Correction to my paper: Conjugate classes of Cartan subalgebras in real semisimple Lie algebras

(In this Journal vol. 11 (1959) 374-434)

By Mitsuo Sugiura

(Received Aug. 13, 1970)

In our previous paper [1], we stated in Theorem 7 (p. 415) that if $\mathfrak{g}=\mathfrak{f}+\mathfrak{p}$ is a real semisimple Lie algebra of the first category, then for any maximal admissible (i. e. strongly orthogonal) subset $\boldsymbol{F}=\left\{\alpha_{1}, \cdots, \alpha_{l}\right\}$ of \boldsymbol{R}_{p} (the set of non compact roots), the subspace

$$
\mathfrak{m}(\boldsymbol{F})=\sqrt{-1} \sum_{i=1}^{i} R\left(E_{\alpha_{i}}+E_{-\alpha_{i}}\right)
$$

is a maximal abelian subalgebra in \mathfrak{p}. However this statement is false as the example at the end of this note shows. We shall prove in this note that Theorem 7 in [1] remains valid if we replace a maximal admissible subset of $\boldsymbol{R}_{\mathfrak{p}}$ by an admissible subset of $\boldsymbol{R}_{\mathfrak{p}}$ having the maximal number of elements. In the remaining part of [1] §4, we used Theorem 7 to construct a maximal abelian subalgebra in \mathfrak{p}. As a matter of fact, all the maximal admissible sets in $\boldsymbol{R}_{户}$ used in [1] have the maximal number of elements. Therefore all the results in $\S 4$ of [1] remain valid. We use the notation in §4 of [1]. In particular let $g=\mathfrak{f}+\mathfrak{p}$ be the real semisimple Lie algebra and its Cartan decomposition, \mathfrak{G} be a Cartan subalgebra of g contained in $\mathfrak{f}, \boldsymbol{R}$ be the set of all roots with respect to $\mathfrak{h}^{c}, E_{\alpha}(\alpha \in \boldsymbol{R})$ be a Weyl base corresponding to the compact form $\mathrm{g}_{u}=\mathfrak{f}+i \mathfrak{p}$, that is, $\mathrm{g}_{u}=\mathfrak{G}+\sum_{\alpha \in R}\left\{R\left(E_{\alpha}+E_{-\alpha}\right)+R \sqrt{-1}\left(E_{\alpha}-E_{-\alpha}\right)\right\}$.

Lemma 1. The sum of three non compact positive roots is not a root.
Proof. Let $B=\left\{\alpha_{1}, \cdots, \alpha_{r}\right\}$ be the set of all simple roots with respect to the given linear order in \boldsymbol{R} and $\beta=\sum_{i=1}^{r} m_{i} \alpha_{i}$ be the maximal root in \boldsymbol{R}. Any root $\alpha=\sum_{i=1}^{r} n_{i} \alpha_{i}$ satisfies the inequality

$$
\begin{equation*}
n_{i} \leqq m_{i} \quad(1 \leqq i \leqq r) \tag{1}
\end{equation*}
$$

We can assume that g is simple. In this case there exists only one non compact root, say α_{j}, in B. The coefficients of α_{j} in β satisfies

$$
\begin{equation*}
1 \leqq m_{j} \leqq 2 \tag{2}
\end{equation*}
$$

The set \boldsymbol{R}^{+}of all non compact positive roots is given by
(3)

$$
\boldsymbol{R}_{p}^{+}=\left\{\alpha=\sum_{i=1}^{r} n_{i} \alpha_{i} \mid n_{j}=1\right\}
$$

(For the proof of (1), (2) and (3), see e. g., Murakami [2].) (1), (2) and (3) prove Lemma 1.

Two roots α and β in \boldsymbol{R} are said to be strongly orthogonal if neither $\alpha+\beta$ nor $\alpha-\beta$ belongs to $\boldsymbol{R} \cup\{0\}$.

Using Lemma 1, we can generalize a result of Harish-Chandra ([3] Lemma 7 and Lemma 8) to general semisimple Lie algebra of the first category. He proved the result for the Lie algebras of automorphism groups of symmetric bounded domains. For any subset Q in \boldsymbol{R}_{p}^{+}, put

$$
\mathfrak{p}(Q)=\sum_{r \in \boldsymbol{Q}}\left(\mathfrak{g}^{r}+\mathfrak{g}^{-r}\right) .
$$

If β is the lowest root in Q, we define $Q(\beta)$ as

$$
Q(\beta)=\{\gamma \in Q \mid \gamma \neq \beta, \gamma \pm \beta \oplus R\}
$$

