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In our previous paper [1], we stated in Theorem 7 (p. 415) that if $\mathfrak{g}=f+\mathfrak{p}$

is a real semisimple Lie algebra of the first category, then for any maximal
admissible ($i.e$ . strongly orthogonal) subset $F=\{\alpha_{1}, \cdots, \alpha_{l}\}$ of $R$, (the set of
non compact roots), the subspace

$m(\Gamma)=\sqrt{-1}\sum_{t=1}^{l}R(E_{\alpha_{i}}+E_{-\alpha_{i}})$

is a maximal abelian subalgebra in $\mathfrak{p}$ . However this statement is false as the
example at the end of this note shows. We shall prove in this note that
Theorem 7 in [1] remains valid if we replace a maximal admissible subset
of $R_{\mathfrak{p}}$ by an admissible subset of $R_{\mathfrak{p}}$ having the maximal number of elements.
In the remaining part of [1] \S 4, we used Theorem 7 to construct a maximal
abelian subalgebra in $\mathfrak{p}$ . As a matter of fact, all the maximal admissible sets
in $R_{\mathfrak{p}}$ used in [1] have the maximal number of elements. Therefore all the
results in \S 4 of [1] remain valid. We use the notation in \S 4 of [1]. In
particular let $\mathfrak{g}=f+\mathfrak{p}$ be the real semisimple Lie algebra and its Cartan de-
composition, $\mathfrak{h}$ be a Cartan subalgebra of $\mathfrak{g}$ contained in $f,$ $R$ be the set of all
roots with respect to $\mathfrak{h}^{C},$ $E_{\alpha}(\alpha\in R)$ be a Weyl base corresponding to the
compact form $\mathfrak{g}_{u}=f+i\mathfrak{p}$, that is, $\mathfrak{g}_{u}=\mathfrak{h}+\sum_{\alpha\in R}\{R(E_{\alpha}+E_{-\alpha})+R\sqrt{-1}(E_{\alpha}-E_{-a})\}$ .

LEMMA 1. The sum of three non compact positive roots is not a root.
PROOF. Let $B=\{\alpha_{1}, \cdots, \alpha_{r}\}$ be the set of all simple roots with respect

to the given linear order in $R$ and $\beta=\sum_{t=1}^{r}m_{i}\alpha_{i}$ be the maximal root in $R$ .
Any root $\alpha=\sum_{i=1}^{r}n_{i}\alpha_{i}$ satisfies the inequality

(1) $n_{i}\leqq m_{i}$ $(1\leqq i\leqq r)$ .
We can assume that $\mathfrak{g}$ is simple. In this case there exists only one non
compact root, say $\alpha_{j}$ , in $B$ . The coefficients of $\alpha_{j}$ in $\beta$ satisfies

(2) $1\leqq m_{j}\leqq 2$ .
The set $R_{\mathfrak{p}}^{+}$ of all non compact positive roots is given by



380 M. $s_{UGlURA}$

(3) $R_{\mathfrak{p}}^{+}=\{\alpha=\sum_{i=1}^{r}n_{i}\alpha_{i}|n_{j}=1\}$ .
(For the proof of (1), (2) and (3), see $e$ . $g.$ , Murakami [2].) (1), (2) and (3) prove
Lemma 1.

Two roots $\alpha$ and $\beta$ in $R$ are said to be strongly orthogonal if neither
$\alpha+\beta$ nor $\alpha-\beta$ belongs to $R\cup\{0\}$ .

Using Lemma 1, we can generalize a result of Harish-Chandra ([3] Lemma
7 and Lemma 8) to general semisimple Lie algebra of the first category. He
proved the result for the Lie algebras of automorphism groups of symmetric
bounded domains. For any subset $Q$ in $R_{\mathfrak{p}}^{+}$ , put

$\mathfrak{p}(Q)=\sum_{\gamma\in Q}(\mathfrak{g}^{\gamma}+\mathfrak{g}^{-\gamma})$ .

If $\beta$ is the lowest root in $Q$ , we define $Q(\beta)$ as
$Q(\beta)=\{\gamma\in Q|\gamma\neq\beta, \gamma\pm\beta\not\in R\}$ .

