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\S 1. Statement of the problem.

It is well known that the hypergeometric function $F(\alpha, \beta, \gamma, x)$ defined
by the series

(1.1) $F(\alpha, \beta, \gamma, x)=\sum_{m=0}^{\infty}\frac{(\alpha,m)(\beta,m)}{(\gamma,m)(1,m)}x^{m}$

has the Euler integral representation

(1.2) $F(\alpha, \beta, \gamma, x)=\frac{\Gamma(\gamma)}{\Gamma(\beta)\Gamma(\gamma-\beta)}\int_{0}^{1}z^{\beta-1}(1-z)^{\gamma-\beta-1}(1-xz)^{-\alpha}dz$ ,

where $(a, k)$ denotes the factorial function

$a(a+1)\cdots(a+k-1)=\frac{\Gamma(a+k)}{\Gamma(a)}$

Series (1.1) is meaningful provided that $\gamma\neq 0,$ $-1,$ $-2,$ $\cdots$ , and then the radius
of convergence is one except in the case when either $\alpha$ or $\beta$ is a non posi-
tive integer. On the other hand, integral (1.2) is convergent if

(1.3) $ 0<{\rm Re}\beta<{\rm Re}\gamma$ ,

and then integral (1.2) is holomorphic with respect to $x$ in $ C-[1, \infty$), $C$ being
the set of complex numbers.

It is natural to attempt weakening restriction (1.3) in the integral repre-
sentation. Indeed, two methods for that are known: method of double con-
tour integrals and that of the finite part for divergent integrals. The former
is usually carried out as follows. Suppose that $ x\in C-[1, \infty$). Let $a$ be a
point in $C-\{0,1,1/x\}$ , say lying on the real axis between $0$ and 1, and let $l_{0}$

and $l_{1}$ be loops in the positive direction at $a$ in $C-\{0,1,1/x\},$ $l_{0}$ encircling
only $z=0$ and $l_{1}$ encircling only $z=1$ . Form the contour $C$ consisting of
$l_{0},$ $l_{1},$ $l_{t)}^{-1}$ and $l_{1}^{-1}$ in this order:

$C=l_{0}l_{1}l_{0}^{-1}l_{1}^{-1}$ ,

$l_{0}^{-1}$ and $l_{1}^{-1}$ being the inverse loops of $l_{0}$ and $l_{1}$ respectively. Then take a
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branch of the integrand on $C$ in such a way that arg $z$ and arg $(1-z)$ are
continuous in $z$ and are reduced to zero at the starting point of $C$ and
arg $(1-xz)$ is continuous in $(x, z)$ and is reduced to zero at $x=0$ and the
starting point of $C$. Finally integrate $z^{\beta-1}(1-z)^{\gamma-\beta-1}(1-xz)^{-\alpha}$ along $C$ .

Fig. 1.

We can take as $l_{0}$ and $l_{1}$ respectively a loop consisting of the segment
from $a$ to $\rho$ , the circle $|z|=\rho$ and the segment from $\rho$ to $a$ , and a loop con-
sisting of the segment from $a$ to $ 1-\rho$ , the circle $|z-1|=\rho$ and the segment
from $ 1L-\rho$ to $a$ , where $\rho$ is a sufficiently small positive number. We obtain,
by letting $\rho\rightarrow 0$ ,

(1.4) $\int,z^{\beta-1}(1-z)^{r-\beta-1}(1-xz)^{-a}dz$

$=-(1-e^{2\pi i\beta})(1-e^{2\pi i-}(\gamma\beta))\int_{0}^{1}z^{\beta- 1}(1-z)^{\gamma-\beta- 1}(1-xz)^{-a}dz$

under restriction (1.3).

Fig. 2.

The integral (1.4) can be given an interpretation in the following way.
For a given $ x\in C-[1, \infty$ ), let $D$ be an open rectangle in $C$ with summits
$(-\rho, i\rho),$ $(-\rho, -i\rho),$ $(1+\rho, -i\rho)$ and $(1+\rho, i\rho),$ $\rho$ being a sufficiently small
positive number. We suPpose that the point $1/x$ is not contained in $D$ but
the loop $C$ is contained in $D$ . For simplicity we suppose that 1, $\beta$ and $\gamma-\beta$

are linearly independent over the rationals. Then the Riemann surface of
the integrand $z^{\beta-1}(1-z)^{\gamma-\beta-1}(1-xz)^{-\alpha}$ restricted on $X=D-\{0,1\}$ is the cover-
ing surface $\tilde{X}$ of $X$ corresPonding to the commutator subgroup of the funda-
mental group of $X$, $\pi_{1}(X)$ . The l-form $z^{\beta-1}(1-z)^{\gamma-\beta-1}(1-xz)^{-\alpha}dz$ can be
naturally regarded as a holomorphic l-form $\tilde{\omega}$ on $\tilde{X}$, which we denote sym-
bolically by $\tilde{z}^{\beta-1}(1-\tilde{z})^{\gamma-\beta-1}(1-x\tilde{z})^{-\alpha}d\tilde{z}$ . Let $\tilde{a}$ be the point of $\tilde{X}$ over $a$ cor-
responding to the value of the integrand at the starting point of $C$ and let
$\tilde{C}$ be the lift of $C$ on $\tilde{X}$ starting from $\tilde{a}$ . Then the integral (1.4) can be
written as
(1.5) $\int_{\sim}c\tilde{z}^{\beta-1}(1-\tilde{z})^{\gamma-\beta-1}(1-x\tilde{z})^{-\alpha}d\tilde{z}$ .
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Since the class of $C=l_{0}l_{1}l_{0}^{-1}l_{1}^{-1}$ is a commutator of $\pi_{1}(X)$ , the path $\tilde{C}$ is a
closed path and hence a cycle in $\tilde{X}$ . It should be noted that the value of
integral (1.5) depends only on the homology class of the cycle $\tilde{C}$ and that $X$

is homeomorphic to $C-\{0,1\}$ .
The homology of $\tilde{X}$ is well-known. Indeed, the space $X$ has the same

homotopy type as the bouquet of two circles which may be suPposed to be
$l_{0}$ and $l_{1}$ . The fundamental group of the bouquet is a free grouP generated
by $l_{0}$ and $l_{1}$ . Thus the homology group $H_{1}(X, Z)$ , the quotient group of $\pi_{1}(X)$

by its commutator subgroup, is a free abelian group generated by $l_{0}$ and $l_{1}$ ,
.and is canonically identified with the group of covering transformations of
the covering $\tilde{X}\rightarrow X$. It follows that the covering surface $\tilde{X}$ has the homo-

XoPy tyPe of the space

$\tilde{X}_{0}=$ { $(t_{1},$ $t_{2})\in R^{2}|t_{1}$ or $t_{2}\in Z$}.

-We thus see that the homology group $H_{1}(\tilde{X}, Z)$ is a free $Z(H_{1}(X, Z))$ -module
,generated by $\tilde{C}$, where $Z(H_{1}(X, Z))$ is the group ring of $H_{1}(X, Z)$ over $Z$. It
is clear that the homology class $\tilde{C}$ corresponds, through a homotopy equi-
valence between $\tilde{X}$ and $\tilde{X}_{0}$ , to the class of a loop $\tilde{C}_{0}$ as indicated in Fig. 3.

Fig. 3.