Lemma 2. The centralizer z of $E_{\beta}+E_{-\beta}$ in $p(Q)$ is equal to

$$
C\left(E_{\beta}+E_{-\beta}\right)+\mathfrak{p}(Q(\beta)) .
$$

Proof. Let X be an element in $\mathfrak{p}(Q)$ and $Q^{\prime}=Q-\{\beta\}$. Then X can be written as

$$
X=c_{\beta} E_{\beta}+c_{-\beta} E_{-\beta}+\sum_{r \in Q^{\prime}}\left(c_{r} E_{r}+c_{-r} E_{-r}\right)
$$

Since the \mathfrak{h}^{c}-component of $\left[X, E_{\beta}+E_{-\beta}\right]$ in the root space decomposition $\boldsymbol{g}^{c}=\mathfrak{h}^{c}+\sum_{\alpha \in \boldsymbol{R}} \mathrm{g}^{\alpha}$ is $\left(c_{\beta}-c_{-\beta}\right)\left[E_{\beta}, E_{-\beta}\right]$, we have

$$
\begin{equation*}
c_{\beta}=c_{-\beta} \quad \text { if } X \in z . \tag{4}
\end{equation*}
$$

Moreover if $X \in{ }_{\mathrm{z}}$, then

$$
Y=\sum_{r=Q^{\prime}}\left(c_{r} E_{r}+c_{-r} E_{-r}\right)
$$

also belongs to \mathfrak{z}, and we have

$$
\begin{align*}
0 & =\left[Y, E_{r}+E_{-r}\right] \tag{5}\\
& =\sum_{r \in Q^{\prime}}\left\{c_{r}\left[E_{r}, E_{\beta}\right]+c_{r}\left[E_{r}, E_{-\beta}\right]+c_{-r}\left[E_{-r}, E_{\beta}\right]+c_{-r}\left[E_{-r}, E_{-\beta}\right]\right\} .
\end{align*}
$$

$c_{r}\left[E_{r}, E_{\beta}\right]$ is the only term in the right hand side of (5) belonging to $\mathrm{g}^{\gamma+\beta}$. Because, if we assume that $\gamma+\beta=\delta-\beta$ or $-\delta+\beta$ or $-\delta-\beta$ for some $\delta \in Q^{\prime}$, then $\gamma+\beta+\beta=\delta$ or $\gamma+\beta+\delta=\beta$ or $\gamma+\delta+\beta=-\beta$ is a root. A contradiction to Lemma 1. Therefore by (2) we have

$$
\begin{equation*}
c_{r}\left[E_{r}, E_{\beta}\right]=0 \quad \text { for all } \quad \gamma \in Q^{\prime} \tag{6}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
c_{-r}\left[E_{-r}, E_{-\beta}\right]=0 \quad \text { for all } \quad \gamma \in Q^{\prime} \tag{7}
\end{equation*}
$$

For the term $c_{r}\left[E_{r}, E_{-\beta}\right]$ and $c_{-r}\left[E_{-r}, E_{\beta}\right]$, the above argument is not valid. Nevertheless we have

$$
\begin{equation*}
c_{r}\left[E_{r}, E_{-\beta}\right]=c_{-r}\left[E_{-r}, E_{\beta}\right]=0 \quad \text { for all } \quad \gamma \in Q^{\prime} . \tag{8}
\end{equation*}
$$

Suppose $c_{\gamma}\left[E_{r}, E_{-\beta}\right] \neq 0$. Then there exists a root $\delta \in Q^{\prime}$ such that $\gamma-\beta$ $=-\delta+\beta=\alpha \in \boldsymbol{R}$. (Note that there exists no root δ in Q^{\prime} such that $\gamma-\beta$ $=\delta+\beta$ or $\gamma-\beta=-\delta-\beta$ by Lemma 1.) But this implies $0<\delta=\beta-\alpha<\beta$, which contradicts the fact that β is the lowest root in Q. So we have proved (8). (6), (7) and (8) imply that if X belongs to ${ }_{\gamma}$, then c_{r} and c_{-r} must be equal to zero for all $\gamma \in Q^{\prime}$ satisfying either $\gamma+\beta \in \boldsymbol{R}$ or $\gamma-\beta \in \boldsymbol{R}$. Therefore the centralizer z of $E_{\beta}+E_{-\beta}$ in $p(Q)$ is contained in $C\left(E_{\beta}+E_{-\beta}\right)+\mathfrak{p}(Q(\beta))$. Since obviously we have $C\left(E_{\beta}+E_{-\beta}\right)+\mathfrak{p}(Q(\beta)) \subset \mathfrak{z}$, Lemma 2 is proved.

