On an exotic *PL* automorphism of some 4-manifold and its application

By Shinji FUKUHARA

(Received Dec. 2, 1971)

§ 1. Statement of the results.

Kirby and Siebenmann [5] proved that there are exotic PL structures on T^n $(n \ge 5)$. It is also known [2] that there is an exotic PL structure on $S^3 \times T^{n-3}$ $(n \ge 5)$. For $n \ge 5$, there are "exotic" PL automorphisms of T^n and $S^2 \times T^{n-2}$ associated with the exotic PL structures on T^{n+1} and $S^3 \times T^{n-2}$.

In this paper, at first, we shall study the following problem:

Is there an "exotic" PL automorphism of some 4-manifold?

DEFINITION. Let M be a PL manifold and f a PL automorphism of M, i. e. a PL homeomorphism from M to itself. Then we say that f is exotic if f is topologically pseudo-isotopic to the identity, but not PL pseudo-isotopic to the identity.

We let:

$$M(k) = S^2 imes T^2 \sharp k(S^2 imes S^2)$$
 , $V(k) = D^3 imes T^2 \lg k(D^3 imes S^2)$, $N(k) = S^2 imes S^1 imes I \sharp k(S^2 imes S^2)$.

Then one of our results is as follows:

THEOREM 1. For some $k \ge 0$, there is an exotic PL automorphism f of M(k). Furthermore, any covering of f does not extend to a PL automorphism of the corresponding covering manifold of V(k).

This theorem means that we can realize the difference between the TOP category and the PL one on the 4-manifold.

Next, using f in Theorem 1, we shall construct a non-trivial element of certain 4-dimensional homotopy triangulation. We have:

THEOREM 2. For some $k \ge 0$, there is a non-trivial element in $hT(N(k), \partial N(k))$.

This theorem is a partial answer to Shaneson's problem [4].

The author wishes to thank Prof. I. Tamura for his helpful suggestions.

§ 2. Proof of Theorem 1.

To prove Theorem 1, we use the following unknotting theorem moving the boundary by Hudson [3].

THEOREM 3. Let M^m , Q^q be PL manifolds, M, ∂M compact and connected. If $f, g: M \to Q$ are proper PL embeddings, f, g homotopic as maps of pairs $(M, \partial M) \to (Q, \partial Q)$; and if $q-m \ge 3$, $(M, \partial M)$ is (2m-q+1)-connected, and if $(Q, \partial Q)$ is (2m-q+2)-connected, then f and g are ambient isotopic.

PROOF OF THEOREM 1. It is known that we can give two different PL structures on $S^3 \times T^2$ [2]. We denote the standard one by α and the exotic one by β . Then "id": $(S^3 \times T^2)_{\alpha} \to (S^3 \times T^2)_{\beta}$ is a homeomorphism, but not PL. Let $D_0^3 \times T^2 \cup S^2 \times T^2 \times I \cup D_1^3 \times T^2$ be a decomposition of $(S^3 \times T^2)_{\alpha}$. We shall use the following notation:

$$egin{aligned} ar{X} &= D_0^3 imes T^2 \ , \ ar{H} &= S^2 imes T^2 imes I \ , \ ar{Y} &= D_1^3 imes T^2 \ , \ \partial_- ar{H} &= S^2 imes T^2 imes 0 = \partial D_0^3 imes T^2 \ , \ \partial_+ ar{H} &= S^2 imes T^2 imes 1 = \partial D_1^3 imes T^2 \ . \end{aligned}$$

By straightening the handles with index ≤ 2 , we obtain a homeomorphism $g: (S^3 \times T^2)_{\alpha} \to (S^3 \times T^2)_{\beta}$ such that $g|(\overline{X} \cup \overline{Y}) = PL$. We define:

$$X = g(\overline{X})$$
,
 $H = g(\overline{H})$,
 $Y = g(\overline{Y})$,
 $\partial_{-}H = g(\partial_{-}\overline{H})$,
 $\partial_{+}H = g(\partial_{+}\overline{H})$.

