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§1. Introduction.

We consider nonlinear evolution equations of the form
Lu A S [t uh),  0=t=T

in a real Hilbert space H. Here, for each fixed f, A(f) is a (possibly) multi-
valued nonlinear operator in H of the form d¢‘ (subdifferential of a lower
semicontinuous convex function ¢* from H into (—oo, o], ¢°z£00), while f(¢, *)
is continuous from the strong to the weak topology of H and f(t, -)—pB(t)- is
dissipative in H for some Lebesgue integrable function 8 on [0, 7"].

We denote the inner product and the norm in H by (,) and | | re-
spectively. Let ¢ be a lower semicontinuous convex function from H into
(—o0,00]. The effective domain of ¢ is defined by {ues H; ¢(u) <co}. The
subdifferential d¢ of ¢ is defined by dp(u) = {w € H; ¢(v) = p(u)+(w, v—u) for
all ve H} for each u < H, and the domain of the subdifferential d¢ is defined
by D@¢)={u<s H; dp(u) + 0}.

Let T be a positive constant. For each ¢t [0, 7], let ¢* be a lower semi-
continuous convex function from H into (—oo, 00] with nonvoid effective
domain, and suppose that {¢’; 0<t<T} satisfies the following three condi-

tions:
(I) The effective domain D of ¢' is independent of t.
(II) For every r> 0, there exist two positive constants ¢, and c, such that

o' (W) — @ W) | = [s—t] -[c,0(w)+cr ]

holds if 0<s, t<T, usD and |u[|<Z7.

(II) For some be D, b is in D(0¢") for almost all t<[0,T] and |||0¢*(b)]||
=min {|v]; v<0¢'(b)} is Lebesgue integrable in 0<t<T. (See [Corollary 3.4)

Let f be a map of [0, T1X H into H, and suppose that f satisfies the
following three conditions:

(IV) For each fixed wues H, f(t, u) is strongly measurable in 0<t<T, and
for each fixed t=[0,T] it is continuous from the strong to the weak topology
of H.
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(V) For some Lebesgue integrable function 8 on 0<t<T,

(ft, w—S, v), u—v) = Bl u—v|*

holds for all t=[0,T] and all u,v e H.

(VI) For each bounded subset Hy, of H there exists a Lebesgue integrable
Sfunction y on 0=t=<T satisfying |f(t, W|*=<y({®) for all t<[0,T] and all
u e H, :

In this paper we consider the initial value problem for the equation
(WL Luragtue) = £, ut),  0St<T

with the initial condition u(0)=a. Here and henceforth in this paper d/dt
denotes the strong differentiation with respect to {. We shall prove that
under the assumptions (I) to (VI) there exists one and only one solution u
of with u#(0)=a for each a< D (closure of D in H) and that u(?) is in
D for all t<(0,T] and u(t) is in D(@¢") for almost all ¢t [0, T].

When X is a Banach space, C(/; X) denotes the set of all X-valued
strongly continuous functions on an interval I of real numbers and L?(t,, t,;
X) (p=1, t,<t,) denotes the set of all X-valued strongly measurable functions

u on (t, ;) such that | :leu(t)||1’dt< oo
1

In the case of a € D we have the following theorem which will be proved
in §6.

THEOREM 1.1. If conditions (1) to (VI) are satisfied, then for each ac D
there exists a uniquely determined pair of functions weC({0,T]; H) and
ye L¥0, T; H) satisfying the following two conditions:

(i) For all te[0,T], u(t) is in D and for almost all t< [0, T, u(t) is in
D(0¢") and y(t) is in 0" (u(t)).

(i) ult) + jo’y(s)ds:a+ j:f(s, w(s))ds for all te[0,T].

REMARK 1.2. It is easily seen from (IV) and (VI) that f(s, u(s)) in (ii) of
is in L*0,T; H). Cf. [4, Theorem 3.5.4, (4] and [1I]. Note
that (ii) of holds if and only if u is strongly absolutely con-
tinuous in [0, 7] and satisfies du(t)/dt+y(@)=f(, u(®) a.e. in [0, 7] and
u(0)=a. See [7, Appendix].

DEFINITION 1.3. A function u from [0,T] into H is called a strong
solution of the equation (1.1) on [0, T, if u is in C([0, T]; H) and if there
exists an H-valued strongly measurable function y on [0, 7] satisfying the
following two conditions:

(i) For almost all t [0, T], u(?) is in D(@¢") and y(¢) is in 0" (u(?)).

(ii) For each s=(0,T], v is in L*s, T; H) and
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u()+ [ Wo)do = u(s)+ [ ‘o, u(o))do

holds when 0<s={<T.