Once Lemma 2 is established for general real semisimple Lie algebra of the first category, the following Lemma 3 is proved by Lemma 2 in exactly the same way as in the proof of Lemma 8 and its corollary in [3].

Lemma 3. There exists a strongly orthogonal subset \boldsymbol{F} of $\boldsymbol{R}_{户}$ such that

$$
\sum_{r \in \boldsymbol{F}} C\left(E_{r}+E_{-r}\right)
$$

is a maximal abelian subalgebra in \mathfrak{p}^{c} and

$$
\mathfrak{m}(\boldsymbol{F})=\sqrt{-1} \sum_{r=\boldsymbol{F}} R\left(E_{r}+E_{-r}\right)
$$

is a maximal abelian subalgebra in \mathfrak{p}.
Now we have the correct version of Theorem 7 in [1].
THEOREM 7. Let $\mathfrak{g}=\mathfrak{f}+\mathfrak{p}$ be a Cartan decomposition of a real semisimple Lie algebra \mathfrak{g} and \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} contained in $\mathfrak{\text { f. Let }} \boldsymbol{F}=\left\{\alpha_{1}\right.$, $\left.\cdots, \alpha_{\imath}\right\}$ be any strongly orthogonal subset of $\boldsymbol{R}_{\mathrm{p}}$ with the maximal number of elements. Then there exists an automorphism ρ of g^{C} and a Cartan subalgebra $\mathfrak{H}_{0}, \ldots f \mathrm{~g}$ satisfying the following conditions: 1) ρ transforms \mathfrak{h}^{c} onto $\mathfrak{H}_{0}^{C} .2$) $\mathfrak{H}_{0}^{-}=\mathfrak{m}(\boldsymbol{F})=\sqrt{-1} \sum_{i=1}^{i} \boldsymbol{R}\left(E_{\alpha_{i}}+E_{-\alpha_{i}}\right)$ is a maximal abelian subalgebra in \mathfrak{p}. 3) \boldsymbol{R}^{\prime} $=\left\{\alpha^{\prime}={ }^{t} \rho(\alpha) \mid \alpha \in \boldsymbol{R}\right\}$ is the root system of \mathfrak{g}^{C} with respect to \mathfrak{H}_{0}^{C}, and $\left\{H_{\alpha^{\prime}{ }_{1}}, \cdots\right.$, $\left.H_{\alpha^{\prime}}\right\}$ spans \mathfrak{H}_{0}^{-}.

Proof. Let Γ be the set of all strongly orthogonal subsets of \boldsymbol{R}_{p}. It is clear that if \boldsymbol{F} belongs to Γ, then $\mathfrak{m}(\boldsymbol{F})=\sqrt{-1} \sum_{r=\boldsymbol{F}} R\left(E_{r}+E_{-r}\right)$ is an abelian subalgebra in \mathfrak{p}. Lemma 3 assures that there exists at least one \boldsymbol{F}_{0} in Γ such that $\mathfrak{m}\left(\boldsymbol{F}_{0}\right)$ is a maximal abelian subalgebra in \mathfrak{p}. Since all the maximal abelian subalgebras in \mathfrak{p} have the same dimension ([1] Proposition 3), \boldsymbol{F}_{0} is an element of Γ having the maximal number of elements, because, if not, there exists a maximal abelian subalgebra in \mathfrak{p} having the greater dimension than $\mathfrak{m}\left(\boldsymbol{F}_{0}\right)$. Moreover for any \boldsymbol{F} in Γ having the maximal number of $\boldsymbol{\Gamma}$ elements, $\mathfrak{m}(\boldsymbol{F})$ is a maximal abelian subalgebra in \mathfrak{p}, because $\operatorname{dim} \mathfrak{m}(\boldsymbol{F})=\operatorname{dim}^{\boldsymbol{r}} \mathfrak{m}\left(\boldsymbol{F}_{0}\right)$. The proof
of the remaining part of Theorem 7 in [1] is valid for the above revised Theorem 7.