Then H is a PL h-cobordism of $S^2 \times T^2$ with itself. By the handlebody argument (see, e. g. [3]), H has the following decomposition:

$$H = (\partial_{-}H \cup h_{1}^{2} \cup \cdots \cup h_{n}^{2}) \cup M(n) \times I \cup (\partial_{+}H \cup h_{1}^{2} \cup \cdots \cup h_{n}^{2})$$

where h_i^2 and k_f^2 $(1 \le i, j \le n)$ are 2-handles attached trivially to $\partial_- H$ and $\partial_+ H$ respectively. We may assume $h_i^2 \cap h_j^2 = k_i^2 \cap k_j^2 = \emptyset$ $(i \ne j)$. Let

$$h_i: (D^2 \times D^3, S^1 \times D^3) \longrightarrow (h_i^2, h_i^2 \cap \partial_- H)$$

and

$$k_j: (D^2 \times D^3, S^1 \times D^3) \longrightarrow (k_j^2, k_j^2 \cap \partial_+ H) \qquad (1 \le i, j \le n)$$

be PL homeomorphisms. We shall use the following notation:

$$\begin{split} W_i &= \partial_- H \cup h_1^2 \cup \cdots \cup h_i^2 & \quad (1 \leq i \leq n) \ . \\ W &= W_n \cup M(n) \times I \ , \\ V_j &= \partial_+ H \cup k_1^2 \cup \cdots \cup k_j^2 & \quad (1 \leq j \leq n) \ , \\ V &= V_n \cup M(n) \times I \ , \\ \partial_+ V &= \partial_+ H \ , \\ \partial_- V &= \partial_+ V \ . \end{split}$$

On the other hand, we consider the decomposition of $\bar{H} = S^2 \times T^2 \times I$ as follows:

$$\bar{H} = (\partial_{-}\bar{H} \cup \bar{h}_{1}^{2} \cup \cdots \cup \bar{h}_{n}^{2}) \cup M(n) \times I \cup (\partial_{+}\bar{H} \cup \bar{k}_{1}^{2} \cup \cdots \cup \bar{k}_{n})$$

where \bar{h}_i^2 and \bar{k}_j^2 $(1 \le i, j \le n)$ are 2-handles attached trivially to $\partial_- \bar{H}$ and $\partial_+ \bar{H}$ respectively. We may assume that \bar{h}_i^2 and \bar{k}_i^2 $(1 \le i \le n)$ are a pair of complementary handles and $\bar{h}_i^2 \cap \bar{h}_j^2 = \bar{k}_i^2 \cap \bar{k}_j^2 = \emptyset$ $(i \ne j)$. Let

$$\bar{h}_i: (D^2 \times D^3, S^1 \times D^3) \longrightarrow (\bar{h}_i^2, \bar{h}_i^2 \cap \partial_- \bar{H})$$

and

$$\bar{k}_j: (D^2 \times D^3, S^1 \times D^3) \longrightarrow (\bar{k}_j^2, \bar{k}_j^2 \cap \partial_+ \bar{H}) \qquad (1 \leq i, j \leq n)$$

be PL homeomorphisms. We shall use the following notation:

$$egin{aligned} & \overline{W}_i = \partial_- \overline{H} \cup ar{h}_1^2 \cup \cdots \cup ar{h}_i^2 & (1 \leq i \leq n) \,, \ & \overline{W} = \overline{W}_n \cup M(n) imes I \,, \ & \overline{V}_j = \partial_+ \overline{H} \cup ar{k}_1^2 \cup \cdots \cup ar{k}_j^2 & (1 \leq j \leq n) \,, \ & \overline{V} = \overline{V}_n \cup M(n) imes I \,, \ & \partial_+ \overline{V} = \partial_+ \overline{H} \,, \ & \partial_- \overline{V} = \partial_+ \overline{V} - \partial_+ \overline{V} \,. \end{aligned}$$

Now, by straightening the 2-handles, we obtain a homeomorphism g_0 : $(S^3 \times T^2)_{\beta} \rightarrow (S^3 \times T^2)_{\alpha}$ such that:

- (1) $g_0|(X \cup W_n \cup V_n \cup Y) = PL$,
- (2) $g_0(X \cup Y) = g^{-1}(X \cup Y)$.

