. Let & be a stochastic process as above. Then for sufficiently
small ¢ >0 its e-entropy is estimated from above by

HP(®) = T 1og LT 1 BT h(g)+0(),

where &£, is a random wvariable of jumping width whose probability density

function 1is n(w) and h(&,) is the differential entropy of &,:
B8

h(&,) = —fR\{O) n‘gu) log néu) du.

We prepare several lemmas. is a well-known fact, easily verified
from the characteristic function of &(¢) [6].
LEMMA 1. There holds

§<t)351+52+ +5Nt

in the sense that the processes of the both sides have the same distribution in

R®T. Here N, is a Poisson process with parameter B. &, &, -+ are indepen-
dent of N={N,} and mutually independent identically distributed with the den-
n(u)

LEMMA 2 (Linikov [3]). Let N={N,;t< [0, T)} be a Poisson process with
parameter B. If we define

sity function 3

*). The logarithm will be taken to the base e.
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HO(N|Np)= inf {EI(N, M|Nz); M W(N)}
M={M®); t<[0, T)}; Misa0,1,2, - -valued

0) — T
WO(N) = process and E\ Ay, dt<ce
0 t t

(X yy#n, 18 the indicator function of {N,+# M,} in [0, T)X R®D),
then for sufficiently small ¢ >0

HP(N|Np) < BT log 51— 1 BT log T— Ellog Nz )+o(1)

PROOF. Since the above estimate is immediately calculated from that of
(16) in [3], details shall be omitted. But for later use we will reproduce
here the construction of M= {M,} € W®(N), for which we try to calculate
EI(N, M| Nr), and related probabilities with slight modifications of notations.

Let 7, 75, =+, Ty, be jumping times of {N,} in the time interval [0, T)
and put
4= min (tp4;—74) (zo=0, TNT+1ET)~
0SksNp

We divide the probability space R™P into the events
A, = {Nyp > ngy} B,={4>20,}
Ay ={Nr = no} B, ={20,< 4 =24}

By={4=2d,},
where 7,, 0,, 0, are chosen as follows by fixed a>0, ¢, d, m:
n,=1[e™"], T~J1r7<6<1; 0,=¢% ¢<d<1; d;=¢€™ m>1¥,

and let
C0:A1U(A2f\B3); Cleszla C2:Aszz-

Now construct a partner process M= {M;} as below.

(i) If C,2w, put M,(w)=0.

(ii) If C,VYC,3w, {M,} shall be a process which increases with jump 1
and M,=N,=0, My=Nr. And its conditional density function of jumping
times ¢ =(g,, -**, 0,) under the condition {Nr=n, 7,=1¢, ---, ¢, =1,} is given
by pi(Sy, =+, Salty, -+, t,) according to we C; (1=1, 2);

a; exp {—rélsk—fkl}
pi(slt):pi(sl, Tty sn]tlr ) tn):

if s=(s,, -+-, s,) belongs to the cube
of length 20, with center t=(¢,,---, t,),
0 for other s=(s;, -, Sa),

*) We can choose b=1 in this case in [3].
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where
E(Nr) 1+¢(e)
€ 1—¢(e) °’

a;=[2y'1—e )] and 7=

Sb(s) = E(N ) (E(Nl-m)) Ha 0(5 1+a)

¢<E) — TEE(NIT+G)E(1+0.)C—1+O(Em—l)] .
For such M= {M,}, we have

P(Cy) = %gb(f:) (P(A) <E(NF9e*®e, P(A, N By =0(e™),

(1—5(c)
B Tt 16) 21 e

(1—a(e))d(e)
E(jl xMﬁdet | C > = fl—{-—gbg(be)e)P(Ci)

T
From these inequalities it is easy to verify M e W®(N) i.e. Ej Xaprw, dt <e.
0

REMARK 1. As is easily seen from the definition of p;(sy, ===, Salty, -+, ta),
for almost all w= C,\JC,

IN.—M,|=0o0r1 for every t<[0, T).

LEMMA 3 (Linikov [2]). Let E=(§,, -+, &,) be an n-dimensional random
variable. Define e-entropy of & by

HP@) =inf {I¢,7); 7€ WPE)
WeE=11=0, ~,7); 5 ES |&—nl=e}.
If € has the density function p(x,, -, x,) and its differential entropy h(€):
Wy e B ==, o, x) log pla, -+, Ta)dxy - iy
is not negatively infinite, then for sufficiently small ¢ >0

HP(E) = nlog — +h(§)—n log 2e+0(1),

HLE)=nlog —i— +h(é)—nlog 2e.

REMARK 2. The estimates of are directly deduced from the
procedures of the proof of the main theorem in [2] Moreover we note the
fact that the upper estimate is actually evaluated with such 7=, ---, 7,)
as each 7, satisfies E|&,— ﬁklze (k=1,2, ---,n). Unfortunately the relevant
formula of Corollary 2 in is inaccurate. In fact even in the case when
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1 . . . . ,
a =2, B=-5(in notations of [2]) it contradicts the Kolmogorov’s well-known
formula.