REMARK 14. If u=C{0,T]; H) is a strong solution of on [s, T]
for each s>0, then u is a strong solution of on [0, T]. Note that
() = f@¢t, u(t))—du(t)/dt a.e. in 0=t <T.

In case a is in the closure D of D we have the following theorem.

THEOREM 1.5. If conditions (I) to (VI) are satisfied, then for each a< D
there exists one and only one strong solution u of (1.1) on [0, T] with u(0)=a.
Thus, in particular, u(t) is in D(@¢") for almost all t<[0,T]. Moreover, u(t)
is in D for all t(0, T].

A subtle feature of (as well as is the nice
differentiability property of solutions for rather general initial elements a.
In this sense our results generalize those by Brezis [I]. We shall prove
in §7 by making use of a method suggested personally by
Professor Y. Komura to whom the author wishes to express his hearty thanks.

We should mention a few more existing works on nonlinear evolution
equations which are closely related with the present paper. When A is a
multivalued maximal monotone operator in a Hilbert space, Komura con-
sidered the initial value problem

(1.2) A Au=0 (20 and wO)=q,

a being in the domain D(A) of A, and proved the existence and uniqueness
of solutions of [1.2), using the Yosida approximation of A. Kato [5] generalized
a proof in Komura [7] when A depends on ¢, and showed a existence theorem
for the initial value problem

(1.3) A Au()=0 0=1=T) and u(0)=a< DIAO)
in a Banach space whose dual space is uniformly convex, assuming that A(%)
is a single-valued m-accretive operator depending on f in a certain lipschit-
zian sense and that D(A(?)) is independent of ¢t. Crandall-Liggett also
treated in a general Banach space, assuming among other things that
D(A(1) is independent of £. In this paper A(t) is a multivalued maximal
monotone operator of the particular form 0¢’ in a Hilbert space, but we do
not assume that D(A(f) is independent of ¢. In our case, however, the
closure 5(—6‘9_7‘_) of D(@¢") is independent of ¢ by the assumption (I), since 1—)(8_go‘)
coincides with the closure of the effective domain D of ¢ (see [107]).

The author is indebted to Professor H. Fujita for valuable advice.
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§2. Approximation of subdifferentials.

Let ¢ be a lower semicontinuous convex function from H into (—oo, co]
with nonvoid effective domain. In this section we summarize for later use
some properties of the Yosida approximation d¢p;, 4 >0, of the subdifferential
d¢. Most of these properties of d¢, are essentially due to Moreau [8]. See
also [1] and [10].

We can see easily that the subdifferential d¢ of ¢ is a nonempty monotone
set in HxH, i.e, D@¢)=0 and (u;—u, v,—v,)=0 if v,€0p(u,;), 1=1,2.
Define for all A>0 and all u,ve H

2.1) Dy(u, v) = p(v)+ /22 lu—v|*.

For each u < H and each 1>0, there exists one and only one #’ in H such
that @;(u, w')<@,(u,v) for all v< H, since the set of all v H such that
@,(u, v) <r is a nonempty weakly compact set in H for sufficiently large real
number 7, and since the function v— @;(u, v) is strictly convex. This element
u/, which is uniquely determined by ¢, 2 and u, is denoted by Jiu¢)u or Ju.

Let ve H and a (0, 1]. Since @;(u, av+(1—a)fu) > D, (u, J;u), by using
2.1) we obtain

(2.2) o) (/2 v —Ju|* = e(Jaw)+ @ —Jau, (u—J0)/2)
and hence, by letting a | 0 in [(2.2), we have for all ue H and all 1>0
(2.3) (u—Jaw)/A € dp(Jw)

which implies that d¢ is maximal monotone and that Jyu=(1+2-0¢)'u. We
define (0p),u=(u—Ju)/A. It is well-known that for u,ve H and 1>0 we
have

24 Iau—Jawl = lu—vil,
(2.5) 1@@)u] =l10pw) = inf {|w] ; w € dp(w)}

and that (d¢), is monotone for each 1> 0.
For each u= H and each 1> 0 we define

(2.6) o (w) = (L) +(2/2)[(00)ul® .
By the definition of J,u we have
(2.7) () =@ (u, J;u) =D ;(u, u) = o(u).

It follows from that for all u,v< H and all 2>0
(2.3) D;(u, v)—@x(w)
= o)~ ()~ (=L, G)an) AL o WSl
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For any function ¢ from H into (—oo, co] we define its conjugate ¢* by
¢*(u) =sup {(u, v)—¢); ve H} for all ue H.