We can give another interpretation of integral (1.5) using cohomology
with coefficients in a local system. First we observe the following relation

$\{(1.6)$ $\int\sim 2^{\beta-1}(1-Z)^{\gamma-\beta-1}(1-xZ)^{-\alpha}d2$

$=e^{2\pi i(m\beta+n(\gamma-\beta))}\int_{\sim}c\tilde{z}^{\beta-1}(1-\tilde{z})^{\gamma-\beta- 1}(1-x\tilde{z})^{-\alpha}d\tilde{z}$ ,

where $l_{0}$ and $l_{1}$ act on $\tilde{X}$ by covering transformations on the right as usual
.and $\tilde{C}l_{0}^{m}l_{1}^{n}$ is the transform of $\tilde{C}$ under the transformation $l_{0}^{m}l_{1}^{n}$ . Let $S$ denote
$\not\in he$ local system on $X$ with stalk $C$ associated to the representation

$\theta:\pi_{1}(X)\rightarrow H_{1}(X, Z)\rightarrow c*$
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given by
$\theta(l_{0})=e^{2\pi i\beta}$ , $\theta(l_{1})=e^{z\pi i(\gamma-\beta)}$ .

The chain group of $X$ with coefficients in $S$ is, by definition, $C_{*}(\tilde{X})\bigotimes_{\theta}C$ and

the cycle $\tilde{C}l_{0}^{m}l_{1}^{n}\bigotimes_{\theta}1$ equals $\tilde{C}\bigotimes_{\theta}e^{2\pi i(m\beta+n(\gamma-\beta))}$ in that group. Using a homotopy

equivalence between $\tilde{X}$ and $\tilde{X}_{0}$ , it is easily seen that the homology group
$H_{1}(X, S)$ is isomorphic to $C$ and is generated by the class $[\tilde{C}]$ of $\tilde{C}\bigotimes_{\theta}1$ . The

above relation (1.6) shows that the integration of $\tilde{z}^{\beta-1}(1-\tilde{z})^{\gamma-\beta-1}(1-x\tilde{z})^{-a}d\tilde{z}$

over the cycles of $C_{1}(\tilde{X})\bigotimes_{\theta}C$ and hence over the homology classes of $H_{1}(X, S)$

is well-defined in such a way that

$\int_{\sim}[C]\tilde{z}^{\beta-1}(1-\tilde{z})^{\gamma-\beta-1}(1-x\tilde{z})^{-a}d\tilde{z}$

$=\int_{\sim}c\tilde{z}^{\beta-1}(1-\tilde{z})^{\gamma-\beta-1}(1-x\tilde{z})^{-a}d\tilde{z}$ .

If we denote by $S^{-1}$ the local system dePned by the representation $\theta^{-1}$ ,

then $H_{1}(X, S)$ and $H^{1}(X, S^{-1})$ are dual to each other. Then, through the
integration pairing, $\tilde{z}^{\beta-1}(1-\tilde{z})^{\gamma-\beta-1}(1-x\tilde{z})^{-a}d\tilde{z}$ can be regarded as a generator
of $H^{1}(X, S^{-1})\cong C$.

We proceed to hypergeometric functions in several complex variables.
Consider the functions

$F_{A}(\alpha, \beta_{1}, \beta_{n}, \gamma_{1}, \gamma_{n}, x_{1}, x_{n})$

$=\sum_{m_{1},\cdots.m_{n}=0}^{\infty}\frac{(\alpha,m_{1}+.\cdot.\cdot.\cdot+m_{n})(\beta_{1},m_{1})\cdot.\cdot.\cdot.(\beta_{n},m_{n})}{(\gamma_{1},m_{1})(\gamma_{n},m_{n})(1,m_{1})(1,m_{n})}X_{1}^{m_{1}}\cdots X_{n}^{m_{n}}$ ,

$F_{B}(\alpha_{1}, \alpha_{n}, \beta_{1}, \beta_{n}, \gamma, x_{1}, x_{n})$

$=\sum_{m_{1}\ldots..m_{n}=0}^{\infty}\frac{(\alpha_{1},m_{1})\cdots(\alpha_{n},m_{n})(\beta_{1},m_{1})..\cdot.\cdot\cdot(\beta_{n},m_{n})}{(\gamma,m_{1}+\cdots+m_{n})(1,m_{1})(1,m_{n})}x_{1}^{m_{1}}$ ... $X_{n}^{m_{n}}$

and
$F_{D}(\alpha, \beta_{1}, ’ \beta_{n\prime}\gamma, x_{1}, x_{n})$

$=\sum_{m_{1}\ldots..m_{n}=0}^{\infty}\frac{(\alpha,m_{1}+\cdot\cdot.\cdot.+m_{n})(\beta_{1},m_{1})\cdot.\cdot.\cdot.(\beta_{n},m_{n})}{(\gamma,m_{1}+\cdot+m_{n})(1,m_{1})(1,m_{n})}x_{1}^{m_{1}}\cdots x_{n}^{mn}$ .

It is known that these functions have the integral representations

(1.7) $\frac{\Gamma(\beta_{1})\cdots\Gamma(\beta}{\Gamma}n\frac{)\Gamma(\gamma_{1}-\beta_{1})\cdots\Gamma(\gamma_{n}-\beta_{n})}{(\gamma_{1})\cdots\Gamma(\gamma_{n})}F_{A}(\alpha, \beta_{1}, \beta_{n}, \gamma_{1}, \gamma_{n}, x_{1}, x_{n})$

$=\int_{0}^{1}\cdots\int_{0}^{1}z_{1}^{\beta_{1}-1}\cdots z_{n}^{\beta_{n^{-1}}}(1-z_{1})^{\gamma_{1}-\beta_{1_{L}^{-1^{\tau}}}}\ldots$ .
... $(1-z_{n})^{\gamma_{n}-\beta_{n}-1}(1-x_{1}z_{1}-\cdots-x_{n}z_{n})^{-a}dz_{1}\cdots dz_{n}$ ,
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(1.8) $\frac{\Gamma(\beta_{1})\cdots\Gamma(\beta_{n})\Gamma(\gamma-\beta_{1}-\cdots-\beta_{n})}{\Gamma(\gamma)}F_{B}(\alpha_{1},$ $\alpha_{n},$
$\beta_{1},$ , $\beta_{n},$

$\gamma,$ $x_{1},$ ,

$=\int_{z_{1}\ldots z_{n}.1-1}\cdots\lrcorner_{n\geqq 0}Z_{1}\beta_{1^{-1}}$

... $ z_{n}\rho_{n}-1(1-z_{1}- \cdot.. - z_{n})\gamma-\beta_{1}-\cdots-\beta_{n^{-1}}\times$

$(1-x_{1}z_{1})^{-a_{1}}\cdots(1-x_{n}z_{n})^{-\alpha_{n}}dz_{1}\cdots dz_{n}$ ,

(1.9) $\frac{\Gamma(\beta_{1})\cdots\Gamma(\beta_{n})\Gamma(\gamma-\beta_{1}-\cdots-\beta_{n})}{\Gamma(\gamma)}F_{D}(\alpha, \beta_{1}, ’ \beta_{n}, \gamma, x, x_{n})$

$=$
$\int_{z_{1},1-z_{1}}..\cdot.\cdot\cdot\int_{zn\geqq 0}z_{1}^{\beta_{1}- 1}\cdots z_{n^{n}}^{\beta-1}(1-z_{1}-\cdots-z_{n})^{\gamma-\beta_{1}-\cdots-\beta_{n}- 1}\times zn\geq 0$

$(1-x_{1}z_{1}- \cdot.. -x_{n}z_{n})^{-\alpha}dz_{1}\cdots dz_{n}$

under the restrictions similar to (1.3)

(1.10) $0<{\rm Re}\beta_{1}<{\rm Re}\gamma_{1},$ $\cdots$ , $0<{\rm Re}\beta_{n}<{\rm Re}\gamma_{n}$ for (1.7) ,

(1.11) $0<{\rm Re}\beta_{1},$ $0<{\rm Re}\beta_{n},$ $0<{\rm Re}(\gamma-\beta_{1}-\cdots-\beta_{n})$ for (1.8) and (1.9).