PROOF OF PROPOSITION 1. Let &= {&(t)} be written as in Lemma 1. Put
éo:(), 51251, 52:51+$2,

We will construct a nice process 7= {7(t); t [0, T)} € W¥(§) which may
make I(§, 7) as small as possible and then evaluate I(¢, 7). We modify the
technique of the proof of Take a small ¢; >0 and consider two
cases according as fT=<1 or 7T >1.

Case 1. If BT <1, we construct M= {M,} as in letting

;= BT 1+¢(ey)
&1 1‘925(51) )
Case 2. If BT >1, we construct M= {M,} quite similarly as in

letting

_ BT _1+¢(e)
= g 1—BT¢(e) -

Besides, M should be constructed independently of ™ =(&,, &, -, &,) under
T
the condition Nyp=mn. Then in both cases Efo Xayen,dt < ¢, is satisfied and M

gives the upper estimates of (¢ is substituded by e,).
We define 7= {y(t, )} as follows:

0 if weC,
wo={
b A if wsC,VGC,,
where 7 =0 and 7 =@F®, ---,7M), n=1, 2, --- are random variables con-
structed independently of z®=(z, -+, 7,) and ¢ =(oy, -+, 0,) under the

condition My=mn (accordingly Nr=mn), and which gives the upper estimate
of HL(E™) in for sufficiently small ¢, >0. From Remark 2

1) E(|&—7| I Mr=n)=¢, (k=1 ,n;n=12 ).

First we prove the constructed process = {7(#)} belongs to W¥(&) if we
choose appropriately ey, &,.
(i) To prove e WP(E):

T 2 T
=F H—n(t)|dt = E H—n(Hldt; C;¢.
J=E[ 160—y0ldt= 3 E{{ 16t—7®)dt; C.}
Denote by J; the term corresponding to the suffix i. Then

Jo :E{JOT[ gD\ dt; Co} =Jou+Joz,
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Jn=E{f 1601dt; Ay = [ B(éy) 5 Aar
< [ B8]+ + 18wl At
= [ BB 18] 5 At
= BT*E 16, (PCa+-ED poar,

Ju=B{[ 16WIdt; A B} =[Béwl; A B

=n,TE|& | P(A: N\ By).
Taking into consideration the relevant probabilities in we get

<{ El&]e[g(e)+0(e )] Case 1,

E|&|BTe,[¢(e)+O0(er)]  Case 2.
On the other hand

Ji=Jut/i,
Ju=E{{ 160=1(0 Xyerdt; C.}

= B{J 16w 780 it O}

NT Tk+1
<E{Z| |&—7pTldt; Ci}
k=1Y 1}

Np

=E{ 2 16:—7"P|(thns—14); G}
k=1

=& E(T—7,; Ci}

=& TPC,),
T
Ju=EA[, 16O=70  tyeomdt; G}
T = ~ ~
= E{fOUENz—sz! 1w, =700 DAy x 2, dE Cl}

T ~
§ E[j‘o HéNcIXNz>Mg+ l gNt+1|XNt<Mt+ISM:_ﬁ%T)‘XNt#Mt}dt; Cl]

holds by Remark 1. And by the relation (1)
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T
Ju = [ (B1&]+edE Ly, ; Ci)dt

= (BI&, | +e)E{[ T widt; O}

Hence we get

- eTPC)HEIG +e) IR case 1,
e TPC)HEG | +e) 20 EE@). case 2.
Quite analogously
|| rreE S g Casel,
S TPCOF(El | +e) 200 o) Case 2.

Finally in both cases
]:]0+]1+]2

<e&TH+(E|E] +52>51+BTEI &l O(Efn‘c) .
If we choose
3

- >
(2) &1 = 3EI'51| ’ €= 3T °

we may think J=<e¢ for sufficiently small ¢ >0 (where we choose m so that
m—c>1).

(ii) Estimation of I(&, 7). “

Take ¢, ¢, as in (2). If we apply the formula d) twice repeatedly, then
we have

. I(¢, 7) =I(Ny, n)+EI{N}, 7| Np)+EI(, 7| Nz, {N,})
= [T+,
I, < H(Ny) = I(Ny, Np) = —E[log {_(%T)—}!VT'@'M}]
=BT log -BefTﬁ +E(log Nr ).

I, =EI({N}, {M:} | Np)+EI({N}, {n()} | Nz, {M.})
=EI({N.}, {M.}|Nr)

<ﬁT10g +ﬁTlogT E(log Nz 1)+o(1) (cf. Lemma 2),
for the second term of I, is equal to EI((zy, -+, Twg), (GMD, o | G#P) [ Nr, {M,})
and vanishes as long as (7, -+, Typ) and (FMT, -, 75E7) are independent

given that Nr, {M,} are fixed.
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13:E1((§1, R ENNT)7 (MT’ Gy, Oypy ﬁEMT)! o ﬁl(th'T)NNT: Ty """y TNT)
:El((élr Tty éNT): (MTv Oy ", UMT)INT’ Ty **° TNT)
+E]((él) E) é:NT)’ (ﬁiMT>’ T (MT))INT’ Ty "y TNy MT! 01y °*° UMT) .

