Correction to my paper: Conjugate classes of Cartan subalgebras in real semisimple Lie algebras

(In this Journal vol. 11 (1959) 374-434)

By Mitsuo SUGIURA

(Received Aug. 13, 1970)

In our previous paper [1], we stated in Theorem 7 (p. 415) that if g = t + p is a real semisimple Lie algebra of the first category, then for any maximal admissible (i.e. strongly orthogonal) subset $F = \{\alpha_1, \dots, \alpha_l\}$ of R_p (the set of non compact roots), the subspace

$$\mathfrak{m}(\boldsymbol{F}) = \sqrt{-1} \sum_{i=1}^{l} R(E_{\alpha_i} + E_{-\alpha_i})$$

is a maximal abelian subalgebra in p. However this statement is false as the example at the end of this note shows. We shall prove in this note that Theorem 7 in [1] remains valid if we replace a maximal admissible subset of R_p by an admissible subset of R_p having the maximal number of elements. In the remaining part of [1] § 4, we used Theorem 7 to construct a maximal abelian subalgebra in p. As a matter of fact, all the maximal admissible sets in R_p used in [1] have the maximal number of elements. Therefore all the results in §4 of [1] remain valid. We use the notation in §4 of [1]. In particular let g = t + p be the real semisimple Lie algebra and its Cartan decomposition, b e a Cartan subalgebra of g contained in t, R be the set of all roots with respect to \mathfrak{h}^c , E_{α} ($\alpha \in \mathbf{R}$) be a Weyl base corresponding to the compact form $\mathfrak{g}_u = t + ip$, that is, $\mathfrak{g}_u = \mathfrak{h} + \sum_{\alpha \in \mathbf{R}} \{R(E_{\alpha} + E_{-\alpha}) + R\sqrt{-1}(E_{\alpha} - E_{-\alpha})\}$.

LEMMA 1. The sum of three non compact positive roots is not a root.

PROOF. Let $B = \{\alpha_1, \dots, \alpha_r\}$ be the set of all simple roots with respect to the given linear order in R and $\beta = \sum_{i=1}^r m_i \alpha_i$ be the maximal root in R. Any root $\alpha = \sum_{i=1}^r n_i \alpha_i$ satisfies the inequality

(1) $n_i \leq m_i$ $(1 \leq i \leq r)$.

We can assume that g is simple. In this case there exists only one non compact root, say α_j , in B. The coefficients of α_j in β satisfies

$$(2) 1 \leq m_j \leq 2.$$

The set R_{p}^{+} of all non compact positive roots is given by

M. SUGIURA

(3)
$$\mathbf{R}_{\mathfrak{p}}^{+} = \{ \alpha = \sum_{i=1}^{r} n_i \alpha_i | n_j = 1 \}.$$

(For the proof of (1), (2) and (3), see e.g., Murakami [2].) (1), (2) and (3) prove Lemma 1.

Two roots α and β in **R** are said to be strongly orthogonal if neither $\alpha + \beta$ nor $\alpha - \beta$ belongs to $\mathbf{R} \cup \{0\}$.

Using Lemma 1, we can generalize a result of Harish-Chandra ([3] Lemma 7 and Lemma 8) to general semisimple Lie algebra of the first category. He proved the result for the Lie algebras of automorphism groups of symmetric bounded domains. For any subset Q in \mathbb{R}_{*}^{+} , put

$$\mathfrak{p}(Q) = \sum_{\boldsymbol{\gamma} \in \boldsymbol{Q}} (\mathfrak{g}^{\boldsymbol{\gamma}} + \mathfrak{g}^{-\boldsymbol{\gamma}}) \, .$$

If β is the lowest root in Q, we define $Q(\beta)$ as

$$Q(\beta) = \{ \gamma \in Q \mid \gamma \neq \beta, \ \gamma \pm \beta \in \mathbf{R} \} .$$

LEMMA 2. The centralizer \mathfrak{z} of $E_{\beta}+E_{-\beta}$ in $\mathfrak{p}(Q)$ is equal to

$$C(E_{\beta}+E_{-\beta})+\mathfrak{p}(Q(\beta))$$
.