For each of the multiple integrals, the integrand is a product of powers
of linear functions in $z_{1},$

$\cdots$ , $z_{n}$ . Let $L_{1},$ $\cdots$ , $L_{p}$ be the hyperplanes in $C^{n}$

obtained from the linear functions by equating them to zero. The region of
integration is bounded by the intersections of $R^{n}$ with some of the hyper-
planes, say $L_{1},$ $\cdots$ , $L_{q}$ . Suppose that the point $(x_{1}, \cdots , x_{n})\in C^{n}$ is situated so
that none of the other hyperplanes $L_{q+1},$ $\cdots$ , $L_{p}$ intersects the region of inte-
gration. Then it is not hard to find a contractible domain $D$ in $C^{n}$ which
contains the region of integration but intersects none of $L_{q+1},$ $\cdots$ , $L_{p}$ . As

before, from the integrand restricted to $X=D-\bigcup_{j=1}^{q}L_{j}$ , we obtain a Riemann

domain $\tilde{X}$ spread over $X$ and a holomorphic n-form $\tilde{\omega}$ in a natural way. By

definition $\tilde{X}$ is a covering space of $X$. We denote the n-form $\tilde{\omega}$ symbolically
by

(1.12) $\prod_{j=1}^{n}\tilde{Z}_{J^{J^{-1}\prod_{j=1}^{n}(1-\tilde{z}_{j})^{\gamma_{j^{-}}\beta_{J^{-1}}}(1-x_{1}\tilde{z}_{1}-}}^{\beta}$
$-x_{n}\tilde{z}_{n})^{-\alpha}d\tilde{z}_{1}\wedge\cdots\Lambda d\tilde{z}_{n}$ ,

(1.13) $\prod_{j=1}^{n}\tilde{z}_{J^{j^{-1}}}^{\beta}(1-\tilde{z}_{1}-\cdots-Z_{n})^{\gamma-\beta_{1}-\cdots-\beta_{n}-1}\prod_{J=1}^{n}(1-x_{j}\tilde{z}_{j})^{-\alpha_{j}}d\tilde{z}_{1}\wedge\cdots$ A $d\tilde{z}_{n}$ ,

or

(1.14) $\prod_{j=1}^{n}\tilde{z}_{J^{j^{-1}}}^{\beta}(1-\tilde{z}_{1}-\cdots-\tilde{z}_{n})^{\gamma-\beta_{1}-\cdots-\beta_{n}-1}(1-x_{1}\tilde{z}_{1}-\cdots-x_{n}\tilde{z}_{n})^{-\alpha}d\tilde{z}_{1}\wedge\cdots\wedge d\tilde{z}_{n}$ .

As in the case of one variable, in order to relax restriction (1.10) or
(1.11), it is natural to find a suitable n-cycle in $\tilde{X}$ and to get a relationship
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between each of integrals (1.17), (1.18) and (1.19) and the integral of the cor-
responding form (1.12), (1.13) or (1.14) over the n-cycle. To find an n-cycle:

in $\tilde{X}$ we need the study of the topology of $\tilde{X}$.
The Purpose of this paPer is to carry out the above plan. It is easy for

integral (1.17) and so this case will be treated briefly in Section 2. The cases
(1.8) and (1.9) will be studied in Section 3. Our main results are Theorem
3.1, Propositions 3.4 and 3.7 which describe the homotopy type of $X$ and the
homology of $\tilde{X}$. The homology of $X$ with coefficients in a local system is.
given in Section 4. In Sections 2\sim 4 we shall tacitly suPpose that $n$ is greater
than one.

In subsequent papers we shall study the topology of $C^{n}$ minus a finite
collection of hyperplanes in general position and various integral representa-

tions of hypergeometric functions in several complex variables.
For a general background on hypergeometric functions in several vari-

ables we refer to [1] and [2].

\S 2. Case of the function $F_{A}$ .
Consider integral (1.7). The region of integration is the n-dimensionaB

cube in $R^{n}$ bounded by the $2n$ hyperplanes given by

$L_{j}^{0}$ : $z_{j}=0$ , $j=1,$ $n$

and
$L_{j}^{1}$ : $1-z_{j}=0$ , $j=1,$ $n$ .

Suppose that $(x_{1}, \cdots , x_{n})\in C^{n}$ is situated so that the hyperplane

$1-x_{1}z_{1}-\cdots-x_{n}z_{n}=0$

does not meet the region of integration. We can take as $D$ the cartesian
product of $n$ copies of $D$ , where $D$ is the rectangle in $C$ given in Section 1.
Then $X=D-\bigcup_{j=1}^{n}(L_{j}^{0}\cup L_{j}^{1})$ .

Suppose that 1, $\beta_{1},$ $\cdots$ , $\beta_{n},$ $\gamma_{1}-\beta_{1},$ $\cdots$ , $\gamma_{n}-\beta_{n}$ are linearly independent over
the rationals. Then the Riemann domain of the integrand $\tilde{X}$ is the covering
space of $X$ corresponding to the commutator subgroup of the fundamental
group $\pi_{1}(X)$ . Since $X$ is equal to the n-fold cartesian product of $X=D-\{0,1\}$

$\subset C$, the fundamental group $\pi_{1}(X)$ and its commutator subgroup are isomor-
phic to the n-fold direct products of the fundamental group $\pi_{1}(X)$ and its
commutator subgroup respectively. It follows from this that the Riemann
domain $\tilde{X}$ is biholomorphic to the cartesian product of $n$ copies of the Rie-
mann surface $\tilde{X}$.

This fact enables us to solve our problem. Indeed, from the K\"unneth
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formula, the homology groups $H_{q}(\tilde{X}, Z)$ are given by

$H_{q}(\tilde{X}, Z)=\dagger i_{1}++i_{n}=qo_{i_{S}=0or1}$

for $q>n$

for $q\leqq n$ .$\Sigma$ $H_{\iota_{1}}(\tilde{X}, Z)\otimes\cdots\otimes H_{i_{n}}(\tilde{X}, Z)$

In $parl:icular$ ,
$H_{n}(\tilde{X}, Z)=H_{1}(\tilde{X}, Z)\otimes\cdots\otimes H_{1}(\tilde{X}, Z)$ .

We thus obtain the
PROPOSITION 2.1. The n-th homology group $H_{n}(\tilde{X}, Z)$ is a free $Z(H_{1}(X, Z))-$

module on one generator. As a generator one can take the homology class
represented by the n-dimensional torus $7^{\backslash }=\tilde{C}\times\cdots\times\tilde{C}$ in $\tilde{X}$, where $\tilde{C}$ is the
loop in $\tilde{X}$ given in Section 1.