The first term of I, vanishes since the relevant variables are conditionally
independent under fixed Ny, (zy, -, 7yp). Apply to the second term theW
formula:

EIE, 7L v)=EI¢, 710

if (£, ») and v are conditionally independent given {*. Then
I,=EI(&,, -+, Enp), GD, -, §ID)| Ny, M)

™0 -
= EOI((GI, e, Enp), GO, oo FUDY| Np =n, Ny = My) P(Np = n)
(EI((-+), (-*)|Xs) =0 since n(#)=0 on C,)
- 200(” log 51—2 +h(E,, -, E)—nlog 2e-+0,(1) ) P(Np = n)

from In the above O,(1) means the error term O(1) which might
depend on each dimension n. Since h(&,, .-+, £,) =n h(&,) from the later Re-
mark 3, we obtain

1,= E(Nrlog 61—2+th<51)—% log 2¢)+ Max 0,(1)
nEng

=BT log -+ BTh(E)— BT log 2+ 0(1)..

Summing up I,, I,, I, and substituting ¢, = 3E|E o €y = 38’]‘ of (2) we obtain
1

12 fT1og ~—+8Th(&)+0()

9E|$1|T

= 8T log L1 BTRE)+0M).  goed.

REMARK 3. We have used an equality
h(ély Tty én): n h’(&l) .
This is easily seen since the density function of (&, -, &,) is

p(xl; Tty xn>—-_—p(x1)p(X2—x1) "'p(xn-xl— e ‘xn—l) ’

where p(x) is the density function of &,.

* It is easy to verify the formula from the Dobrushin’s formula (p. 45 [4]):
EI((& n), vIO+EIE, 9| =EI(y, (&, )| +EIE, »]|0).
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§3. An upper estimate of c-entropy for a stationary independent
increments process with small jumps.

In the present section we investigate a process of the same type as that
of §2. We use the same notations as in §2. We are concerned with a
stationary independent increments process £ = {&(t); t = [0, T)} which satisfies
the conditions (i), (ii), (iii) of §2 and

(3) E|&|=Le (L >1 is a constant),

where ¢ is a positive small parameter which coincides with ¢ of the ¢-entropy
H®(€). Under these circumstances the proof of fails when ¢ tends
to 0. Hence we must find an another estimate. An upper estimate of HP(&)
for such & serves our purpose in future more effectively than the estimate
of [Proposition 1. The following [Proposition 2, which will be used in §4
under the present situations, holds true for the process under consideration.

PROPOSITION 2. Let £={&(t); t< [0, T)} be a stationary independent incre-
ments process which satisfies (i), (ii), (iii) in § 2 and (3). Then the e-entropy of
£ 1is estimated from above by

HP () = K(T, L)BT+BT log (BT+2)/T+0(1),

where K(T, L) =2(1+~T,L) log 4T, L+1og e*(L+1/4T,) and T,= Max {T, 1}.
In order to prove [Proposition 2 we need the following two lemmas.
is a partial version of for the n-dimensional jumping
location € of & when the jumping width is subject to (3).
LEMMA 4. Let E™=(&, &, - &), E,=&,4+&+ - +&, (k=1,2, -+, n) be
given, where each of &, &,, -, &, is distributed with an identical density func-
tion. If we assume E|&,|=Le (L >1), then

4) H®E™) = nlog L+0(1) .
PrROOF. (4) is deduced from Remark 3 and the inequality:
h(E) < —log (1/2Le)+loge,

which is valid for such &, that satisfies E|&,|= Le.

We prove an inequality about the jumping time variable %7 =(ty, 7,,
e, Typ) of &

LEMMA 5. There holds

PROOF. For each &k 15k =<n)
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n!
Ellog (zes1—7p) [Np=n]= jp%log (har—ta) —pdt

tn k42 EES U
=7 Tn _s. dt dtn—l . j‘ dt k+1j.0 WIOg (tk+1 tk)dtk ’

where
={t=(t;, by, =, 1); 0=, <t, < - <, < T}

If we apply successively integral formulas

j:(a——s)”“1 logsds= aTk(log a—1——12——- ——k—) ,

k+1

js logsds=—F——+— k+1 (loga k+l>

we see that

Eflog (zps1—7) | Np =n]

1
T” n, (1ogT 1—o— - —- —>_logT log (n+1)—1.

It is trivial to obtain (5) from this inequality.

We are ready to prove [Proposition 2

PROOF OF PROPOSITION 2. For the process & we construct a partner
process n={n(t); te[0, T)} € WP() for which we try an estimate I(§, %),
as follows. We will construct » to be a process of jumping type. % is
expressed with the number of jumps My in [0, T'), the jumping time variable
oM =(g,, 0y, -, o) and its location variable §¥D = (FHD FHD ... FFD),

Let us fix an integer n,=[(1+2+T,L)BT]+1.

First we define M;y= Nr when Ny <#n, and M;y;=0 when N; > n,.

Second we define the jumping time variable ¢ = (o, g5, -+, 0,) given
that Np=n, ¢ =t t=(,, t,, ---, t,) by the conditional density function

©) b ID=p(ss, -+, Sul by, 1)
(L+1/4T)"T%
I (et

. u Ly
it seII[t tt (L+11/4T0)T )

0 for other s,

where T,=max {T,1} and we put f,,,=7. Notice the probability that
00, <0, <1,<0,< + <1,<0,<T is equal to one since (L+1/4T,)T, > 1.

