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\S 1. Introduction and summary.

Let $A=(a_{ij})$ be a square matrix of size $n$ and let the entries of $A$ be
non-negative integers. Denote the sum of row $i$ of $A$ by $r_{i},$ $r_{i}\geqq 0$ , and that
of the column $j$ of $A$ by $s_{j},$ $s_{j}\geqq 0$ . If $T$ denotes the total sum in $A$ , then it
is clear that

$T=\sum_{i=1}^{n}r_{i}=\sum_{j=1}^{n}s_{j}$ . (1.1)

We call $R=$ $(r_{1}, r_{2}, \cdots , r_{n})$ the row sum vector and $S=(s_{1}, s_{2}, \cdots , s_{n})$ the column
sum vector of $A$ . The vectors $R$ and $S$ determine a class

$G=G(R, S)$ , (1.2)

consisting of all such matrices of size $n$ , with row sum vector $R$ and column
sum vector $S$. For $A$ admitting integers $0$ and 1 only, known as $(0,1)$-matrix,
many diversified topics including traces, term ranks, widths, heights, and
combinatorial designs related to problems dealing with a class $G^{\prime}$ , a subclass
of $G$ , consisting of $(0,1)$ -matrices, have attracted the attention of many
authors. Among them are Ryser $(1957, 1960a, 1960b)$ , Jurkat and Ryser (1967),

and Murty (1968). A detailed list of references may be found in Ryser
(1960a).

Let $H(n, R, S)$ denote the number of members of class $G$ , that is the
number of ways in which $n$ distinct things, the j-th replicated $s_{j}$ times,
$s_{j}\geqq 0$ , can be distributed among $n$ persons, the i-th getting $r_{i},$ $r_{i}\geqq 0$ . The
case, when each row sum and column sum equals $r(\geqq 1)$ , and the number
$H(n, R, R)$ denoted by $H(n, r)$ , has been investigated by Kenji Mano (1961).

He gives an intricate formula for $r=2$ . Anand et al. (1966) extended the
result to $H(3, r)$ and stated a plausible formula for $H(n, r)$ . Recently, Nath
and Iyer (1972) have suggested the use of the generating functions to expedite
calculations and obtained explicit formulae for $H(3, r)$ and $H(4, r)$ .

In the present paper, we give some inequalities for $H(n, R, S)$ , true for
all positive $n$ , and an explicit formula for $H(3, R, S)$ . The procedure applies

to rectangular matrices as well as square ones.
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\S 2. Inequalities for $H(n, R, S)$ .
If we take $a_{ij}$ to denote the number of objects of the j-th type which

are given to the person $i$ , in any distribution, then it is readily seen that
$H(n, R, S)$ is the number of matrices in class $G(R, S)$ .

We, now, proceed to show that $H(n, R, S)$ is the number of ways in
which $s_{1}$ ones, $s_{2}$ twos, $s_{3}$ threes, $\cdots$ , $s_{n}n’ s$ can be written in $n$ rows, $r_{i}$ in
the i-th row, the order of elements in any row being immaterial.

This follows at once if we take the elements in the i-th row to denote
the objects which are given to the person $i$ . If $j$ occurs $k$ times in the i-th
row, it is taken to mean that $i$ gets $k$ objects of the type $j$ .

If the order of elements in each row were relevant, then the number of
ways of writing $s_{1}+s_{2}+$ $+s_{n}$ objects 1, 2, $\cdots$ , $n$ , the j-th repeated $s_{j}$ times,
in $n$ rows, $r_{i}$ in the i-th row, would be $(s_{1}+s_{2}+ +s_{n})!/(r_{1}!r_{2} ! r_{n} !)$ .

Hence
$H(n, R, S)\leqq(\sum s_{i})!/\Pi(r_{i}!)$ , $i=1,2,$ $\cdots$ , $n$ . (2.1)

Since the $r_{i}$ elements in the i-th row can be arranged among themselves
in at most $r_{i}$ ! ways, we must have

$H(n, R, S)\geqq(\sum s_{i})1/\Pi(r_{i}1)^{2}$ (2.2)

\S 3. Reduction of the problem.