PROOF. Let X be an element in $\mathfrak{p}(Q)$ and $Q' = Q - \{\beta\}$. Then X can be written as

$$X = c_{\beta}E_{\beta} + c_{-\beta}E_{-\beta} + \sum_{\mathbf{r} \in \mathbf{Q}'} (c_{\mathbf{r}}E_{\mathbf{r}} + c_{-\mathbf{r}}E_{-\mathbf{r}}).$$

Since the \mathfrak{h}^{c} -component of $[X, E_{\beta} + E_{-\beta}]$ in the root space decomposition $\mathfrak{g}^{c} = \mathfrak{h}^{c} + \sum_{\alpha \in \mathcal{R}} \mathfrak{g}^{\alpha}$ is $(c_{\beta} - c_{-\beta})[E_{\beta}, E_{-\beta}]$, we have

(4)
$$c_{\beta} = c_{-\beta} \quad \text{if} \quad X \in \mathfrak{z}.$$

Moreover if $X \in \mathfrak{z}$, then

$$Y = \sum_{\mathbf{r} \in \mathbf{Q}'} (c_{\mathbf{r}} E_{\mathbf{r}} + c_{-\mathbf{r}} E_{-\mathbf{r}})$$

also belongs to 3, and we have

(5)
$$0 = [Y, E_r + E_{-r}] = \sum_{r \in Q'} \{ c_r [E_r, E_{\beta}] + c_r [E_r, E_{-\beta}] + c_{-r} [E_{-r}, E_{\beta}] + c_{-r} [E_{-r}, E_{-\beta}] \}.$$

 $c_r[E_r, E_\beta]$ is the only term in the right hand side of (5) belonging to $g^{r+\beta}$. Because, if we assume that $\gamma+\beta=\delta-\beta$ or $-\delta+\beta$ or $-\delta-\beta$ for some $\delta \in Q'$, then $\gamma+\beta+\beta=\delta$ or $\gamma+\beta+\delta=\beta$ or $\gamma+\delta+\beta=-\beta$ is a root. A contradiction to Lemma 1. Therefore by (2) we have

(6)
$$c_r[E_r, E_\beta] = 0$$
 for all $\gamma \in Q'$.

Similarly we have

(7)
$$c_{-r}[E_{-r}, E_{-\beta}] = 0$$
 for all $\gamma \in Q'$.

380

For the term $c_r[E_r, E_{-\beta}]$ and $c_{-r}[E_{-\gamma}, E_{\beta}]$, the above argument is not valid. Nevertheless we have

(8)
$$c_r[E_r, E_{-\beta}] = c_{-r}[E_{-\gamma}, E_{\beta}] = 0$$
 for all $\gamma \in Q'$.

Suppose $c_r[E_r, E_{-\beta}] \neq 0$. Then there exists a root $\delta \in Q'$ such that $\gamma - \beta = -\delta + \beta = \alpha \in \mathbf{R}$. (Note that there exists no root δ in Q' such that $\gamma - \beta = \delta + \beta$ or $\gamma - \beta = -\delta - \beta$ by Lemma 1.) But this implies $0 < \delta = \beta - \alpha < \beta$, which contradicts the fact that β is the lowest root in Q. So we have proved (8). (6), (7) and (8) imply that if X belongs to \mathfrak{z} , then c_r and c_{-r} must be equal to zero for all $\gamma \in Q'$ satisfying either $\gamma + \beta \in \mathbf{R}$ or $\gamma - \beta \in \mathbf{R}$. Therefore the centralizer \mathfrak{z} of $E_{\beta} + E_{-\beta}$ in $\mathfrak{p}(Q)$ is contained in $C(E_{\beta} + E_{-\beta}) + \mathfrak{p}(Q(\beta))$. Since obviously we have $C(E_{\beta} + E_{-\beta}) + \mathfrak{p}(Q(\beta)) \subset \mathfrak{z}$, Lemma 2 is proved.