Third we define the location variable 7™ = (7™, #§™, -+, #™), which shall
be conditionally independent of ™ under the condition Ny;=n so that 7™
may give the upper estimate for H&q(6) in
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Finally we define n= {(#)} given that Mr=n and ¢ =s by
W(t) = 5‘7%’1) fOI' te [sky Sk+1) (k :O, 17 Tty n) 1

where we put 7 =0 and s,,,=T.
Mutual information between z¥7’ and ¢‘*T’ and that between &§%7 and
791 ynder the condition Ny =n<n, are estimated from above as follows:

) I(zVD g VDI Np=n)<nlog (n+1)+nlog el (L+1/4T,)—logn!
8 I(EVD, 79| Np = n) = n, log 4T, L+0(1) .
In the first place we will prove (7). Since ¢ has a density function,
I(z™, 6| Ny = n) = h(¢"™)— Eh(¢™ | ™).

As is well known, the maximum of differential entropy for the class of
density functions on a bounded domain is attained by the uniform distribu-
tion; that is

h(g(n)) é h(T(n)) — Iog Z!

On the other hand

—Eh(a™| ™) =nlog TO(L—}—1/4T0)—~E[§: log (tp41—72) | Nr=n]
T
= nlog Ty(L+1/4To)—nlog —r vy

by (6) and Thus (7) is proved from the above inequalities.
Next in order to verify (8), it needs to note that L should be sub-
stituted by 47,L in (4) as well as ¢ is substituted by &/47,. This is

because E|&,|=Le=A4T,L- 4T Since we may consider that (§,7™) and

(™ FP+b ... f@atd) have the same distribution (cf. Remark 2), we have
I(EWD 5D | Ny = n) < [P0, 70 (8) is obtained from this inequality and (4).

There remains only to follow the steps in §2.

(i) To prove pe WP(&).
T
—n(1)|dt| Ny =n, £ =t, 6™ =

E({ 160—ndt| Ny =n, £ =t, oW =5)

=E[ Z {1E— 72 (St 1 =780 | (trs1— S0} | Np=n, 7™ =t, 6™ =5]

< 3 {(LA1/AT)e(si— 1) +eltu—1)/AT)

since E|&,—7{"|=¢/4T, and E|&—%| S E|&4—7§% ] +E|& | = (L+1/4T ).
As is easily calculated,
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E(Tk+1—TkINT:n):nL_H,
oy — 1 _ _
E(“k'—fklNT—n)— 2(L+1/4T0)T0 E(Tk+1 TklNT—‘n)
1 T

~ 2ALT1/4T)T, n+1 -
Then we have for n<n,

E(f 16— dt| Ny =n)

n € T € T 3
é,Z{(iﬁT‘ nrl T AT, " ntl )=pe-

On the other hand
. :
E({ 161dt; Ny >n,) S TEIGIE(Ny; Np>n)
=TE|&|E(Ny)P(Np = ny) < ¢/4
because of Chebyshev’s inequality
P(Ny=ny) < P(|Ny—pT| =z 24T,L BT) < 1/4T,L BT .

. T
Hence it is proved that E jo e —7(t) | dt <.

(ii) Estimation of I(§, 7).
Quite analogously to §2 we have

I(¢, 7) = I(Ny, p)+EI™P, 9| Np)+EI(, 7| Ny, 797)

=L+1,+1,,
where

I,= I(Ny, 7) < H(Nz) = E(N7) log —rry-+Ellog Nr ]

= 8T log ﬁLTqLE[log N1,
I, = EI(z"T, 9| Ng) = EI(z"D, ¥ | Np)+EI(c¥ 1, 9| Ny, V1)
= EI(z%D, ¢"T°| Np)
< E[Nrlog (Np+1)]J+E(Ny) log eTo(L+1/4Ty)—E[log Ny !]
< BTlog (BT+2)+pTlog eT(L+1/4T,)—E[log Ny !]
by (7) and Jensen’s inequality for the concave function log (x+2):

E[Nrlog (Np+1)1= BTElog (Nr+2) = 8T log LE(N)+2],
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and
I,= EI&, 5| Ny, <P) = EIEOD, (gD, VD) | Ny, zVT)
= EIEND | gV | Ny, ¢ VD)L EI(EVD D | Ny ¢V g D)
= EIEOD, 10| Ny)
< n,10g 4T, L+0(1) < 2(1+~T,L ) 8T log 4T, L+0(1)

from (8). Summing up /;, I, and I;, we obtain the upper estimate of H{(&).

Proposition 2 is proved.

§4. An upper estimate of c-entropy for stable processes.