LEMMA 2. The centralizer 3 of $E_{\beta}+E_{-\beta}$ in $\mathfrak{p}(Q)$ is equal to

$C(E_{\beta}+E_{-\beta})+\mathfrak{p}(Q(\beta))$ .
PROOF. Let $X$ be an element in $\mathfrak{p}(Q)$ and $Q^{\prime}=Q-\{\beta\}$ . Then $X$ can be

written as
$X=c_{\beta}E_{\beta}+c_{-\beta}E_{-\beta}+\sum_{\gamma\in Q^{\prime}}(c_{\gamma}E_{\gamma}+c_{-\gamma}E_{-\gamma})$ .

Since the $\mathfrak{h}^{c}$-component of [X, $E_{\beta}+E_{-\beta}$] in the root space decomposition
$\mathfrak{g}^{\iota}=\mathfrak{h}^{c}+\sum_{\alpha\in R}\mathfrak{g}^{\alpha}$ is $(c_{\beta}-c_{-\beta})[E_{\beta}, E_{-\beta}]$ , we have

(4) $c_{\beta}=c_{-\beta}$ if $X\in 3$ .
Moreover if $X\in \mathfrak{z}$ , then

$Y=\sum_{\gamma=Q^{\prime}}(c_{\gamma}E_{\gamma}+c_{-\gamma}E_{-\gamma})$

also belongs to 3, and we have

(5) $0=[Y, E_{\gamma}+E_{-\gamma}]$

$=\sum_{\gamma\in Q^{\prime}}\{c_{\gamma}[E_{\gamma}, E_{\beta}]+c_{\gamma}[E_{\gamma}, E_{-\beta}]+c_{-\gamma}[E_{-\gamma}, E_{\beta}]+c_{-\gamma}[E_{-\gamma}, E_{-\beta}]\}$ .

$c_{\gamma}[E_{\gamma}, E_{\beta}]$ is the only term in the right hand side of (5) belonging to $\mathfrak{g}^{\gamma+\beta}$ .
Because, if we assume that $\gamma+\beta=\delta-\beta$ or $-\delta+\beta$ or $-\delta-\beta$ for some $\delta\in Q^{J}$ ,
then $\gamma+\beta+\beta=\delta$ or $\gamma+\beta+\delta\cdot=\beta$ or $\gamma+\delta+\beta=-\beta$ is a root. A contradiction
to Lemma 1. Therefore by (2) we have

(6) $c_{\gamma}[E_{\gamma}, E_{\beta}]=0$ for all $\gamma\in Q^{\prime}$ .
Similarly we have

(7) $c_{-\gamma}[E_{-\gamma}, E_{-\beta}]=0$ for all $\gamma\in Q^{\prime}$ .
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For the term $c_{\gamma}[E_{\gamma}, E_{-\beta}]$ and $c_{-\gamma}[E_{-\gamma}, E_{\beta}]$ , the above argument is not valid.
Nevertheless we have

(8) $c_{\gamma}[E_{\gamma}, E_{-\beta}]=c_{-\gamma}[E_{-\gamma}, E_{\beta}]=0$ for all $\gamma\in Q^{\prime}$ .
Suppose $c_{\gamma}[E_{\gamma}, E_{-\beta}]\neq 0$ . Then there exists a root $\delta\in Q^{\prime}$ such that $\gamma-\beta$

$=-\delta+\beta=\alpha\in R$ . (Note that there exists no root $\delta$ in $Q^{\prime}$ such that $\gamma-\beta$

$=\delta+\beta$ or $\gamma-\beta=-\delta-\beta$ by Lemma 1.) But this implies $ 0<\delta=\beta-\alpha<\beta$ ,
which contradicts the fact that $\beta$ is the lowest root in $Q$ . So we have proved
(8). (6), (7) and (8) imply that if $X$ belongs to $\mathfrak{z}$ , then $c_{\gamma}$ and $c_{-\gamma}$ must be equal
to zero for all $\gamma\in Q^{\prime}$ satisfying either $\gamma+\beta\in R$ or $\gamma-\beta\in R$ . Therefore the
centralizer 3 of $E_{\beta}+E_{-\beta}$ in $\mathfrak{p}(Q)$ is contained in $C(E_{\beta}+E_{-\beta})+\mathfrak{p}(Q(\beta))$ . Since
obviously we have $C(E_{\beta}+E_{-\beta})+\mathfrak{p}(Q(\beta))\subset \mathfrak{z}$ , Lemma 2 is proved.