Clearly $g_0 \circ h_1 | D^2 \times 0$ and $\bar{h}_1 | D^2 \times 0$ are homotopic as maps of pairs $(D^2 \times 0, S^1 \times 0) \to (\bar{H}, \partial_- \bar{H})$. Hence, by Theorem 3 and the uniqueness of regular neighbourhoods, we get a homeomorphism $g_0' \colon H \to \bar{H}$ such that:

- (1) g_0' is isotopic to $g_0|H$,
- (2) $g_0'(W_1) = \overline{W}_1$,
- (3) $g_0'|(W_n \cup V_n) = PL$,

- (4) $g_0' | \partial_- H$ is PL isotopic to $g_0 | \partial_- H$,
- (5) $g_0' | \partial_{\bullet} H = g_0 | \partial_{\bullet} H$.

Using g_0' , we can easily construct a homeomorphism $g_1: (S^3 \times T^2)_{\beta} \to (S^3 \times T^2)_{\alpha}$ such that:

- (1) $g_1(X \cup W_1) = \overline{X} \cup \overline{W}_1$,
- (2) $g_1 | Y = g_0 | Y$,
- (3) $g_1|(X \cup W_n \cup V_n \cup Y) = PL$.

Now we let:

$$\begin{split} &H(i)=H-\bigcup_{r=1}^{\pmb{i}}h_r(D^2\times \mathrm{int}\ D^3)\ ,\\ &\partial_-H(i)=\partial H(i)-\partial_+H\ ,\\ &\bar{H}(i)=\bar{H}-\bigcup_{r=1}^{\pmb{i}}\bar{h}_r(D^2\times \mathrm{int}\ D^3)\ ,\\ &\partial_-\bar{H}(i)=\partial\bar{H}(i)-\partial_+\bar{H}\ . \end{split}$$

Then, in particular, $g_1(H(1)) = \overline{H}(1)$.

Since $\pi_2(\overline{H}(1), \partial_-\overline{H}(1)) = \pi_2(\partial_-\overline{H}(1) \cup 3$ -handle, $\partial_-\overline{H}(1)) = 0$, $g_1 \circ h_2 \mid D^2 \times 0$ and $\overline{h}_2 \mid D^2 \times 0$ are homotopic as maps of pairs $(D^2 \times 0, S^1 \times 0) \to (\overline{H}(1), \partial_-\overline{H}(1))$. Hence, by Theorem 3 and the uniqueness of regular neighbourhoods, we get a homeomorphism $g_1' \colon H(1) \to \overline{H}(1)$ such that:

- (1) g_1' is isotopic to $g_1|H(1)$,
- (2) $g_1'(h_2^2) = \bar{h}_2^2$,
- (3) $g_1' | (\partial_- H(1) \cup h_2^2 \cup \cdots \cup h_n^2 \cup V_n) = PL$,
- (4) $g_1'|\partial_-H(1)$ is PL isotopic to $g_1|\partial_-H(1)$,
- (5) $g_1' | \partial_+ H = g_1 | \partial_+ H$.

Using g_1' , we can construct a homeomorphism $g_2: (S^3 \times T^2)_{\beta} \to (S^3 \times T^2)_{\alpha}$ such that:

- (1) $g_2(X \cup W_2) = \overline{X} \cup \overline{W}_2$,
- (2) $g_2 | Y = g_0 | Y$,
- (3) $g_2|(X \cup W_n \cup V_n \cup Y) = PL$.