Throughout the rest of the paper let £={&(#);t<[0, T)} be a symmetric
stable process with exponent @ (1 <a < 2) whose characteristic function is

. ) . du
Eei?® = t e —1—i0u)—ra
eXp{fR\{o)( ) lu|** }

Fix a small positive number ¢ and define mutually independent processes
EDP={£D@(t)}, {P={¢(t)} with the characteristic functions

Eet?5®® — exp {tj (e”’“—l)—*1 udﬁm } )

lulzd
el ; . du
108OXt) ifu o A

Ee = exp {Z‘ylum(e 1—10u) (0] }

Then
E(t) = EX(t)+LP(@)

in the sense that both sides have the same distribution in R®7P,

As for &9 the conditions in § 2 are satisfied. We calculate the quantities
related to § 2.

LEMMA 6. &9 = {£9(1); t< [0, T)} is a stochastic process of the same type
as in §2 and the density function p(u) of jumping width &P is

0 lu| <o
p(u)= 1 >3
Bu[ lul=d,
where
2 o a
,3:,8(5)——-—“—5 .

And we have

E|&®| = 2 (_if)‘l_aiﬁ_%:_a__g’

a—1
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h(EP) = —% log ﬁ+—1—’;‘“— (log %+1) .

As for (P ={¢9(t); te[0, T)} there holds the following
about the upper estimate of H®({?).
PROPOSITION 3. For sufficiently small ¢ >0

HP () < Hwe(C®)
4T g

2—a n°

IA

e +o(e™),
where HP(L) is defined by
r
Héz) @Yy — 3 f I (5)’ ;E cﬁ)t_ Hl2dt < &2 .
)= int {IC?,0); Ef 107°0—n®)%dt =}

As will be verified below in ¢ is itself a mean continuous
process. For the proof of we can repeat the discussion de-
veloped in [I], where it is shown how to estimate H®(:) for a mean con-
tinuous process. We shall check in the following LCemma 7, 8 9 and 10 the
each steps of calculation applying that method. For details we refer readers
to [T] From now on we denote {® with { for brevity of notation as long
as confusion does not occur.

LEMMA 7. The covariance function r(t,s) of {={{({)} is a continuous
Sfunction. The j-th eigenvalue A; of the integral equation:

T
(9 § rt 9)p()ds =g
is
20%% * T? 1 P o
2]‘ 2_a 7{.2 ( _L 2 _‘CJ +0<] ) (] - 11 2; ) ’
172
2§ T
C=s%a

PROOF. In fact if t>s,

r(t, s) = ELLBOL(s)] = ELEDO—LNL)I+ELL()]

— 2 _ﬂ_*di_ 168¢s) _ 252—(1
= ELL(5) )= — g B[] =2

S.

The lemma is easily proved.
LEMMA 8. Let ¢,(t) be the j-th eigenfunction of (9). Define

G = Log0d (=1,2,).

Then E|{;|*=2A4,;. Finite-dimensional random variable ({;, (s -+, Cn) has a
bounded continuous density function for every m.



196 K. Kazi

PrROOF. We have
T T
@)= L, (dt = f,()dL(s),
0 0
T
where fj(s):f ¢;(uw)du. We investigate the characteristic function of (,, {,,
"ty Cm)
$(0,, 6, , 0n)=Eexp[i36,¢,]
J=1

=Eexp[i £0,{ 7,00d5)].

The characteristic function of a stochastic integral of this type ‘is found in

[61
. T iz LI .om dtdx
&8y, -+, 0,) = exp Uo fm@ CERAZF O] _1—zxj§ 0;f () ——rar (X[ ] .

In order to obtain the conclusion of it is sufficient to prove
&y, -, 0,) = L'(R™. We will prove that in the obvious inequality

90, -, o Sexp[ [ ] (—cosx 30,7, 5w ]

the right-hand side is summable outside a compact set.
We note that

(i) there exists such a positive constant K(J) that

1—cos z= K(0)z* for every |z|<d,
.. t
(i) ¢,(H= \/T sin (] 5 7,;« ,
f-(t):a-cos('—L>Lt a,= (D
J J 2 T J N DT -

[rwnma=0 Gxn, [ Tera=4

_>’

1
2

Now consider a point 0= (@, -, 6.)), 6] > 715— where A=(3 a3)?. Since
=1

]a:{x; x| < T%H—}C{X; | x| < 6}

in view of 6<1 and

[xﬁ)ﬁjfj(t)IglxlAHﬁH <0 for every x< Jp,
j=1

we have

T m dtdx
jo j]xKB(l—COS xjgl 6jf](t)) lxlaﬂ
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=[], KoxE 0,507 ,df,‘iii

=K, T, 0) 3 2,605 09 %,
j=1 j=1

where K(a, T,0) is a positive constant depending on a, T and ¢ only. In

conclusion there holds for |6} > ~Al—5~

m

2 4405
190y, , 6| S exp{—K(a, T, ) H—(Z o)},
> 63
=1
the right-hand side of which is obviously a summable function in the set
. 1
{0; 161 >—5-}. qed
LEMMA 9.

HPQO=HP((y, ) Cn))
where g%:aZ—jﬂz, >0 and HO(C,, -, Cw)) is defined by
H?)((Ch Tty Cm)) :(7] ’infﬂ ){I((Clv R Cm)r (771’ Tty nm)); EéllCJ—vjlzé 52} .