Concerning the relation between integral (1.7) and the integral of n-form
(1.12) over $F$, we obtain the

PROPOSITION 2.2. Under restriction (1.10) we have

$\int_{0}^{1}\cdots\int_{0}^{1}z_{j}^{\beta}\cdots-x_{n}z_{n})^{-\alpha}dz_{1}\cdots dz_{n}$

$=(-1)^{n}\prod_{t-1}^{n}(1-e^{2\pi i\beta_{j}})^{-1}(1-e^{2\pi i(\gamma_{j}-\beta_{j)}})^{-1}\int_{T}\sim\delta$ ,

where $\tilde{\omega}$ denotes n-form (1.12).

The right-hand side of the above formula is well-defined if none of $\beta_{j}$

and $\gamma_{j}-\beta_{j}$ is an integer. On the other hand, the left-hand side is meaningful
under restriction (1.10). It follows that

$\prod_{J=1}^{n}(1-e^{2\pi i\beta_{f}})^{-1}(1-e^{2\pi i(r_{J^{-\beta_{j)}}}})^{-1}\int_{T}\sim\tilde{\omega}$

is holomorphic with respect to all the parameters $\alpha,$ $\beta_{j}$ and $\gamma_{j}$ except at $\beta_{j}$

or $\gamma_{j}-\beta_{j}=0,$ $-1,$ $-2,$ $\cdots$

\S 3. Case of the functions $F_{B}$ and $F_{D}$ .
We proceed to integrals (1.8) and (1.9). The regions of integration are

both the set in $R^{n}$ bounded by the hyperplanes

$L_{j}^{0}$ : $z_{j}=0$ , $j=1,$ $n$

and the hyperplane
$L_{n+1}$ : $1-z_{1}---\cdot-z_{n}=0$ .

Suppose that $(x_{1}, \cdots , x_{n})\in C^{n}$ is situated so that none of the hyperplanes

$L_{x_{j}}$ : $x_{f}z_{j}=1$

meets the region of integration in case (1.8) and the hyperplane
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$L_{x}$ : $1-x_{1}z_{1}-\cdots-x_{n}z_{n}=1$

does not meet the region of integration in case (1.9). We can then take as
$D$ the open set consisting of those points $(z_{1}, \cdots , z_{n})$ for which

$u_{1}>-\rho,$ $\cdots,$ $ u_{n}>-\rho$ ,

$ u_{1}+\cdots+u_{n}<1+\rho$ ,

$|v_{1}|<\rho,$ $\cdots,$ $|v_{n}|<\rho$ ,

where $z_{j}=u_{j}+iv_{j},$ $j=1,$ $\cdots$ $n$ , and $\rho$ is a sufficiently small positive number.
SuPpose that 1, $\beta_{1},$ $\beta_{n},$ $\gamma-\beta_{1}-\cdots-\beta_{n}$ are linearly independent over the

rationals. Then $\tilde{X}$ is the covering space of $X=D-L_{1}^{0}\cup\cdots\cup L_{n}^{0}\cup L_{n+1}$ cor-
responding to the commutator subgroup of the fundamental group $\pi_{1}(X)$ .

It is not difficult to see that the inclusion map $X\rightarrow C^{n}-L_{1}^{0}\cup\cdots\cup L_{n}^{0}UL_{n+1}$

is a homotopy equivalence. Therefore, we can suppose that $ X=C^{n}-L_{0}^{1}\cup\cdots$

$\cup L_{n}^{0}\cup L_{n+1}$ to study the homology of $\tilde{X}$. Let $Y$ be the subspace of $C^{n+1}$

consisting of those points $w=(w_{1}, \cdots, w_{n+1})$ for which none of $w_{j}$ is zero,
that is to say,

$Y=C^{*}\times\cdots\times c*$ ($(n+1)$ -fold product),

where $c*=C-\{0\}$ . Then $X$ is affinely mapped onto the intersection of $Y$

and the hyperplane
$L:w_{1}+\cdots+w_{n+1}=1$

by the affine transformation

(3.1) $\left\{\begin{array}{l}w_{1}=z_{1}:.’\\w_{n}=z_{n},\end{array}\right.$

$w_{n+1}=1-z_{1}-\cdots-z_{n}$ .
Hereafter we identify $X$ with $Y\cap L$ through this transformation:

$X=\{w=(w_{1}, ’ w_{n+1})|w\in Y, w_{1}+\cdots+w_{n+1}=1\}$ .
Denote by $X_{0}$ the subspace of the $(n+1)$ -dimensional torus $ T^{n+1}=S^{1}\times$

... $\times S^{1}$ ($(n+1)$ -fold product) consisting of points $(w_{1}, \cdots , w_{n+1})$ such that at
least one of the coordinates equals 1. We also denote by $\tilde{X}_{0}$ the subspace
of $R^{n+1\lfloor}$ consisting of points $(t_{1}, \cdots , t_{n+1})$ such that at least one of the coor-
dinates is an integer. Then the map $p_{0}$ given by

$p_{0}(r_{1}, ’ t_{n+1})=(e^{2\pi tt_{1}}, e^{2\pi it_{n+1}})$

is a covering map $\tilde{X}_{0}\rightarrow X_{0}$ . We shall prove the
THEOREM 3.1. The space $X$ has the same homotopy type as $X_{0}$ .
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PROOF. The proof will be divided into three steps.
First step. We shall write an element $w=$ $(w_{1}, \cdots , w_{n+1})$ in $C^{n+1}$ as $w=$

$(u, v)$ , where $u=(u_{1}, u_{n+1}),$ $v=(v_{1}, \cdots , v_{n+1})$ and $w_{j}=u_{j}+iv_{j},$ $j=1,$ $\cdots$ , $n+1$ .
Putting

$x*=\{w=(u, v)|w\in Y, u_{1}+\cdots+u_{n+1}=1\}$ ,

we shall prove the
Assertion 1. $X$ is a deformation retract of $x*$ .
Define a homotopy $f_{t}$ : $x*\rightarrow x*,$ $0\leqq t\leqq 1$ , by

(3.2) $\left\{\begin{array}{l}f_{t}(u,v)=(u,v^{\prime}),\\v_{j}^{\prime}=v_{j}-t(v_{1}+\ldots+v_{n+1})u_{j},\end{array}\right.$

$j=1,$ $\cdots$ $ n+1.\cdot$

We shall show that $f_{1}$ is a deformation retraction $x*\rightarrow X$. Indeed, we have,

for $t=1,\sum_{J=1}^{n+1}v_{j}^{\prime}=\sum_{j=1}^{n+1}v_{j}-\sum_{J=1}^{n+1}v_{j}\cdot\sum_{j=1}^{n+1}u_{j}=0$ , whence $f_{1}(X^{*})\subset X$. It is obvious that
$f_{0}$ is the identity map on $x*$ and that for $(u, v)\in X$ we have $f_{t}(u, v)=(u, v)$ ,
$0\leqq t\leqq 1$ . This proves Assertion 1.

Second step. We define $X_{0}^{*}$ to be the subspace of $x*$ consisting of those
points $w=(u, v)$ for which $v_{j}=0$ if $u_{j}=\max_{k}u_{k}$ . Observe that $\max_{k}u_{k}>0$

since $\sum_{J=1}^{n+1}u_{j}=1$ .
Assertion 2. The inclusion map $i_{0}$ : $X_{0}^{*}\subset x*$ is a homotopy equivalence.
To prove this, consider the homotopy $g_{t}$ : $x*\rightarrow x*,$ $0\leqq t\leqq 1$ , defined by

(3.3)
$\left\{\begin{array}{ll}g_{t}(u, v)=(u, v^{\prime}), & \\v_{j}^{\prime}=(1-t\frac{u_{j}}{\max u_{k}})v_{f}, & j=1, n+1.\end{array}\right.$

$k$

Since $g_{t}$ keePs $X_{0}^{*}$ invariant and $g_{1}(X^{*})\subset X_{0}^{*},$ $g_{t}\circ i_{0}$ is a homotoPy between
the identity on $X_{0}^{*}$ and $g_{1}\circ i_{0}$ . Of course, $g_{t}$ is a homotopy between the
identity on $x*$ and $i_{0}\circ g_{1}=g_{1}$ . Thus the inclusion $i_{0}$ is a homotopy equivalence.