By succeeding the same process as above, observing $\pi_2(\overline{H}(i), \partial_-\overline{H}(i)) = \pi_2(\partial_-\overline{H}(i) \cup 3$ -handle, $\partial_-\overline{H}(i)) = 0$, we obtain a homeomorphism $g_n: (S^3 \times T^2)_{\beta} \to (S^3 \times T^2)_{\alpha}$ such that:

- (1) $g_n(X \cup W_n) = \overline{X} \cup \overline{W}_n$
- $(2) \quad g_n | Y = g_0 | Y,$
- (3) $g_n | (X \cup W_n \cup V_n \cup Y) = PL$.

Moreover, by the general position argument and straightening a 1-handle,

without loss of generality, we may impose the following condition (4) on g_n :

(4) For some properly embedded PL arc l in V which connects a point of $\partial_+ V$ and a point of $\partial_- V$, and for some regular neighbourhood N(l) of l in V such that $N(l) \cap (\bigcup_{i=1}^n k_i^2) = g_n(N(l)) \cap (\bigcup_{i=1}^n \bar{k}_i^2) = \emptyset$, $g_n \mid N(l)$ is PL.

Define $\bar{g} = g_n | V: V \to \bar{V}$. We connect a point in $k_i^2 \cap \partial_+ V$ and the base point p in $\partial_+ V$ with an arc l_i in $\partial_+ V$, and regard $k_i^2 \cup l_i$ as an element of $\pi_2(V, \partial_+ V, p)$ to be denoted by a_i $(1 \le i \le n)$. Similarly we connect a point in $\bar{k}_i^2 \cap \partial_+ \bar{V}$ and $\bar{g}(p)$ with an arc \bar{l}_i in $\partial_+ \bar{V}$, and regard $\bar{k}_i^2 \cup \bar{l}_i$ as an element of $\pi_2(\bar{V}, \partial_+ \bar{V}, \bar{g}(p))$ to be denoted by b_i $(1 \le i \le n)$.

By the isomorphism $(\bar{g})_*: \pi_1(\partial_+ V) \to \pi_1(\partial_+ \bar{V})$, we identify $\pi_1(\partial_+ \bar{V})$ with $\pi_1(\partial_+ V)$, and these will be denoted simply by π .

Then (a_1, \dots, a_n) and (b_1, \dots, b_n) are bases of free $Z[\pi]$ -modules $\pi_2(V, \partial_+ V)$ and $\pi_2(\bar{V}, \partial_+ \bar{V})$ respectively. We represent the $Z[\pi]$ -module isomorphisms $(\bar{g})_*: \pi_2(V, \partial_+ V) \to \pi_2(\bar{V}, \partial_+ \bar{V})$ with a matrix $G = [g_{i,j}]$ by the above bases, where $g_{i,j} \in Z[\pi]$. It is well known that Whitehead group of $\pi = Z + Z$ is trivial. This implies that, for some $m \ge 0$, $G \oplus 1_m = ED$ where E is a finite product of elementary matrices and

$$D = egin{bmatrix} \pm \sigma & 0 \ 1 & \ 0 & 1 \end{bmatrix} \quad ext{where } \sigma \in \pi \ .$$

We define h_{n+i}^2 and k_{n+j}^2 $(1 \le i, j \le m)$ as 2-handles, in N(l), attached trivially to $\partial_- V \cap N(l)$ and $\partial_+ V \cap N(l)$ respectively such that h_{n+i}^2 and k_{n+i}^2 are pair of complementary handles. Let

$$h_{n+i}: (D^2 \times D^3, S^1 \times D^3) \longrightarrow (h_{n+i}^2, h_{n+i}^2 \cap \partial_- V)$$

