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\S 1. Introduction.

Let $G$ be a finite group and $K$ a field of characteristic $0$ . Then the group
algebra $K[G]$ of $G$ with respect to $K$ is semisimple. We can write it as a
direct sum

$K[G]=A_{1}\oplus A_{2}\oplus\cdots\oplus A_{r}$

of simple algebras. Each $A_{i}$ is in one-to-one correspondence with a family
$T_{i}$ of absolutely irreducible characters $\chi_{i\nu}(\nu=1, \cdots, t_{i})$ of $G$ , taken in the
algebraic closure $\overline{K}$ of $K$ and algebraically conjugate to each other over $K$.
Each simple algebra $A_{i}$ is isomorphic to a complete matrix algebra $M_{\rho_{i}}(\Delta_{i})$

of a certain degree $\rho_{i}$ with coefficients in a division algebra $\Delta_{i}$ over $K$. Let
$K(\chi_{i\nu})$ denote the field obtained from $K$ by adjoining all values $\chi_{i\nu}(g)$ with
$g\in G$ of the character $\chi_{i\nu}$ . It turns out that the center $\Omega_{i}$ of $\Delta_{i}$ is isomorphic
to $K(\chi_{i\nu})$ for $\chi_{i\nu}\in T_{i}$ . If the dimension of $\Delta_{i}$ over $\Omega_{i}$ is $m_{i}^{2},$

$m_{i}$ is called the
Schur index of the division algebra $\Delta_{i}$ or of the characters $\chi_{i\nu}(\nu=1, \cdots, t_{i})$ .

Now we are faced with the problem: Characterize division algebras which
appear at simple components of group algebras.

In this paper this problem is solved for division algebras over the $p$-adic
number field $Q_{p}$ , where $p$ is any odd prime number. Namely, we shall prove
the following

THEOREM 1. Let $p$ be an odd prime number. Denote by $\Xi$ the field obtained
from $Q_{p}$ by adjoining all primitive roots of unity $\zeta_{n}(n=3,4,5, \cdots)$ . Then, $a$

given (finite dimensional) division algebra $\Delta$ over $Q_{p}$ appears at a simple com-
ponent of the group algebra $Q_{p}[G]$ over $Q_{p}$ of a certain finite group $G$ if and
only if (i) the center $k$ of $\Delta$ is a finite extension field of $Q_{p}$ contained in $\Xi$ ,

and (ii) the Hasse invariant of $\Delta$ is of the form
$z/\frac{p-1}{b}(mod Z)$ , $z\in Z$ ,

where $Z$ is the ring of rational integers and $b$ is the index of tame ramification
1) This work was supported in part by The Sakkokai Foundation.
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of the extension $k/Q_{p},$ $i.e.$ , if $\mathfrak{p}$ is the prime ideal of the integer ring in le
dividing $p$ , the ramification index of $\mathfrak{p}$ over $p$ is $bp^{\lambda},$ $(b, p)=1$ , for a certain
integer $\lambda$ .

REMARK. In the above, $k$ is contained in a cyclotomic field $Q_{p}(\zeta_{n})$ for a
certain positive integer $n$ , and so $b$ divides $p-1$ .

From Theorem 1, we can immediately deduce many facts about irreducible
characters or group algebras of finite groups. We state a few of them and
use the same notation as in Theorem 1.

Let $\chi$ be an absolutely irreducible character of a finite group $G$ , and let
$b$ be the index of tame ramification of the extension $Q_{p}(\chi)/Q_{p}$ . Then the
Schur index of $\chi$ with respect to $Q_{p}$ divides $(p-1)/b$ . If $B$ is the simple

component of the group algebra $Q[G]$ of $G$ over the rational number field $Q$

which corresponds to the character $\chi$ , then the center of $B$ is isomorphic $t\alpha$

$Q(\chi)$ and the Hasse invariant of $B$ at any prime ideal $\mathfrak{p}$ of $Q(\chi)$ dividing $p$ is

of the form $z/-\underline{1}(mod Z)\underline{p}_{b},$ $z\in Z$.
Let $K$ be a finite extension field of $Q_{p}$ and let $Br(K)$ denote the set of a1I

classes of central simple algebras over $K,$ $i$ . $e.$ , the Brauer group of $K$. Let
$ k=K\cap\Xi$ and $b$ be the index of tame ramification of $k/Q_{p}$ (at $p$). Set
$s=(\underline{p}_{b}-\underline{1}[K:k])$ . Denote by $S(K)$ the subset of $Br(K)$ consisting of all

those classes that contain simple components of group algebras $K[G]$ over $K$

of finite groups $G$ . Then we have
THEOREM 2. $S(K)$ is the finite subgroup of $Br(K)$ of order $\underline{p}_{bs}-\underline{1}$ .
Here we make a remark about the proof of Theorem 1. E. Witt [11] has.