LEMMA 10. For sufficiently small ¢ >0

1

[SE

H®(Ly, , Cu)) S —— log —I——%log m—m log {27z'e(1~t-:2/§1 A}

+h(&, -+, Caw))Fo(1).

Generally there holds for the differential entropy
‘ ; .
h((Cy, -+, Cn)) = log ]1;[1(21re2j)2,

For proof of and we refer readers to The
existence of differential entropy A((;, ---, &n)) is assured by Com-
bining the above lemmas we will prove

PROOF OF PROPOSITION 3. The first inequality is obvious from the defini-

tions of HY and H®. Take a sufficiently small &< E} 2;. Combining Lemma

9 and 10, we have for each m such that &*/7T— Z ,=8>0

j=m+1
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HP(C®) < Hve(C) < PP, -+, L))

1 m 2 m 1
<—lo H—g—/———mlog (1—2/ p 2;)7+o(1) .

=1

If we choose m and & so that &/m~21,, the relations & =¢?/T— E 4,
j=m+1

2;=Cj7?+0(;j% (cf. Lemma 7) and Z 2~m™! determine m= [2CT

j= m+l

1
Finally by using Stirling’s formula m!~ 27 ¢ ™m "*? we have
HP((D) < m+o(m) =2CTe 2 +0(e?)

_ 4 T 2
T 2—a 7t )

Now we proceed to the main proposition of this section.
PROPOSITION 4, Let £={&(t); t=[0, T)} be a symmetric stable process
with exponent 1 < a <2. Then

HP(©) = Cla, T)e™"+o(e™),

where

2a+2 TS a+1 o
2—a =* - TK(T’ a—l)

Cla, T) =

and K(-, -) is the constant in Proposition 2.
PrROOF. We put 6=¢/2 and decompose &(¢) into the sum of two inde-
pendent processes just as indicated in the beginning of this section:

EM=E2(D+L().

First let us investigate an upper estimate of H{ (6%). £9 satisfies the
conditions (i), (ii), (iii) of §2 and

BlgPl=—tro=L5 (L=-%

from We apply of §3 replacing ¢ by ¢/2. In the

present case

> 1)

L=—2—, p==2(5)" (ct Lomma®.

a—1"

Even if B8 and ¢ are related in this way, all the discussions in §3 go well,
because it has no effect on the argument of § 3 whether the expectation of
number of jumps BT is varying with e. Also for such L and S as above,

holds just as it does.
(10) I, 7)< K(T, 1) 8T+BT log (BT+2)/8T+0(1)

20'+1

- TK(T, ———) e +0(1),




On the c-entropy of stable processes 199

where 7, is the process which belongs to W (£°) and gives the upper

estimate corresponding to
Next we investigate an upper estimate of H{ (). We will apply Pro-
position 3 substituting ¢ by ¢/2. Even when 0 is given by the relation 0=

g/2, all the discussions in go well ; i.e. for the process 7, which
belongs to W& () and gives the estimate of

1) ICP, ) = m+o(my=—— L0 cato(e),

2—a =@
if we take m:[é—?ZTV] in the proof of [Proposition 3 with C=

2 e 2-a T2
(%) — (emmaD.
It is obvious that the process = {n({)}:
n(t)= 0,(8)+1.(2)

belongs to W®(E) for n,€ W& (E?) and n,€ W& (?). The mapping of
path functions

{6} — ({£2®)}, {2
is a one-to-one bimeasurable mapping, since £9(-) is a step function whose
jump widths are greater than é and {‘() changes its value with jumps less
than 0. Hence by the property c) of §1

HPE@ = I, n=I(£2, ), )
g I((€<5>7 C(a))! (771: 772)) .

As is easily seen from the constructions of », and 7, in the preceding sec-
tions, (6, ;) and (£, 5,) are mutually independent. If we apply the pro-
perty b) of §1 to the last quantity, it follows that

(12) HPE) < I(EP, 9)+1(C, 7,) .
Finally we obtain from [(10), [11) and [(12)
HP(@) =Ca, T)e*+o(e™).
REMARK 4. Though we have proved feijno?s"‘Hé”(E)§C(a, T), the bound

C(a, T) is not necessarily satisfactory. In fact C(a, T) tends to infinity when
a—1 or a—2. This is because we have treated- with equal weight large
jumping part &% and small jumping part {°, and as a consequence over-
estimated the information about the part of small probability when « is close
to 1 or 2. It is desired to give a more critical coefficient of ¢ * for H®(§).

We will here explain why we must have established [Proposition 2 in

addition to Proposition 1.
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We succeeded in the present estimation by decomposing &=£®+{?¥ where
we chose 6 =0(c) so small that E|&®|<e. On the other hand, even if we
improve the discussions of §2 to apply to the present proof, we can show at

most that 11m H®(&) < oo, This is due to the fact that E|&,| must

0 1/6
£
be a constant in the situation of § 2.

§5. A lower estimate of c-entropy for stable processes.

We give a lower estimate of H{(&) for symmetric stable processes. The
problem will be reduced to a lower estimate of e-entropy for a finite-dimen-
sional random variable (cf. Lemma 3).