If ¢ is a lower semicontinuous convex function from H into (—oo, 00] with
nonvoid effective domain, then so is its conjugate ¢*. It is well-known that
for u,ve H

2.9 v e dp(u) is equivalent to o(u)+¢*(v) = (u, v).
We can easily verify
(2.10) (0)*(w) = *(w)+(4/2)||ul|? for all ue H and all 1> 0.
By [2.6), [2.10), [2.9] and [2.3] we get
@A) +(2)*(99) (1) = @( 1)+ *(09) (1)) + A B) (W) |?
= (Jau, (09):(w))+A[1(0¢)a(w)|*
= (u, (0p)(w)),

and hence, by [2.9), (0¢):(u) € 0(¢)(w). Then for all u,ve H and all 1>0 we
have

(2.11) 0= a(v) —@a(w)—(v—1u, (0¢)(w))
= (v—u, (0¢):(v) —0¢)())
= lv—ul®/2

which implies that ¢(u) is Fréchet differentiable at each u< H and the
Fréchet derivative of ¢; at u is equal to (0¢);(u). Hence 9(¢;)(w) = {(0p)(w)},
and henceforth we will write d¢p; instead of (0¢);.

§3. Continuity of d¢} with respect to ¢.

In this section we will show that, under the assumptions (I) and (II) stated
in §1, 0¢4(u) satisfies a Holder condition with exponent 1/2 in 0<t<T for
each u= H and each 1>0.

LEMMA 3.1. Let ¢ and ¢* be two lower semicontinuous convex functions
from H to (—oo, oo with nonvoid effective domains. Then

CRY, Piw)—3(w) = ¢ (Ji(0*)w) — " (Jal*)w)—(2/2)[0¢i(u) —0¢3(w)||*
for all 2>0 and all ues H.
PROOF. We write Jiu=/(¢")u for i=1,2. Using and d¢p}(u) € 3¢ (Jiu)
we obtain
Loiw)— i) ]—[o'(Jiu)—¢*(Jiw)]
= @'(Jju)— ' (J3w)+(4/2)(100i(w) ||*— 1093w |1*)
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=o' (Jiw)— @ (Jhuw)—@piu, Jiu—Jiuw)
+(2/2)LN0¢i(w)|1*— 1 0p3(w) | —2(0pi(w), dpi(w)—0pi(w))]
= —(A/2)llopi(w)—dpi(w)|*
which proves

LEMMA 3.2. Let ¢' and ¢* be two lower semicontinuous convex functions
from H to (—oo, oo with nonvoid effective domains, and let x H, >0, 0 >0,
€>0, ¢/>0 and n<(0,1). Suppose that the following three conditions are
satisfied:

(i) If ue H and Ju—J¢"x] £, then ¢*(w) = (1—7)p'(w)—e.

(i) @(Je)x) = o (JilpHD)+e"

(i) 0%/(22) = e+e'+7-oY(D(= ).

Then [0p}(x)—0¢3(0)|I* < 2a/A.

PROOF. We write @%(u)=¢'(u)+|u—=x|?/(22) and x;=Ji(¢")x for i=1,2

and for ue H. By and we have

(3.2 O (u) = O (x)+ Ju—=x;]12/(24) for i=1,2 and for ue H,

and (i) and (ii) give respectively

(3.3 O*(w) =z (1—nP(w)—e, if Ju—xl=9
and
(3.4) O%(x,) = O'(x,)+¢ .

We will show |x;,—x,||=<d. Suppose [[x,—x,|| >0d. Define 8 =0/|x;—x,] and
x9=(1—0)x,+0x, then 0<f<1 and |x—x,|=0. By using [3.2), [3.3), [(3.4)
and the convexity of @* we have

(1—70'(x)—e = (L—7)0'(xp)—¢
< 0%(x) = (1= )P (x)) +00%(x,)
< (1~ 0) [0 () +e1+6] @) o — 1B

1 ,_ 0
= QY (x,)+e Y [l 26— x|

which shows

35) S = o I nlt S et Oy =a,

since @'(x,) = ¢}(x). Combining (iii) and we have @ =1, which is a con-
tradiction. Hence |x;—x,]| =0.

Using [(3.2), and we obtain

D*(x,)+e = (1—n)D*(x,) = A—)LP* (x)+ | x,— x|/ (24)]
and
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Q' (x;)+e" = O*(x)+ || 2, —x.112/(24) .
Adding these two inequalities together, we get

ete'+n- Q' (x) = —2—221 |2, — 2,12
and so
[1003(%)—0@3(DN|* = |2, — x,[|*/2* < 2/ 2(2—1) < 2a/A..

This completes the proof.