and

$$k_{n+j}: (D^2 \times D^3, S^1 \times D^3) \longrightarrow (k_{n+j}^2, k_{n+j}^2 \cap \partial_+ V) \quad (1 \leq i, j \leq m)$$

be PL homeomorphisms. We shall use the following notation:

$$U=V-igcup_{i=1}^m h_{n+i}(D^2 imes ext{int }D^3)\,,$$
 $W_{n+i}=W_n\cup h_{n+1}^2\cup \cdots \cup h_{n+i}^2 \qquad (1\leq i\leq m)\,,$ $ar U=ar g(U)\,,$ $\partial_+ U=\partial_+ V\,,$ $\partial_+ ar U=\partial_+ ar V\,,$ $\partial_- U=\partial U-\partial_+ U\,.$

$$ar{g} = ar{g} \mid U \colon U \longrightarrow ar{U},$$
 $ar{k}_{n+i}^2 = ar{g}(k_{n+i}^2) \qquad (1 \le i \le m).$

Now we connect a point in $k_{n+i}^2 \cap \partial_+ U$ and p with an arc l_{n+i} in $\partial_+ U$, and regard $k_{n+i}^2 \cup l_{n+i}$ as an element of $\pi_2(U, \partial_+ U)$ to be denoted by a_{n+i} $(1 \leq i \leq m)$. Similarly we regard $\bar{k}_{n+i}^2 \cup \bar{g}(l_{n+i})$ as an element of $\pi_2(\bar{U}, \partial_+ \bar{U})$ to be denoted by b_{n+i} $(1 \leq i \leq m)$. We may regard a_i and b_i $(1 \leq i \leq n)$ as elements of $\pi_2(U, \partial_+ U)$ and $\pi_2(\bar{U}, \partial_+ \bar{U})$ naturally.

Then, by the bases (a_1, \cdots, a_{n+m}) and (b_1, \cdots, b_{n+m}) , the $Z[\pi]$ -module isomorphism $(\overline{g})_*: \pi_2(U, \partial_+ U) \to \pi_2(\overline{U}, \partial_+ \overline{U})$ is represented with the matrix $G \oplus 1_m = ED$.

By the similar argument in the handle addition theorem (see, e.g. [3], p. 228 and 250), we obtain a new handlebody decomposition of U satisfying the following conditions (1) and (2):

- (1) $U = \partial_+ U \cup (k_1^2)' \cup \cdots \cup (k_{n+m}^2)' \cup M(n+m) \times I$ where $(k_i^2)' (1 \le i \le n+m)$ is a 2-handle attached trivially to $\partial_+ U$ and $(k_i^2)' \cap (k_j^2)' = \emptyset$ $(i \ne j)$.
- (2) We connect a point of $(k_i^2)' \cap \partial_+ U$ and p with an arc l_i' in $\partial_+ U$, and regard $(k_i^2)' \cup l_i'$ as an element of $\pi_2(U, \partial_+ U)$ to be denoted by a_i' $(1 \le i \le n+m)$. Then, by the bases (a_1', \dots, a_{n+m}') and (b_1, \dots, b_{n+m}) , $(\overline{g})_* : \pi_2(U, \partial_+ U) \to \pi_2(\overline{U}, \partial_+ \overline{U})$ is represented with the matrix

$$1_{n+m} = \begin{bmatrix} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{bmatrix}.$$

Now we define:

$$\begin{split} &U_i = \partial_+ U \cup (k_1^2)' \cup \cdots \cup (k_i^2)' \qquad (1 \leqq i \leqq n+m) \text{ ,} \\ &\bar{U}_i = \partial_+ \bar{U} \cup \bar{k}_1^2 \cup \cdots \cup \bar{k}_i^2 \qquad (1 \leqq i \leqq n+m) \text{ ,} \\ &\overline{W}_{n+m} = \overline{W}_n \cup \bar{h}_{n+1}^2 \cup \cdots \cup \bar{h}_{n+m}^2 \end{split}$$

