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On an exotic PL automorphism of some 4-manifold
and its application
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§1. Statement of the results.

Kirby and Siebenmann [5] proved that there are exotic PL structures
on T™ (n=5). It is also known that there is an exotic PL structure on
SEXT™?® (n=5). For n=5, there are “exotic” PL automorphisms of T™ and
SExT"? associated with the exotic PL structures on 7™ and S®xT""2

In this paper, at first, we shall study the following problem :

Is there an “exotic” PL automorphism of some 4-manifold ?

DEFINITION. Let M be a PL manifold and f a PL automorphism of M,
i.e. a PL homeomorphism from M to itself. Then we say that f is exotic
if f is topologically pseudo-isotopic to the identity, but not PL pseudo-isotopic
to the identity.

We let:

M(R)=S*xXT2#R(S?*xS?),

V(k)=D*%XT*Qr(D*x S?),
N(k)=S8*<S'}XI$k(S*xS?%.

Then one of our results is as follows:

THEOREM 1. For some k=0, there is an exotic PL automorphism [ of
M(k). Furthermore, any covering of f does not extend to a PL automorphism
of the corresponding covering manifold of V(k).

This theorem means that we can realize the difference between the TOP
category and the PL one on the 4-manifold.

Next, using f in [Theorem 1, we shall construct a non-trivial element of
certain 4-dimensional homotopy triangulation. We have:

THEOREM 2. For some k=0, there is a non-trivial element in hT (N(k),
aN(k)).

This theorem is a partial answer to Shaneson’s problem [4].

The author wishes to thank Prof. I. Tamura for his helpful suggestions.
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§2. Proof of Theorem 1.

To prove [Theorem 1, we use the following unknotting theorem moving
the boundary by Hudson [3].

THEOREM 3. Let M™, Q% be PL manifolds, M, dM compact and connected.
If f, g: M—Q are proper PL embeddings, f, g homotopic as maps of pairs
(M, 0M)—(Q, 8Q); and if g—m =3, (M, dM) is (2m—q+1)-connected, and if
(Q, 9Q) is (2m—q-+2)-connected, then f and g are ambient isotopic.

PROOF OF THEOREM 1. It is known that we can give two different PL
structures on S®x7T?2 [2]. We denote the standard one by « and the exotic
one by 8. Then “id”: (S*XT?,—(S**XT?; is a homeomorphism, but not
PL. Let D3XT2US:xT2:xI\UD}XT? be a decomposition of (S*xT?, We
shall use the following notation:

X=D}xT?,
H=52xT?*x1I,
Y=DixT?,

0. H=S*xT*x0=0DxT?,
0.H=S*XT*x1=0D3xT?.

By straightening the handles with index =< 2, we obtain a homeomorphism
g:(S*XT?,—(S**xT?;s such that g|(X\UY)=PL.:.We define:

X=gX),
H=g(H),
Y=g(),
0_-H=g(0.H),
0.H=g(0,.H).

Then H is a PL h-cobordism of S?XT? with itself. By the handlebody argu-
ment (see, e.g. [3]), H has the following decomposition :

H=0_H\Uh\U - \Uh)UMn)yxI\J@LHU R\ - \U k)

where h? and k% (1<1i, j<n) are 2-handles attached trivially to 0_H and 0.H
respectively. We may assume hiNhi=FkiINki=0 (i+j). Let

h;: (D*xD? S'xD?®* ——> (h hino_H)
and

B;: (DX DY, S'x D% —> (B, B2N0.H) (1<i,j<n)

be PL homeomorphisms. We shall use the following notation:
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W,=0_HURU ..U (1Zi<n),
W=W,UMMmn)xI,
Viy=0,HURU .- Uk (1=Zj<n),
V=V,UMnxI,

0.V =0.H,

0.V=0V—-0,V.

On the other hand, we consider the decomposition of H=S2xT2xI as
follows :

H=@_HUR\U - URRYUMn)XI\U@.HIEU .- UE,)

where 7?2 and }53 (1=1i, j<n) are 2-handles attached trivially to 0_H and 0.H
respectively. We may assume that 42 and £ (1<i<n) are a pair of com-
plementary handles and A2 NAR2=E2NE2=0 (i+j). Let

hy: (D*xD? S*x D) —> (R, h2 N\o_H)
and

Eio (D°X D%, S' DY) —> (B, Bsna.H) (1<i, j<n)

be PL homeomorphisms. We shall use the following notation:
W,=0_HURU ---UR (1=<i<n),
W=W,UMmn)xlI,
V,=0.HURU - Uk, (Q=j=sn),
V=V,UMmnxlI,
0.V=0.H,
0. V=0V-0d,V.