Third step. Consider the usual projection

$r=r_{1}\times\cdots\times r_{n+1}$ : $Y\rightarrow T^{n+1}$ ,

where $r_{j}(w_{j})=w_{j}/|w_{j}|$ . It is clear that the image of $X_{0}^{*}$ under $r$ is the space
$X_{0}$ defined before. We shall prove the

Assertion 3. The restriction of $r$ to $X_{0}^{*},$
$r_{0}$ : $X_{0}^{*}\rightarrow X_{0}$ , is a homotopy

equivalence.
To prove this, it is sufficient to construct a cross section $s:X_{0}\rightarrow X_{0}^{*}$ of

$r_{0}$ and a homotopy between the identity on $X_{0}^{*}$ and $s\circ r_{0}$ . First define func-
tions $h_{1},$ $h_{2},$ $\cdots$ , $h_{n+1}$ : $X_{0}\rightarrow R$ by
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(3.4) $h_{j}(w)=\left\{\begin{array}{ll}\delta & when u_{j}\leqq 0\\\delta+nu_{j} & when u_{j}>0\end{array}\right.$

where $w=(u, v)$ as before and $\delta$ is a positive number not exceeding 1. Next
define $h:X_{0}\rightarrow R$ by

$h(w)=\sum_{J=1}^{n+1}h_{j}(w)u_{j}$ .

The fact that some of $w_{j}$ are equal to unity implies that $0<\delta\leqq h_{j}(w)\leqq\delta+n$ ,
$j=1,$ $\cdots$ , $n+1$ , and $0<\delta+n(1-\delta)\leqq h(w)\leqq(\delta+n)(n+1)$ . Finally define a cross-
section $s$ by

(3.5) $s(w)=(\frac{h_{1}(w)}{h(w)}w_{1},$ $\frac{h_{n+1}(w)}{h(w)}w_{n+1})$ .

To see that $s$ is really a cross section, it is sufficient to check that $s$ is a
map $X_{0}\rightarrow X_{0}^{*}$ because clearly $r\circ s$ is the identity. We have

$\sum_{j=\perp}^{n+1}{\rm Re}(\frac{h_{j}(w)}{h(w)}w_{j})=\sum_{j=1}^{n+1}\frac{h_{j}(w)u_{j}}{h(w)}=1$ .

If some of $w_{j}$ , say $w_{1},$ $\cdots$ , $w_{k}$ , are equal to one, then $h_{1}(w)=\cdots=h_{k}(w)>h_{j}(w)$ ,
$j=k+1,$ $\cdots$ , $n+1$ , from which

${\rm Re}(_{\backslash }^{\prime}\frac{h_{1}(w)}{h(w)}w_{1})=\cdots={\rm Re}(\frac{h_{k}(w)}{h(w)}w_{k})>{\rm Re}(\frac{h_{j}(w)}{h(w)}w_{j})$ , $j=k+1,$ $n+1$

and

${\rm Im}(\frac{h_{1}(w)}{h(w)}w_{1})=\ldots={\rm Im}(\frac{h_{k}(w)}{h(w)}w_{k})=0$ .

Thus $s(w)\in X_{0}^{*}$ . As a homotopy between the identity and $s\circ r_{0}$ we can take

$w-(1-t)w+ts\circ r_{0}(w)$ .
This completes the proof of Assertion 3.

Combining Assertions 1, 2 and 3, we conclude that $X$ is homotopically
equivalent to $X_{0}$ , and moreover that $r_{0}\circ g_{1}$ : $X\rightarrow X_{0}$ and $f_{1}\circ s:X_{0}\rightarrow X$ are homo-
topy equivalences which are inverse of each other. (Cf. (3.2), (3.3) and (3.5).)

Theorem 3.1 is thus established.
The investigation of homological properties of $\tilde{X}$ is, by Theorem 3.1,

reduced to that of homological properties of $\tilde{X}_{0}$ , which are easy to describe.
For this purpose we need the

$PR\}OPOSITION3.2$ . Let $p_{0}$ ; $\tilde{X}_{0}\rightarrow X_{0}$ be the same as before. Then $\pi_{1}(X_{0})$ is
a free abelian group on $n+1$ generators and the covering map $p_{0}$ is universal.

PROOF. Consider the usual universal covering map $P_{1}$ : $R^{n+1}\rightarrow T^{n+1}$ , for
which we have $p_{1}|\tilde{X}_{0}=p_{0}$ . The fundamental group $\pi_{1}(T^{n+1})$ is a free abelian
group of rank $n+1$ and operates on $R^{n+1}$ as the group of covering trans-
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formations. It is easy to see that the homomorphism $\pi_{1}(X_{0})\rightarrow\pi_{1}(T^{n+1})$ induced
by the inclusion $X_{0}\subset T^{n+1}$ is surjective. It follows from the general theory
of covering spaces that the covering space $\tilde{X}_{0}$ corresponds to the kernel $K$

of the homomorphism $\pi_{1}(X_{0})\rightarrow\pi_{1}(T^{n+1})$ and its group of covering transforma-
tions is identified with $\pi_{1}(X_{0})/K=\pi_{1}(T^{n+1})$ . It is easy to see that $\tilde{X}_{0}$ is simply

connected since $n>1$ and hence the covering map $p_{0}$ ; $\tilde{X}_{0}\rightarrow X_{0}$ is universal.
This completes the proof.

As to the homology of $\tilde{X}_{0}$ , the following proposition is immediate.
PROPOSITION 3.3. The homology groups $H_{q}(\tilde{X}_{0}, Z)$ vanish for $q\neq 0,$ $n$ .

$H_{n}(\tilde{X}_{0}, Z)$ is a free $Z(H_{1}(X_{0}, Z))$ -module with one generator. As a generator

we may take the class represented by the topological $n$ -sphere $\Sigma^{n}$ in $\tilde{X}_{0}$ given by
$\Sigma^{n}=$ { $(t_{1},$ $\cdots$ , $t_{n+1})\in R^{n+1}|0\leqq t_{i}\leqq 1$ and some $t_{i}$ equals $0$ or 1}.

From Theorems 3.1 and 3.3 we obtain
PROPOSITION 3.4. Let $X$ and $\tilde{X}$ be the same as before. Then the n-th

homology group $H_{n}(\tilde{X}, Z)$ is a free $Z(H_{1}(X, Z))$ -module with one generator which
is represented by a topological $n$ -sPhere $S$ in $\tilde{X}$ correspOnding to $\Sigma^{n}$ .