Once Lemma 2 is established for general real semisimple Lie algebra of the first category, the following Lemma 3 is proved by Lemma 2 in exactly the same way as in the proof of Lemma 8 and its corollary in [3].

LEMMA 3. There exists a strongly orthogonal subset F of $R_{\mathfrak{p}}$ such that

$$\sum_{\boldsymbol{\tau} \in \boldsymbol{F}} C(E_{\boldsymbol{\tau}} + E_{-\boldsymbol{\tau}})$$

is a maximal abelian subalgebra in $\mathfrak{p}^{\mathfrak{c}}$ and

$$\mathfrak{m}(\boldsymbol{F}) = \sqrt{-1} \sum_{\boldsymbol{\gamma} = \boldsymbol{F}} R(E_{\boldsymbol{\gamma}} + E_{-\boldsymbol{\gamma}})$$

is a maximal abelian subalgebra in p.

Now we have the correct version of Theorem 7 in [1].

THEOREM 7. Let $g = \mathfrak{t} + \mathfrak{p}$ be a Cartan decomposition of a real semisimple Lie algebra \mathfrak{g} and \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} contained in \mathfrak{t} . Let $F = \{\alpha_1, \dots, \alpha_l\}$ be any strongly orthogonal subset of $R_{\mathfrak{p}}$ with the maximal number of elements. Then there exists an automorphism ρ of \mathfrak{g}^c and a Cartan subalgebra $\mathfrak{h}_{\mathfrak{g}_1}$ of \mathfrak{g} satisfying the following conditions: 1) ρ transforms \mathfrak{h}^c onto $\mathfrak{h}_{\mathfrak{g}}^c$. 2) $\mathfrak{h}_{\mathfrak{g}_0} = \mathfrak{m}(F) = \sqrt{-1} \sum_{i=1}^l R(E_{\alpha_i} + E_{-\alpha_i})$ is a maximal abelian subalgebra in \mathfrak{p} . 3) R' $= \{\alpha' = {}^t \rho(\alpha) | \alpha \in R\}$ is the root system of \mathfrak{g}^c with respect to $\mathfrak{h}_{\mathfrak{g}}^c$, and $\{H_{\alpha'_1}, \dots, H_{\alpha'_l}\}$ spans $\mathfrak{h}_{\mathfrak{g}}^-$.

PROOF. Let Γ be the set of all strongly orthogonal subsets of $R_{\mathfrak{p}}$. It is clear that if F belongs to Γ , then $\mathfrak{m}(F) = \sqrt{-1} \sum_{\gamma \in F} R(E_{\gamma} + E_{-\gamma})$ is an abelian subalgebra in \mathfrak{p} . Lemma 3 assures that there exists at least one F_0 in Γ such that $\mathfrak{m}(F_0)$ is a maximal abelian subalgebra in \mathfrak{p} . Since all the maximal abelian subalgebras in \mathfrak{p} have the same dimension ([1] Proposition 3), F_0 is an element of Γ having the maximal number of elements, because, if not, there exists a maximal abelian subalgebra in \mathfrak{p} having the greater dimension than $\mathfrak{m}(F_0)$. Moreover for any F in Γ having the maximal number of $\mathfrak{s}_{\mathfrak{p}}$ elements, $\mathfrak{m}(F)$ is a maximal abelian subalgebra in \mathfrak{p} , because dim $\mathfrak{m}(F) = \dim^{\mathfrak{m}}(F_0)$. The proof of the remaining part of Theorem 7 in [1] is valid for the above revised Theorem 7.