where $\bar{h}_{n+i}^2 = g_n(h_{n+i}^2)$ $(1 \le i \le m)$. Let

$$\bar{k}_{n+i}: (D^2 \times D^3, S^1 \times D^3) \longrightarrow (\bar{k}_{n+i}^2, \bar{k}_{n+i}^2 \cap \partial_+ \bar{U}) \qquad (1 \leq i \leq m)$$

and

$$(k_i)': (D^2 \times D^3, S^1 \times D^3) \longrightarrow ((k_i^2)', (k_i^2)' \cap \partial_+ U) \qquad (1 \leq i \leq n+m)$$

be PL homeomorphisms. Then $\overline{g} \circ (k_1)' | D^2 \times 0$ and $\overline{k}_1 | D^2 \times 0$ are homotopic as maps of pairs $(D^2 \times 0, S^1 \times 0) \rightarrow (U, \partial_+ U)$ because of the condition (2) above. Hence, by Theorem 3 and the uniqueness of regular neighbourhoods, we get a homeomorphism $f_0: U \rightarrow \overline{U}$ such that:

- (1) f_0 is isotopic to \overline{g} ,
- (2) $f_0((k_1^2)') = \bar{k}_1^2$,

- (3) $f_0 | U_{n+m} = PL$,
- (4) $f_0|\partial_+ U$ is PL isotopic to $\overline{g}|\partial_+ U$,
- (5) $f_0 | \partial_- U = \overline{g} | \partial_- U$.

Then, using f_0 , we can construct a homeomorphism $f_1: (S^3 \times T^2)_{\beta} \to (S^3 \times T^2)_{\alpha}$ such that:

- $(1) \quad f_1(X \cup W_{n+m}) = \overline{X} \cup \overline{W}_{n+m},$
- (2) $f_1(Y \cup U_1) = \overline{Y} \cup \overline{U}_1$,
- (3) $f_1|(X \cup W_{n+m} \cup U_{n+m} \cup Y) = PL$.

We define:

$$\begin{split} U(i) &= U - \bigcup_{r=1}^{i} (k_r)' (D^2 \times \operatorname{int} D^2) \,, \\ \bar{U}(i) &= \bar{U} - \bigcup_{r=1}^{i} \bar{k}_r (D^2 \times \operatorname{int} D^2) \,, \\ \partial_+ U(i) &= \partial U(i) - \partial_- U \,, \\ \partial_+ \bar{U}(i) &= \partial \bar{U}(i) - \partial_- \bar{U} \,. \end{split}$$

By a_i'' and b_i' $(2 \le i \le n+m)$, we denote the elements in $\pi_2(U(1), \partial_+ U(1))$ and $\pi_2(\bar{U}(1), \partial_+ \bar{U}(1))$ which corresponds to a_i' and b_i respectively. Then we get

$$(f_1|U(1))_*a_i'' = b_i'$$
 $(2 \le i \le n+m)$ in $\pi_2(\bar{U}(1), \partial_+\bar{U}(1))$

from the following diagram,

$$0 \longrightarrow \pi_{2}(U_{1}, \partial_{+}U) \xrightarrow{i} \pi_{2}(U, \partial_{+}U)$$

$$(f_{1}|U_{1})_{*} = 1 \qquad (f_{1}|U)_{*} = 1_{n+m}$$

$$0 \longrightarrow \pi_{2}(\bar{U}_{1}, \partial_{+}\bar{U}) \xrightarrow{i} \pi_{2}(\bar{U}, \partial_{+}\bar{U})$$

$$k \qquad \pi_{2}(U(1), \partial_{+}U(1))$$

$$f_{1}|U|_{*} = 1_{n+m-1} \qquad (f_{1}|U(1))_{*}$$

$$f_{2}(\bar{U}, \bar{U}_{1}) \longrightarrow 0 \text{ (exact)}$$

$$f_{3}(\bar{U}, \bar{U}_{1}) \longrightarrow 0 \text{ (exact)}$$

where $i, \bar{i}, j, \bar{j}, k$ and \bar{k} are induced from the inclusion maps.