As stated earlier, for $n=3,$ $H(3, R, S)$ is the number of matrices

$\left\{\begin{array}{llll}a_{11} & a_{12} & a_{13} & \\a_{21} & a_{22} & a_{23} & I\\a_{S1} & a_{32} & a_{33} & \end{array}\right\}$ , $a_{ij}\geqq 0$ ,

such that the row and column sums respectively are $r_{i}$ and $s_{i},$ $i=1,2,3$ .
If $(r_{1}, r_{2}, r_{3})$ and $(s_{1}, s_{2}, s_{3})$ are, in order, allowing row and column per-

mutations, we can assume that

$0\leqq r_{3}\leqq r_{2}\leqq r_{1}$ ,

and
$0\leqq s_{3}\leqq s_{2}\leqq s_{1}$ . (3.1)

Further assume that $r_{1}>s_{1}$ , in case they are equal take $r_{2}\geqq s_{2}$ . Let $M(3, R, S)_{r}$

then, denote the number of matrices with row and column sums, in order.
Let $N_{1}(r_{1}, r_{2}, r_{3})$ and $N_{2}(s_{1}, s_{2}, s_{3})$ respectively denote the number of ways

in which the numbers $(r_{1}, r_{2}, r_{3})$ and $(s_{1}, s_{2}, s_{3})$ can be permuted among them-
selves. That is
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$N_{1}(r_{1}, r_{2}, r_{3})=1$ , if $r_{1}=r_{2}=r_{3}$

$=6$ , if $r_{1}\neq r_{2}\neq r_{3}$

$=3$ , otherwise. (3.2)

Similar relations holds for $N_{2}(s_{1}, s_{2}, s_{3})$ .
Then

$H(3, R, S)=N_{1}(r_{1}, r_{2}, r_{3})N_{2}(s_{1}, s_{2}, s_{3})M(3, R, S)$ . (3.3)

\S 4. An expression for $M$.
We assert that

$M(3, R, S)=\left(\begin{array}{l}r_{2}+2\\2\end{array}\right)\{\left(\begin{array}{l}r_{3}+2\\2\end{array}\right)-\Sigma\left(\begin{array}{l}r_{3}-s_{i}+1\\2\end{array}\right)\}$

$-\Sigma\{\left(\begin{array}{lll}r_{2}+ & r_{3}- & s_{i}+3\\ & 4 & \end{array}\right)-\left(\begin{array}{ll}r_{2}- & s_{i}+2\\ & 4\end{array}\right)$

$-(r_{3}+1)\left(\begin{array}{ll}r_{2}- & s_{i}+1\\ & 3\end{array}\right)\}$ , (4.1)

the summations extending over $i=1,2,3$ .
PROOF. Let the entries in the first row $(a_{1}, a_{2}, a_{3})$ be arbitrarily fixed,

then it remains to arrange the remaining $s_{i}-a_{i}(i=1,2,3)$ elements in the
last two rows of the three columns respectively.

The generating function for such a scheme is

$\Pi(1-x^{s\ell- a_{t+1}})(1-x)^{-3}$ (4.2)

The coefficient of $x^{r_{2}}$ in (4.2) namely,

$\left(\begin{array}{l}r_{2}+2\\2\end{array}\right)-\sum_{\iota=1}^{q}\left(\begin{array}{lll}r_{2}- & s_{t}+ & a_{i}+1\\ & 2 & \end{array}\right)$ (4.3)

gives the number of arrangements for row and column sums equal to $r_{i}$ and
$s_{i}$ respectively, conditional on the specification that the row one has entries
$(a_{1}, a_{2}, a_{3})$ . The value $M(3, R, S)$ then results from summing (4.3) over all
non-negative integral triples $(a_{1}, a_{2}, a_{3})$ compatible with $a_{1}+a_{2}+a_{3}=r_{1}$ .