Now, by straightening the 2-handles, we obtain a homeomorphism g,:
(S*%xXT?—(S**xT?, such that:

1) glXVw,uV,VUY)=PL,

(@) gl(XVY)=g|(XVY).
Clearly g,oh,|D?*x0 and h,|D?x0 are homotopic as maps of pairs (D?x0, S*x0)

—(H,0_H). Hence, by Theorem 3 and the uniqueness of regular neighbour-
hoods, we get a homeomorphism gt: H— H such that:

(1) g4 is isotopic to g,|H,
2) go(Wy)=W,,
3 &l(W,VV,)=PL,
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(4) gil0-H is PL isotopic to g,|0_-H,
(5) golo.H=g,|0.H.

Using g%, we can easily construct a homeomorphism g;: (S*X7T?)g—(S**XT?).,
such that:

D a(XUW)=XUW,
2) ZY=glY,
3) &(XUW,JV,UY)=PL.

Now we let:
H() = H—\" hy(D*xint D%,
r=1
0_-H(i)=0H()—0.H,
HG) = A— ") A(D*xint D%,
r=1
0_HG)=oHG)—d.H.
Then, in particular, g,(H(1))=H().
Since m,(H®), 0_HQ)) = r,(0_H(1)\U3-handle, d_H(1))=0, g0h,|D*x0 and
#,] D*x0 are homotopic as maps of pairs (D?x0, S*x0)— (H(1), _H(1)). Hence,

by and the uniqueness of regular neighbourhoods, we get a
homeomorphism gj: H(1)— H(1) such that:

(1) g{ is isotopic to g,|H(1),

(2) gi(hd)=h3,

3) gil@-HOHVURY --- URLJV,)=PL,

(4) g{|0.H(1) is PL isotopic to g,|0_H(1),

(5) g1l0+H=g,|0.H.
Using gi, we can construct a homeomorphism g : (S*XT?*)—(S*XT?), such
that:

(1) gz(XU W,) = X Wzy

(2) &Y =4glY,

3 gI(XVWW,UV,UY)=PL.

By succeeding the same process as above, observing m,(H(i), 0_H()=
7,(0_H(1)\U 3-handle, 0_H())=0, we obtain a homeomorphism g,: (5**XT?*);
—(S3xT?, such that:

1) g(XUWy=XUW,
(2) g.lY=glY,
B) g./(XUW,JUV,UY)=PL.

Moreover, by the general position argument and straightening a 1-handle,
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without loss of generality, we may impose the following condition (4) on g, =

(4) For some properly embedded PL arc !/ in V which connects a point:
of 0.V and a point of d_V, and for some regular neighbourhood N(!)

of [ in V such that N(l‘)m(t\ijlk%): g,,(N(l))f\(Ql ED) =@, g,|N() is PL.

Define 2=g,|V: V— V. We connect a point in k22 N9.V and the base
point p in 0.V with an arc /; in 0.V, and regard k}\U/; as an element of
7,(V, 0.V, p) to be denoted by a; (1 <i=<n). Similarly we connect a point in:
kN 0.V and Z(p) with an arc I; in 8.V, and regard £2\Ul; as an element of’
7(V, 8.V, 8(p)) to be denoted by b, (1<i< n).

By the isomorphism (&)s: m,(0.V)—m,(0.V), we identify 7,00, V) with
7,(0.V), and these will be denoted simply by =.

Then (a,, ---, a,) and (b,, ---, b,) are bases of free Z[7]-modules 7,(V, 0,.V):
and m,(V, 8. V) respectively. We represent the Z[z]-module isomorphism.
(&)x: m(V, 0.V)—my(V, 8, V) with a matrix G=[g;,;] by the above bases,.
where g;,; = Z[z]. It is well known that Whitehead group of #=Z+Z is
trivial. This implies that, for some m =0, GP1,,=ED where E is a finite:
product of elementary matrices and

+o 0
D= 1. ) where ce .
0 1
We define hZ.; and ki,; (1 =1, j < m) as 2-handles, in N(!), attached trivially-

to 0.V N\ N() and 9.V N\ N(l) respectively such that hA2,; and kZ.; are pair of’
complementary handles. Let

hnai: (D*X D®, S'X D?) —> (h34s, h34 N O_V)
and
Bnsst (DX D%, S'X DY) —> (Rayy By n32V)  (LSi, j<m)

be PL homeomorphisms. We shall use the following notation :
U=V—\J hpi(D*xint D*,
i=1

Wosi=WoUhlyU - Uk, (1=ism),

U=z),
a+U:a+V,
a+U=B+V,

0.U=0U—0.,U,
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E=glU: U—> T,
Bl =58k A=si1=m).