Example. Let $\boldsymbol{R}=\left\{ \pm e_{i}, \pm e_{i} \pm e_{j} ; 1 \leqq i, j \leqq n\right\}$ be the root system of type B_{n}. Then

$$
B=\left\{\alpha_{1}=e_{1}-e_{2}, \alpha_{2}=e_{2}-e_{3}, \cdots, \alpha_{n-1}=e_{n-1}-e_{n}, \alpha_{n}=e_{n}\right\}
$$

is a base of \boldsymbol{R}. Let g be the real simple Lie algebra of type $B_{n} I_{2}$. Then α_{1} is the only non compact root in B and, by (3), the set $\boldsymbol{R}_{\mathrm{p}}$ of non compact roots is given by

$$
\boldsymbol{R}_{\mathrm{p}}=\left\{ \pm e_{1}, \pm\left(e_{1}-e_{i}\right), \pm\left(e_{1}+e_{i}\right)(i \geqq 2)\right\}
$$

and the set

$$
A=\left\{e_{1}-e_{2}, e_{1}+e_{2}\right\}
$$

is a strongly orthogonal subset in $\boldsymbol{R}_{\mathrm{p}}$. On the other hand, the set

$$
M=\left\{e_{1}\right\}
$$

is a maximal strongly orthogonal subset in $\boldsymbol{R}_{\mathrm{p}}$.
As a corollary to the above revised Theorem 7, we have obtained the following relation between two methods of classification of real simple Lie algebras given by Murakami [2] and Araki [4].

A pair (\boldsymbol{R}, σ) of a root system \boldsymbol{R} and an involutive automorphism σ of \boldsymbol{R} is called a root system with an involution. Two root systems with involutions (\boldsymbol{R}, σ) and ($\boldsymbol{R}^{\prime}, \sigma^{\prime}$) are called isomorphic if there exists an isomorphism φ of \boldsymbol{R} onto \boldsymbol{R}^{\prime} satisfying $\varphi \circ \sigma=\sigma^{\prime} \circ \varphi$.

Let g be a real semisimple Lie algebra and σ be the conjugation of the complexification g^{c} of g with respect to g. Moreover let \mathfrak{h} be a Cartan subalgebra of g whose vector part has maximal dimension and \boldsymbol{R} be the root system of ($\mathfrak{g}^{c}, \mathfrak{h}^{c}$). The conjugation σ acts on the dual space $\mathfrak{h}^{c *}$ of \mathfrak{h}^{c} by $(\sigma \lambda)(H)=\overline{\lambda(\sigma H)}$. Then σ leaves the root system \boldsymbol{R} stable and the pair $(\boldsymbol{R}, \boldsymbol{\sigma})$ is a root system with an involution. Another choice of a Cartan subalgebra whose vector part has maximal dimension gives a root system with an involution which is isomorphic to (\boldsymbol{R}, σ). A root system with an involution (\boldsymbol{R}, σ) thus obtained is called the root system with an involution of a real semisimple Lie algebra g.

Corollary to Theorem 7. Let $\mathfrak{g}, \mathfrak{p}, \mathfrak{h}$ and \boldsymbol{F} be the same as in Theorem 7 and let $\mathfrak{h}^{+}=\sum_{i=1}^{1} R H_{\alpha_{i}}$ and $\mathfrak{h}^{-}=\mathfrak{h}^{+\perp} \cap \sqrt{-1} \mathfrak{h}$. Then the linear transformation ${ }^{\boldsymbol{*}} \sigma$ on $\sqrt{-1} \mathfrak{h}$ with \mathfrak{h}^{+}and \mathfrak{h}^{-}as the eigenspaces of eigenvalues +1 and -1 respectively is an involutive automorphism of the root system \boldsymbol{R}. The root system with an involution ($\boldsymbol{R}, \boldsymbol{\sigma}$) is isomorphic to the root system with an involution of \mathbf{g}.

ERRATA of [1]: p. 394, line 20, read $\sum_{i=1}^{k-1} R U_{\alpha_{i}}$ for $\sum_{i=1}^{k-1} R_{\alpha_{i}}$. p. 414, line 26,

$\operatorname{read} V_{\alpha}=\frac{\pi}{2} \sqrt{-1}\left(E_{\alpha}-E_{-\alpha}\right) /(2(\alpha, \alpha))^{\frac{1}{2}}$ for $V_{\alpha}=\sqrt{-1}\left(E_{\alpha}-E_{-\alpha}\right) /(2(\alpha, \alpha))^{\frac{1}{2}}$.

University of Tokyo

References

[1] M. Sugiura, Conjugate classes of Cartan subalgebras in real semisimple Lie algebras, J. Math. Soc. Japan, 11 (1959), 374-434.
[2] S. Murakami, Sur les classifications des algèbres de Lie réeles et simples, Osaka J. Math., 2 (1965), 291-307.
[3] Harish-Chandra, Representations of semisimple Lie groups VI, Amer. J. Math., 78 (1956), 564-628.
[4] S. Araki, On root systems and infinitesimal classification of irreducible symmetric spaces, J. Math. Osaka City University, 13 (1962), 1-34.