EXAMPLE. Let $R = \{\pm e_i, \pm e_i \pm e_j; 1 \leq i, j \leq n\}$ be the root system of type B_n . Then

$$B = \{\alpha_1 = e_1 - e_2, \alpha_2 = e_2 - e_3, \cdots, \alpha_{n-1} = e_{n-1} - e_n, \alpha_n = e_n\}$$

is a base of \mathbf{R} . Let g be the real simple Lie algebra of type $B_n I_2$. Then α_1 is the only non compact root in B and, by (3), the set \mathbf{R}_p of non compact roots is given by

$$R_{\mathfrak{p}} = \{\pm e_1, \pm (e_1 - e_i), \pm (e_1 + e_i) \ (i \ge 2)\},\$$

and the set

$$A = \{e_1 - e_2, e_1 + e_2\}$$

is a strongly orthogonal subset in $R_{\mathfrak{p}}$. On the other hand, the set

 $M = \{e_1\}$

is a maximal strongly orthogonal subset in $R_{\mathfrak{p}}$.

As a corollary to the above revised Theorem 7, we have obtained the following relation between two methods of classification of real simple Lie algebras given by Murakami [2] and Araki [4].

A pair (\mathbf{R}, σ) of a root system \mathbf{R} and an involutive automorphism σ of \mathbf{R} is called a root system with an involution. Two root systems with involutions (\mathbf{R}, σ) and (\mathbf{R}', σ') are called isomorphic if there exists an isomorphism φ of \mathbf{R} onto \mathbf{R}' satisfying $\varphi \circ \sigma = \sigma' \circ \varphi$.

Let g be a real semisimple Lie algebra and σ be the conjugation of the complexification g^c of g with respect to g. Moreover let h be a Cartan subalgebra of g whose vector part has maximal dimension and \mathbf{R} be the root system of (g^c, h^c) . The conjugation σ acts on the dual space h^{c*} of h^c by $(\sigma\lambda)(H) = \overline{\lambda(\sigma H)}$. Then σ leaves the root system \mathbf{R} stable and the pair (\mathbf{R}, σ) is a root system with an involution. Another choice of a Cartan subalgebra whose vector part has maximal dimension gives a root system with an involution which is isomorphic to (\mathbf{R}, σ) . A root system with an involution (\mathbf{R}, σ) thus obtained is called the root system with an involution of a real semisimple Lie algebra g.

COROLLARY TO THEOREM 7. Let $\mathfrak{g}, \mathfrak{p}, \mathfrak{h}$ and \mathbf{F} be the same as in Theorem 7 and let $\mathfrak{h}^+ = \sum_{i=1}^{l} RH_{\alpha_i}$ and $\mathfrak{h}^- = \mathfrak{h}^{+\perp} \cap \sqrt{-1}\mathfrak{h}$. Then the linear transformation $\overline{\sigma}$ on $\sqrt{-1}\mathfrak{h}$ with \mathfrak{h}^+ and \mathfrak{h}^- as the eigenspaces of eigenvalues +1 and -1 respectively is an involutive automorphism of the root system \mathbf{R} . The root system with an involution (\mathbf{R}, σ) is isomorphic to the root system with an involution of \mathfrak{g} .

ERRATA of [1]: p. 394, line 20, read $\sum_{i=1}^{k-1} RU_{\alpha_i}$ for $\sum_{i=1}^{k-1} R_{\alpha_i}$. p. 414, line 26,

382

read
$$V_{\alpha} = -\frac{\pi}{2} \sqrt{-1} (E_{\alpha} - E_{-\alpha}) / (2(\alpha, \alpha))^{\frac{1}{2}}$$
 for $V_{\alpha} = \sqrt{-1} (E_{\alpha} - E_{-\alpha}) / (2(\alpha, \alpha))^{\frac{1}{2}}$

University of Tokyo

References

- M. Sugiura, Conjugate classes of Cartan subalgebras in real semisimple Lie algebras, J. Math. Soc. Japan, 11 (1959), 374-434.
- [2] S. Murakami, Sur les classifications des algèbres de Lie réeles et simples, Osaka J. Math., 2 (1965), 291-307.
- [3] Harish-Chandra, Representations of semisimple Lie groups VI, Amer. J. Math., 78 (1956), 564-628.
- [4] S. Araki, On root systems and infinitesimal classification of irreducible symmetric spaces, J. Math. Osaka City University, 13 (1962), 1-34.