PROPOSITION 3.3. Suppose that {¢'; 0=t <T} satisfies condition (I) in §1,
and that for each r >0 there exists a real constant ¢, and a nonnegative func-
tion h(s,t) on 0<s, t<T such that

3.6) lo*(w)— @' (W) | = h(s, L' (w)+c; ]

for all s,t<[0,T] and all we D with |u| =r. If, for each fixed t=[0,T],
h(s, t) is continuous in 0=<s=<T and h(t, t)=0, then 0¢4(x) is continuous in
0=t<T for each 2>0 and each x< H. Moreover, if h is of the form

3.7 h(s, t)=c|s—t|“ 0<s, t<T)

with constants ¢ >0 and a (0, 1], then 0¢4(x) satisfies a Holder condition with
exponent a/2 in 0=t<T for each >0 and each x< H.

PROOF. Let A>0 and xe H. Set x,=J(¢"x for 0=t<T, and fix an
arbitrary t< [0, T]. Let > |xJ. Since by

@*(w) = [1—h(s, )] (w)—c, h(s, t)
and

©*(x1) = ' (x)+h(s, " (x)+¢; ]
for s€[0,T] and ue D with |u| <7, it follows from that
(3.8 0¢3(x) —0¢4(0)|1* = (4/ (s, L' (x)+c; +-(A/D[10pi(x) %]

if s is sufficiently close to t&. By , 0pj(x) is continuous at s=t and hence,
by the arbitrariness of ¢, it is continuous in 0<s<T.

Therefore we may take r so large that {x| = ||x—20¢i(x)| <r for all
te[0,T]. Using Lemma 3.1 and (3.6), we obtain for all s,t<[0, T]

30— @i(x) = ©*(x)— ' (x;) = A(s, LY (xe)+-¢1 ]
which implies that ¢j(x) is bounded from above in 0=<s<T. Thus, since
©*(x;) < p§(x) by [2.6), ¢*(x;) is bounded from above in 0=<s<T. Hence by
there exists an M >0 independent of ¢ and satisfying
(3.9 0p3(x)—0pi(x)| = Mh(s, £)*?

whenever s is sufficiently close to t= [0, T]. If & is of the form [3.7), then
(3.9) implies that d¢pi(x) satisfies a Holder condition with exponent «/2 in
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0=t<T. The proof is completed.

For every nonempty closed convex subset K of H, K° denotes the uniquely
determined element u in K such that |u| =inf {]v]|; ve K}.

COROLLARY 3.4. Assume that conditions (I) and (II) in §1 are satisfied.
Let be D. If bisin D(0¢") for a.a. t< [0, T], then 0¢'(b)° is strongly measur-
able in 0<t<T.

PROOF. Since by [Proposition 3.3 d¢f/,(b) is continuous in 0=t<T for
each positive integer n and by [3, Theorem 2.3, (a)] it converges to 0¢’ ()’
as n—oo for a.a. te [0, T], it follows from [4, Theorem 3.5.4, (3)] that d¢'(b)°
is strongly measurable in 0t < T.

§4. Uniqueness of solutions.

In this section we suppose that f satisfies conditions (IV) and (V). First
we shall show an a priori estimate for strong solutions of the equation [(1.1).
LEMMA 4.1. If u, and u, are two strong solutions of (1.1) on [0, T, then

@) @@ < exp ([ Bo)do)lu(—u©l  for 0=s<t=T.

ProOOF. By and by condition (IV), v,(t) = f(t, u,(t))—du,(t)/dt
€ dp(uy(?)) a.e. in [0, T] for i=1,2. Then, by using the monotonicity of 0¢°
and condition (V), we obtain

(12) e )0

= (LA, w(O)— S, us(D) 1= —2:(0)], us(t)—u,(1)
= B0 lu, () —u,(DI*

for a.a. t [0, T]. Since ||u,()—u,(?)| is continuous in 0 < ¢ < T and absolutely
continuous in s<t<T for each s (0, T], we deduce (4.1) from (4.2).
COROLLARY 4.2. If u, and u, are two strong solutions of (1.1) on [0, T]
satisfying u,(0) = u,(0), then u,(t)=uy(t) holds for all t [0, T].
This corollary proves the uniqueness part of Theorems [.1 and .5, be-
cause u in is trivially a strong solution of [(1.1).

§5. Equations in Banach spaces.

The purpose of this section is to prepare an existence theorem for so-
lutions of nonlinear evolution equations of a certain class, which can be
applied to the approximate equations for with 9¢° replaced by 0¢}.
However, we shall give a somewhat general version of the result, which
seems to be of an independent interest.
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Let X be a real Banach space and suppose its dual space X* is uniformly
convex. | || denotes the norms in X and X*. (x, x*) denotes the value of
x*e X* at x€ X. Let F be the duality map of X into X*; for each x< X,
Fx is the uniquely determined element x* of X* such that (x, x*) = || x||>= | x*|
It is known that F is uniformly continuous in any bounded subset of X. See
Kato [5]

Let f be a map of [0, T]X X into X, where T is a positive constant. We
consider the equation

G1) () =1t u(t)

in 0<t<T with the initial condition u(0)=a < X. For the completeness of
this paper we shall show the local and global existence of solutions of
in Theorems B.1 and respectively. Cf. Murakami [9, Remark 2, p. 157]
and Kato [5, 6]1.