Now we connect a point in k%, 0.U and p with an arc [,.; in 0.U, and
vegard A2,;\Ul,s; as an element of 7,(U, 0.U) to be denoted by a,.; 1=i=<m).
Similarly we regard Eﬁﬂuz(lnw) as an element of 71'2([7, 8+Ij) to be denoted
by bpe; A<i<m). We may regard a; and b; (1=1=n) as elements of =,(U,
3.U) and m,(U, 8,.U) naturally.

Then, by the bases (a,, -+, @nen) and (by, -+, bpen), the Z[7]-module iso-
morphism (2« : 7.(U, 9.U)—r,(U, 8,.0) is represented with the matrix G®1,,
= ED.

By the similar argument in the handle addition theorem (see, e.g. [3], p.
228 and 250), we obtain a new handlebody decomposition of U satisfying the
following conditions (1) and (2):

1) U=0,UVEY \J - J(kiip) I M(n+m)x I where (B)) (1=i1=n+m)
is a 2-handle attached trivially to 0+.U and (B)’' N (R})' =0 (i +7).

(2) We connect a point of (k})’N0.U and p with an arc /] in 0.U, and
regard (k3)’Ul; as an element of =,(U, 0.U) to be denoted by a;
(1<i<n+m). Then, by the bases (aj, -, Gremn) and (by, -+, bprn),
(D)x: (U, 0.U)— (U, 3,.U) is represented with the matrix

1 0
1,,+m:[ » }
0 1

Now we define:
U, =0, U\J (R} \J - \J (R 1=i<n+m),
U,=0, 00U U (1<i<n+m),
Woam = Wo SR\ o U R,
where 2., =g,(h2;) A1<=i<m). Let

Bnsi: (D*XD?, S*X D) —> (B2, B2 0..0) I=s1=m)
and

(ky) : (D*X D*, S*} D*) —> ((B})’, (k})’ MasU) A=sis=ntm)
be PL homeomorphisms. Then Fo(k,)|D?*x0 and &,|D?*x0 are homotopic as
maps of pairs (D?*x0, S'x0)— (U, 0.U) because of the condition (2) above.
Hence, by and the uniqueness of regular neighbourhoods, we get
2 homeomorphism f,: U—U such that:

(1) f, is isotopic to Z,
2 fol(B))=F3,
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(3) fOIUn—I-m:PLr
(4) fo|0.U is PL isotopic to g|0.U,
() folo.U=E|0.U.

Then, using f,, we can construct a homeomorphism f,:(S*xXT?%);—(S*xT?),
such that:

(l) fl(XU Wasm) = Xy Wn-l-m;
2 [AYVU)=YUT,
(3) fll(XUWn-l-mUUn-!-mUY):PL-

We define:
UG =U—\J (kY(D*xint DY,
06y = U— Ql E(D*xint D?),
9. UG)=aU(i)—d_U ,
8.0 =0a0(i)—3.0 .

By a} and b; (2=i=<n+m), we denote the elements in w,(U(1l), 9,.U(1)) and
7,(0Q), 8.U(1)) which corresponds to a; and b; respectively. Then we get

(FlUDa =b; @=<i<n+m) in m(0Q), 8.0(1))

from the following diagram,

0 —= m(Uy, 0:U) ——— 7,(U, 8,U)

([ilUpx=1 (f1|U)*=1,,+m

0—-’752(010 64.0) - nz(ﬁ’ a-?ﬁ)

o ¢ 7 (U1, 3, U(D)
I U, U 0 (exact)

N U=1p4my (11U«
NER 7O, Uy 0 (exact)

\ 7(0(1), 8, U(Q1))

a4
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where i, 1, j, 3’, k and £ are induced from the inclusion maps.

Then, in particular, f;0(k,)’| D*x0 and &,|D?*x0 are homotopic as maps
of pairs (D*x0, S*x0)—(U(1), 0.U(1)). Hence, as before, we obtain a homeo-
morphism f,: (S*XT?)—(S*xT?), such that:

(1) fz(XU Wn+m) =XV Wn+my
2 f(YVU)=YUD,
(3) le(XUWn—FmUUn»?-mUY):PL

We can repeat this process untill we obtain a homeomorphism frypn:
(S?xT?p—(S*xT?), such that:

(1) fn+m(XU Wn-wn) - X N _Wn-l-m,

(2) fn-l-m(YU Un-l-m) =Yy Unsm,

We put:
F=(frrn| Mn+m)X 1) o(frem| M(n+m)x0) and k=n+m.