Since the first term in (4.3) is constant and does not depend on the
entries $(a_{1}, a_{2}, a_{3})$ of the specified row one, its sum over non-negative integral
values is achieved by multiplying with the coefficient of $x^{r_{3}}$ in the generat-
ing function

$\prod(1-x^{s_{i+1}})(1-x)^{-3}$ , (4.4)
namely

$\left(\begin{array}{l}r_{2}+2\\2\end{array}\right)\{\left(\begin{array}{l}r_{3}+2\\2\end{array}\right)-\sum\left(\begin{array}{ll}r_{3}- & s_{t}+1\\ & 2\end{array}\right)\}$ , $i=1,2,3$ . (4.5)
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Next, the sum of the second term of (4.3) is conditional with respect to the
entries of the first row. Its product with the coefficient of $x^{r_{3}-a_{i}}$ in the
generating function

$\Pi(1-x^{s_{k+1}})(1-x)^{-2}$ ,

$k=1,2,3$ and different from $i$ , namely

$\sum_{a_{i}=0}^{si}\left(\begin{array}{lll}r_{2}- & s_{i}+ & a_{i}+1\\ & 2 & \end{array}\right)(r_{3}-s_{i}+1)$ , $i=1,2,3$ ,

$=\sum_{i=1}^{3}\{\left(\begin{array}{l}r_{2}+r_{3}-s_{i}+3\\4\end{array}\right)-\left(\begin{array}{ll}r_{2}- & s_{i}+2\\ & 4\end{array}\right)-(r_{3}+1)\left(\begin{array}{ll}r_{2}- & s_{i}+1\\ & 3\end{array}\right)\}$ (4.6)

gives the sum.
Subtraction of (4.6) from (4.5) determines the number $M(3, R, S)$ . Hence

the assertion.
An expression similar to (4.1) but simpler in form, for the $(0,1)$ -matrices,

can be obtained much on the same lines, and is left to the reader.
EXAMPLE 1. Let $r_{1}=6,$ $r_{2}=4,$ $r_{3}=2,$ $s_{1}=5,$ $s_{2}=4$ , and $s_{3}=3$ , then we

have
$N_{1}(r_{1}, r_{2}, r_{3})=6$ ,

$N_{2}(s_{1}, s_{2}, s_{3})=6$ ,

$M(3, R, S)=69$ from (4.1),

and hence
$H(3, R, S)=6.6.69=2484$ .

EXAMPLE 2. Let $r_{1}=3,$ $r_{2}=3,$ $r_{3}=1,$ $s_{1}=3,$ $s_{2}=2$ , and $s_{3}=2$ , then we
have

$N_{1}=3$ , $N_{2}=3$ , $M=19$ ,

and hence
$H(3, R, S)=3.3.19=171$ .

The corresponding number of $(0,1)$ -matrices in the class $G^{\prime}$ , in this ex-
ample, works out to be 9.

The above values have been verified to be correct by actual computations.

\S 5. Particular cases.

In what follows we discuss a few particular cases of interest. The case
I was posed to the author in a very recent communication by Professor H.
Gupta, Panjab University, Chandigarh, to whom his thanks are due; and
the case II is the result obtained earlier by Anand et al. (1966) and the
author (1972).

CASE I. In the preceding section if we let all the column sums $s_{i}’ s$ to be
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equal to $s$ , say, that is when three distinct things, each repeating $j$ times,
$j\geqq 0$ , are distributed among three persons, the i-th getting $r_{i}(\geqq 0)$ , such that
$r_{1}+r_{2}+r_{3}=3s$ . Then the expression (4.1) under this substitution simplifies to

$M(3, R, s)=(^{r_{2}+2}2)\left(\begin{array}{l}r_{3}+2\\2\end{array}\right)-3\{\left(\begin{array}{ll}r_{2}+r_{3}- & s+3\\4 & \end{array}\right)$

$-\left(\begin{array}{l}sr_{2}-+2\\4\end{array}\right)-(r_{3}+1)\left(\begin{array}{l}r_{2}-s+1\\3\end{array}\right)\}$ . (5.1)

CASE II. If, in case I, we further assume that all the row sums $r_{i}’ s$ are
equal to $r$, say, obviously $r$ and $s$ being identical. The expression (5.1), then,

further reduces to

$M(3, r, r)=H(3, r)=\left(\begin{array}{l}r+2\\2\end{array}\right)-3\left(\begin{array}{l}r+3\\4\end{array}\right)$

$=\left(\begin{array}{l}r+2\\2\end{array}\right)+3\left(\begin{array}{l}r+3\\4\end{array}\right)$ . (5.2)
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