THEOREM 5.1. Suppose that

(i) For each fixed x € X, f(t, x) is strongly measurable in 0=t <T, and for
each fixed t [0, T] it is continuous from the strong to the weak topology of X.

Let ac X and p >0, and suppose that there exists two Lebesgue integrable
Sfunctions B and y on 0=t=<T satisfying

(5.2) (f(t, ©—f(, 3), F(x—) = Bl x—y|®
and
(5.3) 1/ ) = r@)

respectively, whenever 0=<t<T, |x—al<p and |y—a| <p. Then for some
re (0, T] there exists one and only one u in C([0,7]; X) such that for all
te [0, 7]

(5.4) u(t) = a+j0’f<s, ul(s))ds .

REMARK 5.2. For veC([t,t,1; X) 0=, <t,=T), f(t v() is strongly
measurable in [, £,] by (i), and it is Bochner integrable in [t,, t,] by (5.3) if
lv@®—all < p for all t. Cf. Remark 1.2. Since X is reflexive, holds for
te[0,7] if and only if u is strongly absolutely continuous in [0, 7] and
satisfies for a.a. t<[0, 7] and u(0)=a. See Komura [7, Appendix].

PROOF OF THEOREM 5.1. Let r< (0, T] such that jorr(t)dt_ﬁ_ p. For each
integer n > 1/r we define u, as

a (t=1/n)
5) (1) = L
at j S u(s=1/m)ds  (A/n<t=7).
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Clearly Hun(t)_—an é p. Let xmn(t) - um(t>_un<t)’ ymn(t) = um(t— 1/m)_un(t—1/n)
and B(f) = j.otﬁ(s)ds. We obtain

(56) PO (D)

<2 e L2 ()| Fna(5)— Fmal)l = B (= [ ma()]ds

for t=[0, 7). Because it is easily seen from [5.5) and (5.3) that the
derivative of the left-hand side of (5.6) with respect to ¢ is not greater than
the derivative of the right-hand side for almost all ¢ (cf. Kato [5, Proof of
Lemma 4.3]). Since by and (5.3) | Xmn(t) =Y ma(D)|— 0 as m, n— co, it follows
from (5.6) that u, converges to a u in C([0, r]; X) as n— oo, and by letting
n—co in we obtain [(5.4).

We conclude the proof by noting that the uniqueness of solutions is easily
seen by a standard argument similar to §4.

THEOREM b.3. Suppose that f(t, x) satisfies condition (i) of Theorem 5.1
and the following three conditions:

(ii) For some Lebesgue integrable function 8 on 0<t=T (5.2) holds for
all te[0,T] and all x,y = X.

(iii) For each bounded subset X, of X there exists a Lebesgue integrable
Sunction y on 0=t=<T satisfying (5.3) for all t[0,T] and all x € X,.

@iv) For some b in X, f(t,b) is in L*0, T ; X).
Then for each a < X there exists one and only one u in C({0, T]; X) such that
(5.4) holds for 0Zt<T.

PrOOF. By [Theorem 5.1 there exists at least a u in C([0, t,); X) such
that holds for 0=<t<t, where t,=(0, T]. By using (ii) we have for
almost all ¢t = [0, t,]

exp (2B()+1) 5 (exp (2B~ 1) u(t)—b[")

= 2(/(t, u()), F(u(t)—b))— 281+ Du(®—0b|*
= |/ D),

from which by means of (iv) it follows easily that u is bounded in 01 <t,.
Hence, by (i) and (iii), f(¢, u(#)) is in L*0, t,; X) and, by [5.4), u(f) converges
strongly toan a, in X as t1¢#. If ,<T, it is readily seen from
that the solution u can be continued to the right of #. Thus the solution u
has the continuation to the whole interval [0, T7.

Since the uniqueness of solutions follows from Theorem 5.1, we complete
the proof.
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§6 Proof of Theorem 1.1.