We notice that the method of calculating $H_{n}(\tilde{X}, Z)$ is modeled on that of
calculating $H_{1}(\tilde{X}^{1}, Z)$ , where $X^{1}=C-\{0,1\}$ . The only difference consists in
the fact that $\pi_{1}(X_{0}^{1})$ is a free group with two generators and hence that $K$

is not trivial.
REMARK 3.5. Consider the usual universal covering map $p;C^{n+1}\rightarrow(C^{*})^{n+1}$

defined by $p(w_{1}, \cdots , w_{n+1})=(e^{2\pi iw_{1}}, \cdots , e^{2\pi iw_{n+1}})$ , whose restriction to $\tilde{X}_{0}$ coin-
cides with $p_{0}$ ; $\tilde{X}_{0}\rightarrow X_{0}$ defined above. It is easy to see that $p^{-1}(X)$ and $p^{-1}(X^{*})$

are both universal covering spaces of $X$ and $X^{*}$ respectively and that we
obtain the following commutative diagram

$\tilde{X}_{0}\rightarrow^{s\sim}p^{-1}(X^{*})\rightarrow^{f_{1}^{\tilde}}p^{-1}(X)$

$ p_{0}\downarrow$ $\downarrow$ $\downarrow p$

$s$ $f_{1}$

$ X_{0}\rightarrow$ $x*$ $\rightarrow$ $X$

where $ s\sim$ and $\tilde{f}_{1}$ are the homotopy equivalences determined by $s$ and $f_{1}$ respec-
tively in an obvious way. The above observation shows that the covering
space $\tilde{X}$ can be identified with $p^{-1}(X)$ and therefore $\tilde{X}$ is embeddable as a closed
analytic submanifold of complex codimension 1 in $C^{n+1}$ .

REMARK 3.6. The composite map $\tilde{\varphi}=\tilde{f}_{1}\circ s;\sim\tilde{X}_{0}\rightarrow p^{-1}(X)$ is expressible in
terms of the coordinates $(t_{1}, \cdots , t_{n+1})$ of a point $t\in\tilde{X}_{0}$ and those $(\tilde{w}_{1}, \cdots , \tilde{w}_{n+1})$

of a point $\tilde{w}\in P^{-1}(X)$ as
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$\tilde{w}_{j}=\frac{1}{2\pi i}$ log $[\frac{h_{j}(p_{0}(t))}{h(p_{0}(t))}$($e^{2\pi it_{j}}-i$ cos $2\pi t_{j}\sum_{k=1}^{n+1}\frac{h_{k}(p_{0}(t))}{h(p_{0}(t))}$ sin $2\pi t_{k}$) $]$ ,

$j=1,$ 2, $n+1$ ,

where we take the branch of log such that for $(0, \cdots , 0)$ every $2\pi iw_{j}$ assumes
real numbers. We have similarly

$w_{j}=\frac{h_{j}(p_{0}(t))}{h(p_{0}(t))}(e^{2\pi it_{j}}-i$ cos $2\pi t_{j}\sum_{k=1}^{n+1}\frac{h_{k}(p_{0}(t))}{h(p_{0}(t))}$ sin $2\pi t_{k})$

for $\varphi=p\circ\tilde{\varphi}=$ $(w_{1}, \cdots , w_{n+1})$ .
We note that if all $t_{j}$ are integers, theh we have

$\tilde{w}_{j}(t_{1}, t_{n})=\frac{1}{2\pi i}$ log $\frac{1}{n+1}+t_{j}$ , $j=1,$ $n+1$ ,

$w_{j}(t_{1}, \cdots, t_{n})=\frac{1}{n+1}$ , $j=1,$ $n+1$ ,

and that if we let $t_{j}$ vary from $0$ to 1 holding the other $t_{k}$ fixed as $0$ or 1,
then $\varphi(t_{1}, \cdots , t_{n+1})$ describes a curve in $C^{n+1}$ as indicated in Fig. 4.

Fig. 4.

Finally we investigate the integral over the $n\cdot sphereS=\varphi(\Sigma^{n})$ represent-

ing the generator of $H_{n}(\tilde{X}, Z)$ considered as a free $Z(H_{1}(X, Z))$ -module. Let
$\epsilon=$ $(\epsilon_{1}, \cdots , \epsilon_{n+1}),$ $\epsilon_{j}=0$ or 1, be any one of $2^{n+1}$ vertices of $\Sigma^{n}$ and for a real
number $\rho^{\prime},$ $0\leqq\rho^{\prime}\leqq 1/4$ , denote by $\Delta_{\epsilon,\rho}$ , the part of $\Sigma^{n}$ defined by

$\Delta_{\epsilon,\rho^{\prime}}=\{(t_{1}, ’ t_{n+1})||t_{j}-\epsilon_{j}|\leqq 1/4-\rho^{\prime}\}\cap^{\Sigma^{n}}\cdot$

Let $\rho$ lbe a small positive number and define subsets $A_{\rho}$ and $B_{\rho}$ of $X$ by

$ A_{\rho}=X\cap$ {( $w_{1},$ $\cdots$ , $w_{n+1}$ ) $|w_{j}$ are real and $ w_{j}\geqq\rho$ for all $j$} ,

$ B_{\rho}=X\cap$ {( $w_{1},$ $\cdots$ , $w_{n+1}$ ) $||w_{j}|\leqq\rho$ for some $j$}.

Then we shall find a Piecewise smooth map: $\tilde{\psi};\Sigma^{n}\rightarrow p^{-1}(X)$ with the follow-
ing PrOPerties:

1) $\tilde{\psi}$ is homotopic to $\tilde{\varphi}$ ,

2)
$p\circ\tilde{\psi}$

maPs each $\Delta_{\epsilon,\rho’}$ bijectively onto $A_{\rho}$ and $\Sigma^{n}-U\Delta_{\epsilon,\rho^{\prime}}\epsilon$ into $B_{\rho}$ ,
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where $\rho^{\prime}$ is a suitable small number which tends to $0$ as $\rho\rightarrow 0$ .
Let $N$ be a positive number greater than

max $\{v_{j}|w_{j}=u_{j}+iv_{j}, (w_{1}, \cdots , w_{n+1})\in\varphi(\Sigma^{n})\}$ .
Let $V$ be the vector subspace of $R^{n+1}$ defined by the linear equation

$v_{1}+\cdots+v_{n+1}=0$

and $le$ )$tV_{r}$ be the subset of $V$ defined by $|v_{j}|\leqq r$ for all $j$ . Let $V_{r}$ denote
the subset of $V_{r}$ defined by $|v_{j}|=r$ for some $j$ . Note that, through the
identification $w=(u;v),$ $X$ is contained in $R^{n+1}\times V$ and $\varphi(\Sigma^{n})$ is contained in
$R^{n+1}\times V_{N}$ . We denote by $R^{+}$ the set of non-negative real numbers. Then it
is not difficult to construct a map $\mu:R^{+}\times V\rightarrow V$ such that

1)’ $\mu$ is homotopic to the projection into the second factor,
2)’ putting $\mu_{x}(v)=\mu(x, v)$ we have

$\left\{\begin{array}{l}\mu_{x}(V_{N}-V_{\rho-x})=V_{\rho- x},\\\mu_{x}|V_{\rho-x}=identity\end{array}\right.$

for $x\leqq\rho;\mu_{x}(V_{N})=0$ for $ x\geqq\rho$ .
Next define a map $d:X\rightarrow X$ by