Then, in particular, $f_1 \circ (k_2)' | D^2 \times 0$ and $\bar{k}_2 | D^2 \times 0$ are homotopic as maps of pairs $(D^2 \times 0, S^1 \times 0) \rightarrow (U(1), \partial_+ U(1))$. Hence, as before, we obtain a homeomorphism $f_2: (S^3 \times T^2)_{\beta} \rightarrow (S^3 \times T^2)_{\alpha}$ such that:

- $(1) \quad f_2(X \cup W_{n+m}) = \overline{X} \cup \overline{W}_{n+m},$
- (2) $f_2(Y \cup U_2) = \overline{Y} \cup \overline{U}_2$.
- (3) $f_2|(X \cup W_{n+m} \cup U_{n+m} \cup Y) = PL.$

We can repeat this process untill we obtain a homeomorphism f_{n+m} : $(S^3 \times T^2)_{\beta} \rightarrow (S^3 \times T^2)_{\alpha}$ such that:

- $(1) \quad f_{n+m}(X \cup W_{n+m}) = \overline{X} \cup \overline{W}_{n+m},$
- $(2) \quad f_{n+m}(Y \cup U_{n+m}) = \overline{Y} \cup \overline{U}_{n+m},$
- (3) $f_{n+m}|(X \cup W_{n+m} \cup U_{n+m} \cup Y) = PL$.

We put:

$$f = (f_{n+m} | M(n+m) \times 1)^{-1} \circ (f_{n+m} | M(n+m) \times 0)$$
 and $k = n+m$.

We may regard f a PL automorphism of M(k). Then f is exotic, since $(S^3 \times T^2)_{\beta}$ is not PL homeomorphic to $(S^3 \times T^2)_{\alpha}$.

Observing that any covering of $(S^3 \times T^2)_{\beta}$ is also exotic [2], we can easily prove the latter part of Theorem 1. Q. E.D.

§ 3. Proof of Theorem 2.

To prove Theorem 2, we use the following theorem by Shaneson [6].

THEOREM 4. Let M be an oriented, closed 4-manifold with $\pi_1(M) = Z$. Then every PL automorphism of M, homotopic to the identity, is PL pseudo-isotopic to the identity.

PROOF OF THEOREM 2. By Theorem 1 and Siebenmann's weak pseudo-isotopy theorem [7], we obtain a PL automorphism f of M(k) and a topological isotopy $F_t: M(k) \times S^1 \to M(k) \times S^1$ $(t \in I)$ such that:

- (1) f is exotic,
- (2) f does not extend to a PL automorphism of V(k),
- (3) $F_0 = id_{M(k) \times S^1}$ and $F_1 = f \times id_{S^1}$.

We regard $S^2 \times T^2$ as $S^2 \times S^1 \times R/Z$, and assume that any $S^2 \times S^2$ is connected to $S^2 \times S^1 \times R/Z$ at $S^2 \times S^1 \times ([1/8, 3/8] \cup [5/8, 7/8])$ whenever we consider $S^2 \times T^2 \# k(S^2 \times S^2) = M(k)$. We let:

$$M_0 = S^2 \times S^1 \times 0 \subset M(k)$$

and

$$M_1 = S^2 \times S^1 \times 1/2 \subset M(k)$$
 (see Fig. 1).

Then, without loss of generality, we may assume that $F_t(M_0 \times S^1) \cap M_1 \times S^1 = \emptyset$ for any $t \in I$, because of the latter part of Theorem 1. Hence, by Edward and Kirby's covering isotopy theorem [1], we obtain an isotopy $G_t: M(k) \times S^1 \to M(k) \times S^1$ ($t \in I$) such that:

- (1) $G_t | M_0 \times S^1 = F_t | M_0 \times S^1$,
- (2) $G_t | M_1 \times S^1 = id_{M_1 \times S^1}$,
- (3) $G_0 = id_{M(k) \times S^1}$.