We assume that conditions (I) to (VI) are satisfied. Let 4>0. Since
094 (u) satisfies a Lipschitz condition with respect to » in H with Lipschitz
constant 1/4 (cf.[2.4) and a Holder condition with exponent 1/2 in 0=t<T
for each fixed u< H by virtue of (I) and (II) (see Proposition 3.3), it is easily
seen that (IV) and (VI) are satisfied with f(¢, u) replaced by f(t, u)—0d¢5(u).
By (V) and by the monotonicity of d¢} we have

(6.1) (LS, w—0gh (w) 1L f(¢, v)—0¢i(v)], u—v) = O u—v|*
for all t=[0,T] and all u, v H. Then it follows from that for

each a € H there exists one and only one H-valued strongly absolutely con-
tinuous function u; on [0, T satisfying

6.2) (OO wAD) = [, ui) 2. in 0SP<T

and u;(0)=a. We shall write y;(f) =0¢4(u;(t)). Note that y; is in C([0, T]; H).
We set

B(t)= | otﬁ(s)ds .
LEMMA 6.1. {u;(t); A>0, 0=t <T} 1s bounded in H.
PrOOF. For almost all t< [0, T], by using and (6.2), we obtain
%},— la(8)—b11* = 2L (¢, u))—f(t, b)]1—[y2—0¢h (b)1+f(t, b)—0¢4 (), us—b)
= 2B()llua®)—b)2+2(1) 2, )| 411095 () DIl ua(t)—bl
and hence
(6.3) %lrlluz(f)—bll =< B)llua()—bl 411 f(2, D)4 10¢4 ()]
(cf. [5, p. 515]). Since u,(0)=a, (6.3) gives for 0<t<T
lu()—bl = e”“’Ha—bllJrf:eB“"B“’(llf (s, DI+ 1003B)ds ,

whose right-hand side is bounded in 0<¢<T and 41>0 because by (III) and
[2.5) we have

T T
[ Iapio)ds < { “agt @)l ds < oo

Our conclusion follows.

From now on we use the notation J4u instead of J(¢')u.

LEMMA 6.2. If H, is a bounded subset of H, then {Jbu; 0<t<T, 0<AL1,
ue H} is also bounded in H.
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PROOF. Let 0=t<T, 2, #>0 and u< H, then

A —A
(6.4) Jou= J;(7u+»’“‘ﬂ Jiw)
(see e.g. [2, Lemma 1.2, (iv)]). It is easily seen from and that
(6.5) I Jfu—Jiul < A—=Dlu—Jiu|

when 0 <A=<1. Let v be a fixed element in H, By using|2.4), the triangle
inequality and we get
1Jful = | Jivi+lu—v] = A=Dlv—Jwl+ 1 Jivl+u—2],

which proves the lemma since J{v is bounded in 0={=T by [Proposition 3.3

We assume that a is in D.

LEMMA 6.3. ¢f(u;(?) is bounded in 0=t=<T and 0<A=Z1.

PROOF. Let 7 be the supremum of || Jiux(s)| in 0=s, t<T, 0<p=1 and
A>0. By Lemmas and [6.2, » is finite. Let A>0 and uw<= H such that
r=| Jiull for all se[0,T]. Using Lemma 3.1, (II) and [2.6), we obtain
(6.6) lof (W)—¢iw)| = max {p'(J]w)—¢*(Jiw), *(Jfw)— o (J}u)}

= |t—s|-[e, max {¢*(Jiw), "(Jfw}+c/]
é | t—S] '[CT max {Sods(u)y SDAZ (u)} "I‘Cr/] ’

which implies, in particular, the continuity of ¢f(x) with respect to t. Using

and we obtain
lof (ua(s)— ok (ua(®) |
= i (ua(s)— @i (D) |+ | i (ua()) — o (ux(2)) |
= [(92(5), ua(s)—uz(O) |+ lluals) —ux(D)|*/2
+|t—=s|-[c, max {pf (x(1)), of ()} +¢/],

from which we get easily the absolute continuity of ¢f(u;()) in 0<¢<T by
the strong absolute continuity of u; and the boundedness of y,.
For almost all t< [0, 7], by using (2.11) and (6.2), we get

B D] = (3:0), uf 1)
= (S, ux(®)—ui (@), uz ()
= /DI, w)h?,
which implies by and (VI) the existence of a Lebesgue integrable
function y on [0, 7] independent of 4 and satisfying

—a%go,{ (N = = (1) fdr almost all t< [0, T].



458 J. WATANABE

Hence, using [6.6), we have for almost all ¢t [0, T7]

d ¢

0 () =lim L Topf (05— 0} N 0] (5D

= ¢, 0f (u )+l +y(D),
which gives
67 oiwd) = erola)+ folecr<"”[cr’+‘,v(s)]ds for all te[0,T].
Since by
(6.8) oi(a) = ¢*(a) < oo,

it follows from (6.7) that ¢f(u;(?)) is bounded from above in 0=t<T and
0<21Z1.
For ve H with v <r and for t= [0, T], by (I), we get

[P~ IS ¢,

which shows that ¢'(v) is bounded from below in 0=¢<T and |v|Z7r
because ¢°(v) is bounded from below in [v| =7. Therefore, since ¢} (u;(t))
= o' (J} (ua(®)) by [2.6), ¢f(us(1) is bounded from below in 0=<t<T and 0<A<1.
The proof is complete.