$d(u, v)=(u, \mu(\min|u_{j}|, v))$ .
By the condition 1)’ $d$ is homotopic to the identity. Moreover, if the number
$\delta used\lfloor$ in the dePnition of the cross-section $s$ (see (3.4)) is sufficiently small,
then, by the condition 2)’, $d\circ\varphi(\Sigma^{n})$ is contained in $A_{\rho}\cup B_{\rho}$ and also in $D$ as
dePned in the beginning of this section. It is not difficult to see that the set
$($do $\varphi)^{-\cdot 1}(A_{\rho})\cap\Delta_{\epsilon,0}$ is of the form $\Delta_{\epsilon,\rho^{\prime}}$ for some small $\rho^{\prime}$ , and $ d\circ\varphi$ maps $\Delta_{\text{\’{e}},\rho^{r}}$

bijectively onto $A_{\rho}$ .
We set $\psi=d\circ\varphi$ . Since $d$ is homotopic to the identity, by the covering

homotopy Property, there is a map $\tilde{\psi}$ satisfying 1), 2) and such that $\psi=p\circ\tilde{\psi}$.
Consider the integral of n-form (1.13) or (1.14) over $\tilde{\psi}(\Sigma^{n})$ :

$\int_{\psi(\Sigma^{n})}\sim\tilde{\omega}$ .
We write it as

$\sum_{8}\int_{\sim}(\Delta_{\epsilon.\rho^{\prime}})\tilde{\omega}+\int_{\sim}\tilde{\omega}\psi\psi(\Sigma^{n}-\bigcup_{\epsilon}\Delta_{e.\rho^{\prime}})$

Taking account of (3.1) and the orientation of $\Delta_{\epsilon,\rho^{\prime}}$ induced from that of $\Sigma^{n}$

we see that the flrst sum of the above integrals is equal to

$\pm(1-e^{2\pi i\beta_{1}})\cdots(1-e^{2\pi i\beta_{n}})(1-e^{2\pi i(\gamma-\beta_{1}-\cdots-\beta_{n})})\int\cdots\int g(z_{1}A\rho$
,
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where $g(z_{1}, \cdots , z_{n})$ stands for the integrand in (1.8) or (1.9). On the other
hand, we have

$\sim\int_{\psi(\Sigma^{n}};_{\bigcup_{\epsilon}}\int_{\Delta_{\epsilon}\rho^{\prime})}g(z_{1}, z_{n})dz_{1}\cdots dz_{n}\rightarrow 0$

$(\rho\rightarrow 0)$

under the restriction (1.11).

Thus we arrive at the
PROPOSITION 3.7. Under (1.11) and with a suitable orientation of $S$ we have

$\dot{\ell}1,$

$.\int_{\epsilon_{n},1-z_{1}}\cdots\lrcorner_{z_{n}\geqq 0}z_{1}^{\beta_{1}-1}\cdots z_{n}^{\beta_{n}-1}(1-z_{1}- \cdot.. -z_{n})^{\gamma-\beta_{1}-\cdots-\beta_{n^{-1}}}(1-x_{1}z_{1})^{-\alpha_{1}}$

.. . $(1-x_{n}z_{n})^{-a_{n}}dz_{1}\cdots dz_{n}$

$=\frac{1}{(1-e^{2\pi i(\gamma-\beta_{1}-\cdots-\beta_{n})})\prod_{j=1}^{n}(1-e^{2\pi i\beta_{j}})}\int_{s}\sim zf^{1}-1\ldots z\beta^{n^{-1}}$

. $(1-\tilde{z}_{1}-\cdots-\tilde{z}_{n})^{\gamma-\beta_{1}-\cdots-\beta_{n}- 1}(1-x_{1}\tilde{z}_{1})^{-\alpha_{1}}\cdots(1-x_{n}\tilde{z}_{n})^{-a_{n}}d\tilde{z}_{1}\wedge\cdots\wedge d\tilde{z}_{n}$

and

$\eta.\cdots.\int_{z_{n}.1-z_{1}}\cdots\lrcorner_{n\geqq 0}z_{1}^{\beta_{1^{-}}1}\cdots z_{n}^{\beta n-1}(1-z_{1}-\cdots-z_{n})^{\gamma-\beta_{1}}-\beta_{n^{-1}}(1-x_{1}z_{1}-\cdots-x_{n}z_{n})^{-\alpha}dz_{1}\cdots dz_{n}$

$=\frac{1}{(1-e^{t\pi t(\gamma-\beta_{1}-\cdots-\beta_{n})})\prod_{j=1}^{n}(1-e^{2\pi i\beta_{j}})}\int_{s}\sim zf^{1^{-1}}\cdots zf^{n^{-1}}$

. $(1-\tilde{z}_{1}-\cdots-\tilde{z}_{n})^{\gamma-\beta_{1}-\cdots-\beta_{n}-1}(1-x_{1}\tilde{z}_{1}-\cdots-x_{n}\tilde{z}_{n})^{-\alpha}d\tilde{z}_{1}$ A ... A $d\tilde{z}_{n}$ .

\S 4. Homology with coefficients in local systems.

The case of $F_{A}$ being easy we shall only treat the case of $F_{B}$ and $F_{D}$ .
We assume for simplicity that $n$ is greater than 1. Let $\beta_{1},$ $\cdots$ , $\beta_{n}$ and $\gamma$ be
complex numbers. Let $l_{j},$ $1\leqq i\leqq n+1$ , be the loop in $X_{0}$ defined by

$l_{j}(t)=(1, \cdots , 1, e^{2\tau dt}, 1, \cdots , 1)$

where $e^{2\pi it}$ is placed at the j-th factor. The $l_{j}$ dePne homotopy classes in
$\pi_{1}(X_{0})=H_{1}(X_{0})$ which we shall also denote by the same letters. Then the $l_{j}$

are generators of the free abelian group $\pi_{1}(X_{0})$ . Consider the representation
$\theta:\pi_{1}(X_{0})\rightarrow C^{*}$ given by

$\theta(l_{j})=e^{2\pi t\beta_{j}}$ , $1\leqq j\leqq n$ ,

$\theta(l_{n+1})=e^{2\pi i(\gamma-\beta_{1}-\cdots-\beta_{n})}$ .
Let $S_{0}$ be the local system with stalk $C$ associated to $\theta$ . We shall also con-
sider the local system $S=(f_{1}\circ s)^{*}S_{0}$ and $S^{-1}$ on $X$ where $f_{1}\circ s$ is the homotopy
equivalence given in Section 3. Note that the loops $f_{1}\circ s\circ l_{j}$ have the form
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as described in Fig. 4, Section 3. Just as in Introduction if follows that the
differential form (1.13) or (1.14) can be viewed as an element of $H^{n}(X, S^{-1})$ .

PROPOSITION 4.1. SuPpose that at least one of $\beta_{1},$ $\cdots$ , $\beta_{n},$ $\beta_{n+1}=\gamma-\beta_{1}-\cdots$

$-\beta_{n}$ is not an integer, $i$ . $e$ . the local system $S$ is not trivial. Then the homology
groups $H_{q}(X, S)$ vanish for $q\neq n$ . $H_{n}(X, S)$ has dimension 1 and is generated

by the image of the homology class of $S=\tilde{\varphi}(\Sigma)$ in $\tilde{X}$.
PROOF. Let $p_{0}$ ; $\tilde{X}_{0}\rightarrow X_{0}$ be the universal covering map as given in Sec-

tion 3. We shall mean by a k-wall of $\tilde{X}_{0}$ an open k-cube in $\tilde{X}_{0}$ of the form