Once Lemma 2 is established for general real semisimple Lie algebra of
the first category, the following Lemma 3 is proved by Lemma 2 in exactly
the same way as in the proof of Lemma 8 and its corollary in [3].

LEMMA 3. There exists a strongly orthogonal subset $F$ of $R_{\mathfrak{p}}$ such that

$\sum_{r\in F}C(E_{\gamma}+E_{-\gamma})$

is a maximal abelian subalgebra in $\mathfrak{p}^{c}$ and

$\mathfrak{m}(F)=\sqrt{-1}\sum_{r-F}R(E_{\gamma}+E_{-\gamma})$

is a maximal abelian subalgebra in $\mathfrak{p}$ .
Now we have the correct version of Theorem 7 in [1].

THEOREM 7. Let $\mathfrak{g}=f+\mathfrak{p}$ be a Cartan decomposition of a real semisimple
Lie algebra $\mathfrak{g}$ and $\mathfrak{h}$ be a Cartan subalgebra of $\mathfrak{g}$ contained in $f$ . Let $F=\{\alpha_{1}$ ,
... , $\alpha_{\iota}$ } be any strongly orthogonal subset of $R_{\mathfrak{p}}$ with the maximal number of
elements. Then there exists an automorphism $\rho$ of $\mathfrak{g}^{c}$ and a Cartan subalgebra
$\mathfrak{h}_{0J}.of$ $\mathfrak{g}$ satisfying the following conditions: 1) $\rho$ transforms $\mathfrak{h}^{C}$ onto $\mathfrak{h}_{0}^{C}$ . 2)

$\mathfrak{h}_{0}^{-}=\mathfrak{m}(F)=\sqrt{-1}\sum_{\iota=1}^{\iota}R(E_{\alpha_{i}}+E_{-\alpha_{i}})$ is a maximal abelian subalgebra in $\mathfrak{p}$ . 3) $R^{\prime}$

$=\{\alpha^{\prime}={}^{t}\rho(\alpha)|\alpha\in R\}$ is the root system of $\mathfrak{g}^{C}$ with respect to $\mathfrak{h}_{0}^{c}$ , and { $H_{\alpha_{1}^{\prime}},$ $\cdots$ ,
$H_{\alpha l}\}$ spans $\mathfrak{h}_{0}^{-}$ .

PROOF. Let $\Gamma$ be the set of all strongly orthogonal subsets of $R_{\mathfrak{p}}$ . It is
clear that if $F$ belongs to $\Gamma$ , then $\mathfrak{m}(F)=\sqrt{-1}\sum_{\gamma F}R(E_{\gamma}+E_{-\gamma})$ is an abelian

subalgebra in $\mathfrak{p}$ . Lemma 3 assures that there exists at least one $F_{0}$ in $\Gamma$ such
that $\mathfrak{m}(F_{0})$ is a maximal abelian subalgebra in $\mathfrak{p}$ . Since all the maximal abelian
subalgebras in $\mathfrak{p}$ have the same dimension ([1] Proposition 3), $F_{0}$ is an element
of $\Gamma$ having the maximal number of elements, because, if not, there exists
a maximal abelian subalgebra in $\mathfrak{p}$ having the greater dimension than $\mathfrak{m}(F_{0})$ .
Moreover for any $F$ in $\Gamma$ having the maximal number $of_{l}^{r}elements,$ $\mathfrak{m}(F)$ is
a maximal abelian subalgebra in $\mathfrak{p}$ , because $\dim \mathfrak{m}(F)=\dim^{r}\mathfrak{m}(F_{0})$ . The proof
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of the remaining part of Theorem 7 in [1] is valid for the above revised
Theorem 7.