PROPOSITION 5,

HP(E) = L, T)e*+0Q),
where

a+1 1+a 2
C(O.’ T)-‘ (Sez)a a (10g 7"}'1) .
The following gives a first step to obtain the estimate of

Let be given ¢>0and fix § >0, ¢’ = £T%, We use the nota-
tions £9, {® etc. in §2, §4 and omit the suffix 6 when confusion does not
occur. We denote with £979 = {£99(t); t &[0, T)} the stationary independent
increments process with the characteristic function

1080y i0u__ du
(13) Ee exp {tj6’5|ul<6(e 1) lu‘1+a } .
LEMMA 11. For small ¢ >0 there holds an equality
HP() zinf (EIE®, 1167%); 1€ WRE) .

PROOF. Since for n& W®(&)

Ef 101wt < Ef |&0—n(d]d+E j OTr £t dt

d

3
Tz

= e+ (BILO01 7

T? <2

(cf. Proof of Lemma 7)

holds for small ¢ >0, we have a series of inequalities from ¢) and d) in §1

HPE)=inf {I(§, 7); n€ WP}
= inf {I((§?, £92, (), 9); n € WP ()}
= inf {I((§?, §9%), n); n € WR(E)}
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= inf {EI(§?, 9]6°"%); p € WR(E@)}
= inf {EI(E, 7]16°%); 5 € WR(EM)},
where we defined a new process 7= {7(f)} for n& WR(”) by
7(8) =) —&2(1),
which is subordinate to 7= {n(#)} € WP(£9"”) given £9»® and belongs to
WR(E9).
PROOF OF PROPOSITION 5. From
HP(€) =z inf {EI(E?, 71£°); 7€ WR(EP)}
Zinf {EI(Ey, -+, §wp), T Np, 73y 00, Targ, €997); 1€ WR(ED)}

Since &9 is a process with a finite number of jumps in [0, T) like that
of [Lemma 1|, it is possible to express both the average conditional informa-
tion and the restriction 7 € W®(£?) with p,(t) and ¢.(s, x), where

p.(f) = the density of '™ restricted on the set {Ny=n}

— (‘8731')” 05T ;71 (‘B:j du )

lulzd lull+a

teDp={t=(, -, t,); 0Z2,< - <t, < T}
and
gn(S, x) =the density of

PINE™® = m, €9 <5, 80D S 1, -, 620 S 3,)
xz(xly""xm)ERms s:(sh""sm)EDg},

where N@'9 7@ and £2"% denote respectively the number of jumps, k-th
jumping time and k-th jumping width of £9®, Then it is easy to see

HP@zinf[E inf {KE,, -, &, 7168

[ BP0 1011 @)t = enntt, s, 0}]
where (#) is the condition

— 0,0 — — 6',6) — (0",0) — 0",0) —
NT’_n’) NT =m, 'Z'-—t,’l' =S, El ’ _‘xly"'rgm )—xm

and the outer infimum is taken over all non-negative functions {e,,(t, s, x);
n,m=40,1, 2, ---} that satisfy

(14) IS A g eonlt 5, 00(00a(s, x)dtds}dx < 2e.

First let us investigate the inner infimum. We omit for simplicity of
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notations the condition (%) (n, m, t, s, x are fixed). If 7 belongs to the range
where the inner infimum is taken,

T o
eunlt, s, ) Z E [ 16P(0—1(1)] dt
nop U+ -
=EX [ 1&—i0ldt  E=0, t,=0, t,,=T)
=0v {1
2 3} (=t inf {E[E—7(0)| 5 <<t} -

Hence we conclude that there exist s, =[¢, t;,,), [=1, 2, --+, n, for which

BB 167050 = 2e0nlt, 5, 9

holds, where we put

(15) &= n(tz+1—‘tz)§z ’
7(s)) =ty —1)7(s)) .
Since 7(s,), «-+, 7(s,) are subordinate to 7, the inner infimum is greater than

inf {I(&, ~, £, (70D, -, 7(50); S-E 3 18—7()] S 2e0alt, 5, 0}
= H(zlgnm(t,s,z)(ély Ty gn)

1
znlog 5 %)

from The last quantity equals

+h(E, -+, E)—nlog 2e

F(n, 1, eun(t, 5, 2) = n10g g +nh(E?)+log IT (s —1)
since

h(éls Tty .E-n): h<§1y Tty én)_]_IOg nnﬁ<tl+l_tl)

by change of variables and h(,, -, &) =nh(t®) by Remark 3 of §2.
Next we investigate the outer infimum. The problem is to minimize

n,méioj‘lgm{ng.ny F(?’L, t’ Enm(t, Sr x»Z’n(t)qm(S, x)dtdS} dx

under the condition As is easily seen from the functional F we may
suppose that the restriction is given by an equality. By usual variational

method we see that

eunlt, 5, ¥) = 7

gives the minimum, so that
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HO@z 3 [ [, 0 FO b canlt, s, 0)a(D0n(s, Ddtds}dx
(16)
= ﬁTlog ‘BT

Np
+BTh(e?)+Ellog I (71— )]
About the last term of (16) holds the following inequality

Np - T
a7 E[log I (t121—72) | = BT log BT+ -
This is because

E[log ﬁ(m—m] = B[ N log gy ]

from in §3 and
ECNrlog (Nr+1)1= BTE[log (Nr+2)] = BT log (8T+2)

from Jensen's inequality for a concave function.
If we substitute the third term of (16) by and the second term A(&{®)

of (16) by the expression in there holds

T BT

HP&) = BT log 8%  a

T
og +8T-1E% (1og £ +1) +pTlog by .