We may regard f a PL automorphism of M(k). Then f is exotic, since
(S®XT?p is not PL homeomorphic to (S*XT?),.

Observing that any covering of (S®x7T%); is also exotic [2], we can easily
prove the latter part of [Theorem 1l Q.E.D.

§3. Proof of Theorem 2.

To prove we use the following theorem by Shaneson [6].

THEOREM 4. Let M be an oriented, closed 4-manifold with n,(M)=Z. Then
every PL automorphism of M, homotopic to the identity, is PL pseudo-isotopic
to the identity.

PROOF OF THEOREM 2. By Theorem 1 and Siebenmann’s weak pseudo-
isotopy theorem [7], we obtain a PL automorphism f of M(k) and a topo-
logical isotopy F;: M(k)xS!'— M(k)xS! (t=I) such that:

(1) f is exotic,
(2) f does not extend to a PL automorphism of V(&),
(3) Fo=1dyw~s1 and F;=fXidg:.

We regard S2XT? as S*XS'XR/Z, and assume that any S?xS? is con-
nected to S:XS'XR/Z at S*xS'X([1/8, 3/8]\U[5/8, 7/8]) whenever we con-
sider S2XT28k(S2xS? = M(k). We let:

M,=S82xS*x0c M(k)
and
M,=5%2xS'x1/2cC M(k) (see Fig. 1).
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ky(S? X S%—int D)
S*xS1x3/8
S2xS1x1/8
M, =S*xS'X0 M, =S*XS*x1/2

SXS'x5/8

SZxS'X7/8

ki(S?X S?—int D*)

NG ~— J
ME) = SPX T # k(S?X S?) (Fig. 1)
Then, without loss of generality, we may assume that F,(M,XxS*)\ M,xS?
= for any t< I, because of the latter part of [Theorem 1. Hence, by Edward
and Kirby’s covering isotopy theorem [1J, we obtain an isotopy G.: M(k)xS"*

— M(k)xS?* (teI) such that:

(1) G/|IMyxS*'=F,| MyxS*,

(2) thMxxslzidMnSl,

(3) Go = idM(k)xsl'

By N, and N,, we denote the manifold in M(k) bounded by M, and M,

(Fig. 2).
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ko(S*x S*—int D*)

— 2 1
My=S2xS*x0 M, =S?xS*x1/2

- £,(S?*X S*—int DY)
(Fig. 2)

Then N;=S?%xS'x[i/2, +1)/2]8k(S*XS®C M(k) (1=0, 1) where ky+£k;==%.
Similarly, by H, and H,, we denote the manifolds in M(%) bounded by f(M,)
and M, (Fig. 3).

A

f(Mo) M;

(Fig. 3)
Define
8i=G,|N;XS': N;xS' — H;xS"* t=1,0),

and let Z;: N;XR— H;XR be an infinite cyclic covering of g; (i=1, 0). We
define h;=p;08;0j; (i=1,0) where j; and p; are the inclusion and projection
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maps as in the following diagram.

N,xR —2 « HxR
C
N,%0 js b
H;
N, .

Then h;|0ON; = f{M,\Jidy,, and, observing that Z; is a homeomorphism,
we can regard (H;, h;) as an element of AT(N(k;), ON(k))).

If we suppose that both (H,, h,) and (H,, h;) are trivial, then we obtain a
PL automorphism h of M(k) such that:

1) hIMy=f|M,,

(2) h|IM,=1dy,,

(3 h is homotopic to the identity fixing M,,

(4) f'oh is homotopic to the identity fixing M,.

We define
M=D}xS'\USEXS'}XI#kE(S2XxS%\UDixS*

where d(D}xS?), d(D}x S?) are identified with S?xS*x0 and S?xS*x1 respec-
tively, and

fimidy G IfoRVidy, .

D?JXS1
Then f, is a PL automorphism of M which is homotopic to the identity.
Hence f, is pseudo-isotopic to the identity. Thus, using f;, we can construct
a PL automorphism of V(k) which is an extension of f~'oh.

Similarly h extends to a PL automorphism of V(k). Hence f itself extends
to a PL automorphism of V(k). This contradicts the latter part of
1. Hence (H,, h,) or (H,, h,) is non-trivial. Q.E.D.

University of Tokyvo,
Tokyo, Japan
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