LEMMA 6.4. {y:; 0< A1) 1s bounded in L¥0,T; H).

PROOF. Let » be the same number as in the proof of the preceding lemma.
Let 77<(0,T) and 2= (0, 1]. By using [2.1T), (6.2) and we obtain

[7 uto), fet, wito)—vitonae
= lim [ Tt Qut+h) =g} (wit) 1t
= o AT = @) —lim - " T (et 1) —f (usle-+ )t
= o (AT —gi@)— , Cevf uit)+e/ Tt
from which, by using we get

69) [ 1saoat={ (o), e, uion)de = pil+C

for some real constant C independent of A. Since, by (VI) and Lemma 6.1,
T

[ 17, uit*dt is bounded in 2>0. it follows from and that
0

T
jo I v:(®)lI%dt is bounded in 0 <A< 1.
PROOF OF THEOREM 1.1. We shall prove the existence of a.u=C({0, T]; H)



On certain nonlinear evolution equations 459

and a y= L¥0, T; H) satisfying (i) and (ii) of Theorem 1.1. When 2, ¢ >0,
by using (6.2), (V), and the monotonicity of d¢' we have for almost all
te[0, T]

Ay~ 12

= Z(Ef(t, u).) _f(t, u/t)] "'[yi(t)_yﬂ(t)l u,l(t) _ u,,(t))
= 28D [ ua(®—u (O*—2(3a(B) =3, L8), 2ya(t)— (1))
= 2B ua(t) —u (DI*— A+ I y2(D) =3 DIP— A— ) v 1P — | ¥, DI

from which by using %;(0)=u,(0)=a we obtain for 0=t=<T

(6.10) e (= O+ 1) [ 2 3:(5)—,(5)|ds
= (u=2) [ e 711349 )ds

t
By [6.10) and by joe“w(”ll y(s)|*ds is nondecreasing as 1|0 and

bounded in 0<A=1, and hence it converges to a real number as 4]0.
Then it follows from again that, as 21]0, u; converges to a u in
C([0, T]; H) and y; converges to a ¥ in L0, T; H). Since we can choose a
sequence of real numbers 4, | 0 such that lim 0¢j§,(u;,#) = lim y;,) = () a.e.
in 0=5t<T, we have

(6.11) w(tye D@¢Y) and y(t) € dp'(u(t)) for a.a. te[0,T].

See, e.g., [5, Lemma 2.5, (b)]. Since u is continuous, implies that u(¢)
is in the closure of D(d¢") for all t<[0, T], and moreover,

(6.12) lxllm Jiu;(H) = u(t) for all t=[0,T].
0
In fact, Jiu(t)—u(t) as 2|0 (see [3, Theorem 2.3, (b)]) and hence we obtain

(6.12) by using [2.4). Using [6.12), [2.6), and the lower semicon-
tinuity of ¢* we get

o'(u®) = 1}?1 inf " (Jiux() = llifn inf ¢} (ux(8)) < oo,
0 0
which implies u(t) € D for all t<[0,T]. Thus we have proved that u and y
satisfy condition (i). Condition (ii) follows from the relation
12 t
uD+ [ v)ds=a+{ fls, ui(sHds, 0=t=T,

by making 4 0.
Since the uniqueness part of the theorem has been proved already in §4,
the proof is complete.
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§7. Proof of Theorem 1.5.

We shall prove Suppose conditions (I) to (VI) are satisfied,
and let ae D. Choose a,€ D(n=1,2, ---) such that |a,—a||—0 as n— oo, and
let u, be a strong solution of on [0, T] with u,(0)=a, (see Theorem L.1).
By (4.1), u, converges to a u in C([0,7T]; H) as n—oco. If u(s)e D for some
s€(0,T), then u is a strong solution of on [s,T] and u(t) is in D for
all te[s,T]. Because by there exists a strong solution v of
on [s, T] with v(s)=u(s) and v(t) is in D for all t=[s, T], and hence by
using (4.1) we get 14(1‘):71li1?o u,()=v(@)e D for all t=[s, T]. Therefore, if
u(t) e D for all t< (0, T], it follows from Remark 1.4 that u is a strong so-
lution of on [0, T] with u(0)=a. Since the uniqueness part of Theorem
1.5 has been proved already in § 4, it remains to show u(t) €D for all t (0, T.

Suppose there exists a ¢, = (0, T] such that u(t,) & D. Then u(t)& D for
all <10, ¢], and by the lower semicontinuity of ¢* we have

(7.1) le inf o' (u, (1) = ' (u(t)) = 0 for all t=[0,t,].

