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In our previous paper [1], we stated in Theorem 7 (p. 415) that if g=1¥+p
is a real semisimple Lie algebra of the first category, then for any maximal
admissible (i.e. strongly orthogonal) subset F={ay,--,a;} of R, (the set of
non compact roots), the subspace

() = V=1 L REa+E-a)

is a maximal abelian subalgebra in p. However this statement is false as the
example at the end of this note shows. We shall prove in this note that
Theorem 7 in remains valid if we replace a maximal admissible subset
of R, by an admissible subset of B, having the maximal number of elements.
In the remaining part of §4, we used Theorem 7 to construct a maximal
abelian subalgebra in p. As a matter of fact, all the maximal admissible sets
in Ry, used in have the maximal number of elements. Therefore all the
results in §4 of remain valid. We use the notation in §4 of [1]. In
particular let g=1%+p be the real semisimple Lie algebra and its Cartan de-
composition, ) be a Cartan subalgebra of g contained in f, R be the set of all
roots with respect to ¢, E, (e € R) be a Weyl base corresponding to the

compact form g, =1+1p, that is, g, =5+ ER{R(E,,—I—E-a)—l-Rx/:T(E,,—E_,,)}.
as

LEMMA 1. The sum of three non compact positive roots is not a root.
ProOoOF. Let B={a,,:-,a,} be the set of all simple roots with respect

r
to the given linear order in R and 8= XY m;a; be the maximal root in R.
i=1

,
Any root a= 3} n;«a; satisfies the inequality
i=1

@ n,=m; d=sisn).

We can assume that g is simple. In this case there exists only one non
compact root, say a;, in B. The coefficients of a; in (8 satisfies

@ 1=m,<2.

The set Ry of all non compact positive roots is given by
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®)) ;z{azéniailnr’:l} .

(For the proof of (1), (2) and (3), see e. g., Murakami [27) (1), (2) and (3) prove
Lemma 1l :

Two roots « and 8 in R are said to be strongly orthogonal if neither
a+pB nor a—p belongs to R\ {0}.

Using Lemma 1, we can generalize a result of Harish-Chandra (3] Lemma
7 and Lemma 8) to general semisimple Lie algebra of the first category. He
proved the result for the Lie algebras of automorphism groups of symmetric
bounded domains. For any subset Q in Ry, put

Q) :rg%(g’%— 877 .
If B is the lowest root' in Q, we define Q(B) as
QB =1{reQlr+8, r£f«R}.
LEMMA 2. The centralizer 3 of Eg+E_g in p(Q) is equal to
CEs+E_p+pQ(B) .

PROOF. Let X be an element in p(Q) and Q’=Q—{B}. Then X can be
written as

X= CﬁEﬁ"{"‘C_pE_ﬁ‘i“TEEQ’(CrErJr‘C_rE_T) .
Since the Y°-component of [X, Es+E_pg] in the root space decomposition
g°=0+ X g* is (cg—c_p[Ep E_gl, we have
a<R
C)) cg=cp if Xej.
Moreover if X 3, then

Y =T§,(C7'Er+ c.rE_y)

also belongs to 3, and we have
G  0=[Y,E+E. ]
=T§,{CrEEr: Egl+cLEy, E_gltcLE_y, Egl+c [E_y, E_gl}.
¢:[Ey, Eg] is the only term in the right hand side of (5) belonging to ¢7*f
Because, if we assume that y+8=0—8 or —d+p8 or —d—p3 for some J € @/,

then y+pB+pB8=0 or y+B+0=p or y+o+p=—pB is a root. A contradiction
to Lemma 1. Therefore by (2) we have

(6) ' ¢:[Ey, Eg]1=0 for all yeQ'.
Similarly we have '
@ c./[E.7, E.g1=0 for-all yeQ’.
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For the term ¢,[E;, E_g] and c_,[E_;, Eg], the above argument is not valid.
Nevertheless we have

[¢)] ¢LEy, E.gl=c_;[E_;, Eg]=0 for all yeQ’.
Suppose ¢, [Er, E_g1#0. Then there exists a root d =@’ such that y—J

=—0+pB=a< R. (Note that there exists no root ¢ in @’ such that y—p
=0+B or y—f=—0—8 by Lemma 1) But this implies 0 <d=p—a < B,
which contradicts the fact that 8 is the lowest root in Q. So we have proved
8. (), (7) and (8) imply that if X belongs to 3, then ¢; and ¢_; must be equal
to zero for all y € Q' satisfying either y4+-f8<= R or y—3 < R. Therefore the
centralizer 3 of Ez+E_z in p(Q) is contained in C(Eg+E_p)-+p(Q(B)). Since
obviously we have C(Ez;+E_z+p(Q(8)C3, Lemma 2 is proved.