Here we will choose = [(d) so that the first and the second term cancel
each other, that is

B=(gr)s (e for such p).

Then we obtain
Tu+1 1 2 . " 3oz+1
) 2 e % (log 2+1)e —ghsre log (14 Ziee)
=((a, T)e™*+0(1). g.e. d.

We have proved the main [Theoreml

More generally for asymmetric or one-sided stable processes we can
obtain the asymptotic estimate of order ¢”* quite similarly. The proof needs
almost no change. The crucial point is concerned with the order of growth
of Lévy measure near the origin—we can choose <& by favor of the

_1
relations E|£® [ B @, h(E@)X——L—log[B in [Proposition 4 and [Proposition 5

We will prove the following for the process considered in
§2.

PROPOSITION 6. Let £E={&(t); t< [0, T)} be the process in Proposition 1,
§2. Then

BT < lim H(©)/log = TTm HP(6)/log < 2T
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PROOF. TnHé”(é)/log—%— =< 28T is obvious from the estimate of Proposi-
e—0

tion 1.

In order to prove BT = %%Hé"(f)/log% we note that
HP(E)=inf {I(§, 7); nE WP}
= inf {EI(§,, -, énp), 0| Np, 7y 0, Tag); 7€ WR(E)}
and modify the proof of That is

HP@) zint [ Einf {I(E,, -+, &), 71@);

[TE1s0—n0l @it = 0}]

where (#) is the condition Ny =n, 7™ =t and the outer infimum is taken over
all non-negative functions {¢,(¢); n=0,1, ---} that satisfy

S ([, enOpaldt <.

Here p,(f) is the density of ™ restricted on the set {Ny=n}. Succeeding
arguments are quite analogous and in conclusion we see that

Nr
HE(€) 2 BT log ——+ STh(E)+ ETlog I (s11,~ 0]

= pTlog —++0(1).

Thus Proposition is proved.

REMARK 5. As is suggested by the results about the ¢-entropy in func-
tion spaces, also the ¢-entropy of a stochastic process has a kind of character
of dimension. § 2 states that

18 lim HE(#)/log —-=n
e—0

for an n-dimensional random variable &.

If we simply compare the result of [Proposition 6 and [18), we may well
expect that the process & of has a finite-dimensjonal character.
In fact the process & can be completely described by Ny and (&, .-+, §np) and
(z1, =+, Twp). The dimension of those random variables is 2Ny in total 28T
in the mean (we excluding the random variable Ny itself, which is of differ-
ent character: i.e. a discrete-valued random variable). Hence in considera-

tion of it is expected that liino Hé”(&)/log—i—:Z‘BT. However, since

we have neglected about the information contained in (zy, -+, Twp) in the
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lower estimation of (also in the proof of [Proposition 5)), we
have necessarily attained to an unsatisfactory estimate.

As it is shown in the estimate of the main [Theoreml that
1

€

lim log HP(£)/log =a,
e—0

stable process & has certainly a higher dimensional character than the above
process. This estimate is, in a sense, a generalization of

lim log H®(B)/log % )
&0

for one-dimensional Brownian motion process B = {B(#)} [5].

References

[1] K. Kazi, On the c¢-entropy of diffusion processes, Ann. Inst. Stat. Math., 21
(1969), 347-356.

[2] I0.H. JlunbkoB, BbluuC€HHE e-3HTPOMMH CAY4Ya#HBIX BEJHYMH NPH Majwx ¢, [1pos-
aemsl Tlepesaun Mudopmauun, 1 (1965), 18-26.

[3] I0.H. JluabkoB, ISnCUJOH-DHTPONUA CJAYHaHHBIX NPOLECCOB C HENMPEpPHLIBHBIM BpeMe-
HEM H JHCKPETHHIM (a30BbIM MpOCTpaHCTBOM, [Ipossiembl [lepenauu Mudopmanuu, 7
(1971), 16-25.

[4] M.S. Pinsker, Information and information stability of random variables and
processes, Holden-Day, 1964 (English translation). 4

[5] M.C. Iunckep, Tayccosckue uctounuku, IIpo6aems IMepenauu Hudopmanuu, 14
(1963), 59-100.

[6] A.B. Ckopoxon, CnyuyaiiHbie npoueccsl C He3aBHCHMBIMH NpupaiieHuamu, Hayka,
Mocksa, 1964.

Kimio KAzi1

Mathematical Division
of General Education
Keio University
Hiyoshi, Kohoku-ku
Yokohama, Japan



	\S 1. Introduction and ...
	THEOREM. Let ...

	\S 2. An upper estimate ...
	\S 3. An upper estimate ...
	\S 4. An upper estimate ...
	\S 5. A lower estimate ...
	References