{( $t_{1},$ $\cdots$ , $t_{n+1})\in\tilde{X}_{0}|n_{i}<t_{i}<n_{i}+1$ for $i\in K$ and $t_{j}\in Z$ for $j\not\in K$ }

where $K$ is a subset of $\{1, \cdots , n+1\}$ consisting of $k$ elements and $n_{i}’ s$ are
integers. Let $C^{*}(\tilde{X}_{0})=\sum C_{k}(\tilde{X}_{0})$ be the chain complex in which $C_{k}(\tilde{X}_{0})$ is the
free abelian group generated by the oriented k-walls in $\tilde{X}_{0}$ for $0\leqq k\leqq n$ and
$C_{k}(\tilde{X}_{0})=0$ for $k<0$ or $n<k$ and the boundary is the usual one. The com-
plex $C_{*}(\tilde{X}_{0})$ gives rise to the homology of $\tilde{X}_{0}$ as is well known. Moreover
the fundamental group $\pi_{1}(X_{0})$ acts upon $C_{*}(\tilde{X}_{0})$ on the right freely and if $\sigma$

is a k-wall then $ p_{0}\sigma$ is an open cell in $X_{0}$ . It follows that the complex
$C_{*}(\tilde{X}_{0})\bigotimes_{\theta}C$ gives rise to the homology $H_{*}(X_{0}, S)$ . More precisely let $\pi_{1}(X_{0})$

act upon $C_{*}(\tilde{X}_{0})\otimes C$ on the left by

$\xi\cdot c\otimes\alpha=c\xi^{-1}\otimes\theta(\xi)\alpha$

and let $Q_{*}=\sum_{k}Q_{k}$ be the subcomplex of $C_{*}(\tilde{X}_{0})\otimes C$ generated by the elements

$(1-\xi)x,$ $\xi\in\pi_{1}(X_{0}),$ $x\in C_{*}(\tilde{X}_{0})\otimes C$. The complex $C_{*}(\tilde{X}_{0})\bigotimes_{\theta}C$ is by dePnition
$C_{*}(\tilde{X}_{0})\otimes C/Q_{*}$ . It follows that $C_{*}(\tilde{X}_{0})\bigotimes_{\theta}C$ has a basis $\{\sigma_{K}\}$ where $K$ ranges

over a subset of $\{1, \cdots , n+1\}$ such that $0\leqq|K|<n+1,$ $|K|$ being the number
of the set $K$, and the boundary operator $\partial$ is given by

$\partial\sigma_{K}=\sum_{j\subset K}\epsilon(K, j)(1-e^{2\pi t\beta_{j}})\sigma_{K-tj\}}$

where
$\epsilon(K, j)=(-1)^{s}$

if $K=\{j_{1}, \cdots , j_{s}, j_{|K|}\}$ with $j_{1}<\ldots<i_{s}<\ldots<j_{|K|}$ and $j=j_{s}$ .
Now assume that one of $\beta_{j}$ , say $\beta_{n+1}$ , is not an integer. We define a

homotopy operator $s:C_{k}(\tilde{X}_{0})\bigotimes_{\theta}C\rightarrow C_{k+1}(\tilde{X}_{0})\bigotimes_{\theta}C$ for $k<n$ by

$s(\sigma_{K})=\left\{\begin{array}{l}\frac{(-1)^{|K|+1}}{1-e^{2\pi i\beta_{n+1}}}\sigma_{K\cup\{n+1I}, ifn+1\not\in K,\\0 ifn+1\in K.\end{array}\right.$

It is not hard to verify the relation $\partial s+s\partial=1$ on $C_{k}(\tilde{X}_{0})\bigotimes_{\theta}C$ for $0\leqq k<n$ . It
follows that $H_{k}(X_{0}, S_{0})=0$ for $k\neq n$ .
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Next we put $K_{j}=\{1,2, \cdots , n+1\}-\{j\}$ for $1\leqq i\leqq n+1$ and $\sigma_{j}=\sigma_{K_{j}}$ . $\{\sigma_{j}\}$

is a basis of $C_{n}(\tilde{X}_{0})\bigotimes_{\theta}C$. Assuming that $\beta_{n+1}$ is not an integer it is easy to

see that $\sum_{J=1}^{n+1}a_{j}\sigma_{j}$ is a cycle if and only if

$a_{j}=(-1)^{f}(1-e^{2\pi i\beta_{j}})a_{n+1}/(-1)^{n+1}(1-e^{2\pi i\beta_{n+1}})$ .
It follows that $H_{n}(X_{0}, S_{0})$ has dimension 1. Moreover the image of $\Sigma$ is
$\pm\sum_{j=l}^{n+1}(-1)^{j}(1-e^{2\pi i\beta_{j}})\sigma_{j}$ and hence its homology class generates $H_{n}(X_{0}, S_{0})$ .
APPlying the homotopy equivalence $f_{1}\circ s$ we obtain the results.

From Proposition4.1 we obtain immediately the
COROLLARY 4.2. If at least one of $\beta_{1},$ $\cdots$ , $\beta_{n},$ $\gamma-\beta_{1}-\cdots-\beta_{n}$ is not an

integer then the cohomology grouPs $H^{k}(X, S^{-1})$ vanish except for $k=n$ while
$H^{n}(X, S^{-1})$ has dimension 1. If none of $\beta_{1},$ $\cdots$ , $\beta_{n},$ $\gamma-\beta_{1}-\cdots-\beta_{n}$ is an integer
then $H^{n}(X, S^{-1})$ is generated by

$\tilde{z}^{\beta_{J^{1}}-1}\cdots\tilde{z}_{n}^{\beta_{n}-1}(1-\tilde{z}_{1}-\cdots-\tilde{z}_{n})^{\gamma-\beta_{1}-\cdots-\beta_{n^{-1}}}\prod_{J=1}^{n}(1-x_{j}\tilde{z}_{j})^{-\alpha_{j}}d\tilde{z}_{1}\wedge\cdots\Lambda d\tilde{z}_{n}$

or
$\tilde{z}^{\beta_{1^{1}}-1}\cdots\tilde{z}_{n}^{\beta n^{-1}}(1-\tilde{z}_{1}-\cdots-\tilde{z}_{n})^{\gamma-\beta_{1}-\cdots-\beta_{n}-1}(1-x_{1}\tilde{z}_{1}- -x_{n}\tilde{z}_{n})^{-a}d\tilde{z}_{1}\Lambda\ldots\wedge d\tilde{z}_{n}$ .

REMARK. In Section 3 we have assumed that 1, $\beta_{1},$ $\cdots$ , $\beta_{n},$ $\gamma-\beta_{1}-$ $-\beta_{n}$

are linearly independent over the rationals for the sake of simplicity. $Sup-$

pose that they are linearly dependent over the rational numbers. Then the
kernel $G$ of the homomorphism $\theta$ : $\pi_{1}(X)\rightarrow c*$ is a non-trivial subgroup and
the function $z_{1}^{\beta_{1}-1}\cdots z_{n}^{\rho_{n}-1}(1-z_{1}--... -z_{n})^{\gamma-\beta_{1}--\beta_{n}-1}$ is uniformized by the cover-
ing space $\tilde{X}_{G}=\tilde{X}/G,$ $i.e$ . the manifold $\tilde{X}_{G}$ is the Riemann domain associated
to that function. The homology $H_{*}(\tilde{X}_{G}, Z)$ can also be computed. We remark
that the homomorphism $p_{*};$ $H_{*}(\tilde{X}, Z)\rightarrow H_{*}(\tilde{X}_{G}, Z)$ is not surjective and more-
over, if at least one of $\beta_{1},$ $\cdots$ , $\beta_{n},$ $\gamma-\beta_{1}-\cdots-\beta_{n}$ is not an integer then $p_{*}(\Sigma)$

does not vanish.
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