Once Lemma 2 is established for general real semisimple Lie algebra of
the first category, the following is proved by Lemma 2 in exactly
the same way as in the proof of Lemma 8 and its corollary in [3].

LEMMA 3. There exists a strongly orthogonal subset F of Ry such that

> CE+E_y)
TSF
1s a maximal abelian subalgebra in »° and
m(F)=+/—1 ZFR(Er+E—r)
r\~

is a maximal abelian subalgebra in ».

Now we have the correct version of Theorem 7 in [1].

THEOREM 7. Let g=1%-+p be a Cartan decomposition of a real semisimple
Lie algebra g and §) be a Cartan subalgebra of g contained in t. Let F={a,,

-,a;} be any strongly orthogonal subset of Ry, with the maximal number of

elements. Then there exists an automorphism p of ¢° and a Cartan subalgebra
herof g satisfying the following conditions: 1) p transforms §° onto §§. 2)
f)o‘:m(F)zx/——mli}‘]IR(Eai—%E_ai) is a maximal abelian subalgebra in p. 3) R’
={a’=‘p(a)|a € R} is the root system of g° with respect to %§, and {Hy -,
H,,} spans Y.

PrOOF. Let I' be the set of all strongly orthogonal subsets of Rp. It is
clear that if F belongs to I', then m(F)=+v—1 2] R(E;,+E_;) is an abelian

subalgebra in p. Lemma 3 assures that there ex1sts at least one F, in I" such
that m(F,) is a maximal abelian subalgebra in p. Since all the maximal abelian
subalgebras in p have the same dimension (1] Proposition 3), F, is an element
of I' having the maximal number of elements, because, if not, there exists
a maximal abelian subalgebra in p having the greater dimension than m(F,).
Moreover for any F in I' having the maximal number of]elements, m(F) is
a maximal abelian subalgebra in p, because dim m(F) =dim"m(F,). The proof
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of the remaining part of Theorem 7 in [1] is valid for the above revised
Theorem 7.

EXAMPLE. Let R={+e;, +e;,+e,;; 1=1, j=n} be the root system of type
B,. Then

B={a,=e,—e,, a,=¢e,—¢;s, -+ ,Qp_y =€y, —€y, an=e,}

is a base of R. Let g be the real simple Lie algebra of type B,I,. Then a,
is the only non compact root in B and, by (3), the set R, of non compact
roots is given by
Ry ={te,, +(e,—e;), x(e;+e;) ¢ =2)},

and the set

A={e,—e, e,+e,}
is a strongly orthogonal subset in R;. On the other hand, the set

M= {e,}

is a maximal strongly orthogonal subset in R;.

As a corollary to the above revised Theorem 7, we have obtained the
following relation between two methods of classification of real simple Lie
algebras given by Murakami [2] and Araki [4].

A pair (R, ) of a root system R and an involutive automorphism ¢ of R
is called a root system with an involution. Two root systems with involutions
(R, 0) and (R’, ¢0’) are called isomorphic if there exists an isomorphism ¢ of
R onto R’ satisfying ¢oog=o0"0¢.

Let g be a real semisimple Lie algebra and ¢ be the conjugation of the
complexification g° of g with respect to g. Moreover let §) be a Cartan sub-
algebra of g whose vector part has maximal dimension and R be the root
system of (g% %°). The conjugation o acts on the dual space Y)** of §° by
(6A)(H)= A(gH). Then o leaves the root system R stable and the pair (R, o)
is a root system with an involution. Another choice of a Cartan subalgebra
whose vector part has maximal dimension gives a root system with an in-
volution which is isomorphic to (R, 6). A root system with an involution
(R, ) thus obtained is called the root system with an involution of a real
semisimple Lie algebra g.

COROLLARY TO THEOREM 7. Letg,p,Y) and F be the same as in Theorem 7

and let f)*:Z‘}RHai and %~ =Y+~ —1Y. Then the linear transformation’o
i=1
on vV —19 with §* and %~ as the eigenspaces of eigenvalues +1 and —1 respec-

tively is an involutive automorphism of the root system R. The root system with
an involution (R, o) is isomorphic to the root system with an involution of g.

k— -
ERRATA of [T]: p. 394, line 20, read 3 RU., for 3 Ra,. p.414, line 26,
i=1 i=1
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