EXAMPLE. Let $R=\{\pm e_{t}, \pm e_{i}\pm e_{j} ; 1\leqq i, j\leqq n\}$ be the root system of type
$B_{n}$ . Then

$B=\{\alpha_{1}=e_{1}-e_{2}, \alpha_{2}=e_{2}-e_{s}, \cdots \alpha_{n-1}=e_{n-1}-e_{n}, \alpha_{n}=e_{n}\}$

is a base of $R$ . Let $\mathfrak{g}$ be the real simple Lie algebra of type $B_{n}I_{2}$ . Then $\alpha_{1}$

is the only non compact root in $B$ and, by (3), the set $R_{\mathfrak{p}}$ of non compact
roots is given by

$R,$ $=\{\pm e_{1}, \pm(e_{1}-e_{i}), \pm(e_{1}+e_{i})(i\geqq 2)\}$ ,
and the set

$A=\{e_{1}-e_{2}, e_{1}+e_{2}\}$

is a strongly orthogonal subset in $R_{\mathfrak{p}}$ . On the other hand, the set

$M=\{e_{1}\}$

is a maximal strongly orthogonal subset in $R_{\mathfrak{p}}$ .
As a corollary to the above revised Theorem 7, we have obtained the

following relation between two methods of classification of real simple Lie
algebras given by Murakami [2] and Araki [4].

A pair $(R, \sigma)$ of a root system $R$ and an involutive automorphism $\sigma$ of $R$

is called a root system with an involution. Two root systems with involutions
$(R, \sigma)$ and $(R^{\prime}, \sigma^{\prime})$ are called isomorphic if there exists an isomorphism $\varphi$ of
$R$ onto $R^{\prime}$ satisfying $\varphi\circ\sigma=\sigma^{\prime}\circ\varphi$ .

Let $\mathfrak{g}$ be a real semisimple Lie algebra and $\sigma$ be the conjugation of the
complexification $\mathfrak{g}^{c}$ of $\mathfrak{g}$ with respect to $\mathfrak{g}$ . Moreover let $\mathfrak{h}$ be a Cartan sub-
algebra of $\mathfrak{g}$ whose vector part has maximal dimension and $R$ be the root
system of $(\mathfrak{g}^{c}, \mathfrak{h}^{c})$ . The conjugation $\sigma$ acts on the dual space $\mathfrak{h}^{c*}$ of $\mathfrak{h}^{C}$ by
$(\sigma\lambda)(H)=\overline{\lambda(\sigma H)}$ . Then $\sigma$ leaves the root system $R$ stable and the pair $(R, \sigma)$

is a root system with an involution. Another choice of a Cartan subalgebra
whose vector part has maximal dimension gives a root system with an in-
volution which is isomorphic to $(R, \sigma)$ . A root system with an involution
$(R, \sigma)$ thus obtained is called the root system with an involution of a real
semisimple Lie algebra $\mathfrak{g}$ .

COROLLARY TO THEOREM 7. Let $\mathfrak{g},$ $\mathfrak{p},$
$\mathfrak{h}$ and $F$ be the same as in Theorem 7

and let $\mathfrak{h}^{+}=\sum_{i=1}^{/}RH_{\alpha_{t}}$ and $\mathfrak{h}^{-}=\mathfrak{h}^{+\perp}\cap\sqrt{-1}\mathfrak{h}$ . Then the linear transformationi $\sigma$

on $\sqrt{-1}\mathfrak{h}$ with $\mathfrak{h}^{+}$ and $\mathfrak{h}^{-}$ as the eigenspaces of $eigenvalues+1$ and –1 respec-
tively is an involutive automorphism of the root system R. The root system with
an involution $(R, \sigma)$ is isomorphic to the root system with an involution of $\mathfrak{g}$ .

ERRATA of [1]: p. 394, line 20, read $\sum_{i=1}^{\iota-1}RU_{a_{i}}$ for $\sum_{i=1}^{k-1}R_{\alpha_{t}}$ . p. 414, line 26,
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read $V_{a}=_{2}^{\pi}--\sqrt{-1}(E_{\alpha}-E_{-\alpha})/(2(\alpha, \alpha))^{2}1_{-}$ for $V_{\alpha}=\sqrt{-1}(E_{\alpha}-E_{-\alpha})/(2(\alpha, \alpha))^{\frac{1}{2}}$ .

University of Tokyo
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