By N_0 and N_1 , we denote the manifold in M(k) bounded by M_0 and M_1 (Fig. 2).

Then $N_i = S^2 \times S^1 \times [i/2, (i+1)/2] \# k_i (S^2 \times S^2) \subset M(k)$ (i=0, 1) where $k_0 + k_1 = k$. Similarly, by H_0 and H_1 , we denote the manifolds in M(k) bounded by $f(M_0)$ and M_1 (Fig. 3).

Define

$$g_i = G_1 | N_i \times S^1 : N_i \times S^1 \longrightarrow H_i \times S^1$$
 $(i = 1, 0)$,

and let $\bar{g}_i: N_i \times R \to H_i \times R$ be an infinite cyclic covering of g_i (i=1,0). We define $h_i = p_i \circ \bar{g}_i \circ j_i$ (i=1,0) where j_i and p_i are the inclusion and projection

maps as in the following diagram.

Then $h_i | \partial N_i = f | M_0 \cup id_{M_1}$, and, observing that \bar{g}_i is a homeomorphism, we can regard (H_i, h_i) as an element of $hT(N(k_i), \partial N(k_i))$.

If we suppose that both (H_0, h_0) and (H_1, h_1) are trivial, then we obtain a PL automorphism h of M(k) such that:

- (1) $h | M_0 = f | M_0$,
- (2) $h \mid M_1 = id_{M_1}$,
- (3) h is homotopic to the identity fixing M_1 ,
- (4) $f^{-1} \circ h$ is homotopic to the identity fixing M_0 .

We define

$$M = D_0^3 \times S^1 \cup S^2 \times S^1 \times I \sharp k(S^2 \times S^2) \cup D_1^3 \times S^1$$

where $\partial(D_0^3 \times S^1)$, $\partial(D_1^3 \times S^1)$ are identified with $S^2 \times S^1 \times 0$ and $S^2 \times S^1 \times 1$ respectively, and

$$f_1 = id_{\mathbf{p}_0^3 \times \mathbf{S}^1} \cup f^{-1} \circ h \cup id_{\mathbf{p}_1^3 \times \mathbf{S}^1}.$$

Then f_1 is a PL automorphism of M which is homotopic to the identity. Hence f_1 is pseudo-isotopic to the identity. Thus, using f_1 , we can construct a PL automorphism of V(k) which is an extension of $f^{-1} \circ h$.

Similarly h extends to a PL automorphism of V(k). Hence f itself extends to a PL automorphism of V(k). This contradicts the latter part of Theorem 1. Hence (H_0, h_0) or (H_1, h_1) is non-trivial. Q. E. D.

University of Tokyo, Tokyo, Japan

References

- [1] R. H. Edwards and R. C. Kirby, Deformations of spaces of embeddings, Ann. of Math., 93 (1971), 63-88.
- [2] S. Fukuhara, On the Hauptvermutung of 5-dimensional manifolds and s-cobordisms (to appear in J. London Math. Soc.).
- [3] J. F. D. Hudson, Piecewise Linear Topology, W. A. Benjamin Inc., 1969.
- [4] N. H. Kuiper (Editor), Manifold-Amsterdam 1970, Lecture notes No. 197, Springer-

Verlag, 1971.

- [5] R.C. Kirby, Lectures on triangulation of manifolds, Notes, UCLA, 1969.
- [6] J.L. Shaneson, Non-simply-connected surgery and some results in low dimensional topology, Comment. Math. Helv., 45 (1970), 333-352.
- [7] L.C. Siebenmann, Disruption of low dimensional handlebody theory by Rohlin's theorem, Proc. Athens, Georgia Topology Conference, 1969.