For 1> 0 let u,; be a strong solution of (6.2) on [0, T] with u,;0)=a,. Since,
by [(6.12), lzi{n],{ Uy () = u,(t), we have
0

(7.2) lim inf ok (Una(8)) = lim inf @' (JE una(®) = @' (ua(1))

for all t [0, T] and all n=1.

By r=sup {|Jiua®)|; n=1, 0<A=1, 0<t<T} is finite,
because the proof of shows the boundedness of {u,;(f); n=1, 1> 0,
0<t<T} in H Let m be a positive integer such that

T .
(7.3) exp (f '1B@Ids)la—anl <1 if nzm,
and set M=sup {|¢;Unu)]; 0=s=T, 0<p=1}. By M is
finite. We define
(7.4) gnk(t) = e_crtsolz (unl(t))_M

for n=1, >0 and t<[0, T].
An argument similar to the proof of Egorov’s Theorem [11, p. 16] shows

that by and we can choose a positive integer n,=m, a Lebesgue
measurable set E in [0, {,], of measure greater than ?,/2, and a sequence

{kn}5-n, Of positive integers such that
(7.5) Znuk) >0 if n=n,, k (integer)=k, and te E.

For each n=1 and each 4> 0 we can show similarly to the proof of
6.3
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—éit— @k (Una(1)) = €0f (Una())+ ¢/ + 00 (Unx(t)), una(t))
= ¢, @f (Una()+¢; —1100F (U x(O)*+@f (Una(B)), [, 1na(t))
a.e. in 0=t=T and hence, making use of [7.4), we get

9 S ¢! — 10 (a2 N1*+ 0 (unx(®), F(E, Uni(D)))

(7.6) efrt I

= ——5 100} (uu®)l+r®er,  ae. in 0St<T,

where we have used (VI) and 7y is a nonnegative Lebesgue integrable function
on [0, 7] independent of n=1 and 2>0. Since by using (4.1), and

we obtain
10¢f (una()Il = (00 f (Una(?)), Una(t)—Uma(t))

= @ (Una(1)—@f (Uma(t))
= er(gna()+M)—f (uni(t)
= er'g, (1)

for te[0,T], n=m and 0<A<1, it follows from (7.5) and that

(7.7) g?gn,llk(t) = —%‘gn,1/k(f)zxz(t>+r(t) a.e.in 0=t=T

for all n=n, and all k= %,, where Xz is the characteristic function of E.
In order to complete the proof we prepare a lemma. Let S>0 and let
e and y be two nonnegative Lebesgue integrable functions on 0=t<S. We

set
)= t(s)ds  for 0=t<S
0
and
S
(7.8) halt) =20 | (2—a f& e(s)ds)  for real a and t<[0, S]

when the denominator in the right-hand side of does not vanish.
LEMMA 7.1. Let g be a real-valued absolutely continuous function on [0, S]

satisfying
(7.9) —ddTg(t) < —%g(t)ze(t)—l—y(t) a.e in 0<{<S.

Let a>0. If g(S)>a+c(S), then g(t)> hu(t)+c(t) whenever | *e(s)ds < 2)a
and 0<t=<S. ‘
S
PROOF. Suppose that, for some ¢, [0, S], j e(s)ds <2/a and g(t)<
13}

ho(t)+c(t;) hold simultaneously. Then, since g(S)> a+c(S)=h.S)+c(S),
there exists a t,=[t,, S) such that
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(710) g(tz) = ha(t2)+ C<t2)
and such that g(t) > h()+c(t) for all t=(t,, S]. Hence we have
(7.11) gt)>h () >0, L, <t<S.

By using [7.10), [7.8), [7.9] and [7.11)] we obtain

S d
a—g(S)+e(S) = 4 Thlt)—g()+e(t)dt

v

— J, Thaty—g (@ Teds

0

IV

which is a contradiction. The proof is complete.
¢
END OF THE PROOF OF THEOREM 1.5. We define c(?) = j 7(s)ds for 0=t=T.
0

By and we can take n=n, and 2=k, such that g, () > c(t,)+4/t,.
Let 4/t, < a < g, ,x(t)—c(t). Then by and we have

(712) gnan®) > e+ 2] (2—a | “As(5)ds)

if LtOXE(s)dsr<2/a and 0<¢<f,. Since jot°xE(s)ds>t0/2>2/a, we can find

the greatest number £, in (0, #,) such that
11
[ "rs(9)ds=2/a,
51
and hence by we obtain

gn,l/k(tl) - ltllntl gn,l/k(t)
1

= c(t)+Him 2a/ (2—a | “X5(9)ds)

t[tl

=0

which contradicts g,,,x(f;) <oo. The proof is complete.
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