reduced the question of determining Schur indices of irreducible characters
to that of determining indices of ‘ Kreisalgebren ‘. Then he noticed that by

means of the transfer map in the theory of cohomology, the center of any
Kreisalgebra may be assumed to be $Q_{p}$ , and he calculated the index of it.
In this paper, we directly calculate the index of any Kreisalgebra $\mathfrak{A}$ whose $\cdot$

center $k$ is an extension of $Q_{p}$ . It follows that if the index of tame rami-
fication of $k/Q_{p}$ (at p) is $b$ , then the index of $\mathfrak{A}$ divides $\frac{p-1}{b}$ From this fact

we deduce the ‘only if’ part of Theorem 1. As for the ‘ if’ part, we con-
struct a simple algebra $\mathfrak{A}$ over $Q_{p}$ such that (i) the center of $\mathfrak{A}$ is exactly the $\cdot$

given field $k$ , (ii) the index of $\mathfrak{A}$ is equal to a given value as in the condition
of Theorem 1, (iii) there exists a finite subgroup $G$ in $\mathfrak{A}$ which spans $\mathfrak{A}$ with
respect to $Q_{p}$ , i. e., $\mathfrak{A}=\{\sum_{g\in G}\alpha_{9}g;\alpha_{9}\in Q_{p}\}$ . Such a $G$ is given by a metabelian
group.

NOTATION AND TERMINOLOGY. Every group $G$ whose identity is denoted
by 1 is assumed to be finite. By an irreducible character $\chi$ of $G$ , we always.,



p-adic group algebras 297

mean an absolutely irreducible one. For a field $K$ of characteristic $0,$ $A(\chi, K)$

is the simple component of $K[G]$ that corresponds to $\chi$ . $K^{\times}$ is the multi-
plicative group of non-zero elements of $K$. If $L$ is a normal extension of
$K,$ $\mathfrak{G}(L/K)$ is the Galois group of $L$ over $K$. For any element $\alpha$ of $L$ , the
image of $\alpha$ by an automorphism $\tau\in \mathfrak{G}(L/K)$ is denoted by $\alpha^{\tau}$ . If $H$ is a sub-
group of $G$ and $\psi$ a character of $H,$ $\psi^{G}$ is the character of $G$ induced from $\psi$ .
For $\tau\in \mathfrak{G}(K(\psi)/K),$ $\psi^{-}$ is the character of $H$ defined by $\psi^{-}(h)=(\psi(h))^{\tau},$ $h\in H$.
If $G\triangleright H,$ $i$ . $e.$ , if $H$ is a normal subgroup of $G$ , then for each $g\in G,$ $\psi^{g}$ is the
character of $H$ defined by $\psi^{9}(h)=\psi(ghg^{-1}),$ $h\in H$. $\langle g_{1}, g_{z}, \cdots\rangle$ is the group
generated by $g_{1},$ $g_{2},$ $\cdots$ . The greatest common divisor of integers $n$ and $n^{\prime}$ is
as usual denoted by $(n, n^{\prime})$ . For a positive integer $n,$ $\zeta_{n}$ is a primitive n-th
root of unity. Two simple algebras $A$ and $B$ are said to be similar, if and
only if (i) the center of $A$ and that of $B$ are the same field $k$ , and (ii) there
exist matrix algebras $M_{n}(k)$ and $M_{n^{\prime}}(k)$ such that $A\otimes_{k}M_{n}(k)$ and $B\otimes_{k}M_{n^{\prime}}(k)$

are isomorphic.

\S 2. Preliminaries.

Let $G$ be a finite group. The group algebra $Q[G]$ of $G$ over the rational
number field $Q$ is a direct sum of simple algebras $A_{i}$ :

$Q[G]=A_{1}\oplus\cdots\oplus A_{r}$ .
Let $\chi_{1},$ $\cdots$ $\chi_{r}$ be representatives of the algebraically conjugate classes (over $Q$)

of the absolutely irreducible characters of $G$ . If $A_{i}$ corresponds to $\chi_{i}(i=1$ ,
$r)$ , the center of $A_{i}$ is isomorphic to the field $Q(\chi_{i})$ . Let $K$ be any field

of characteristic $0$ . Then we have
$K[G]\cong Q[G]\otimes_{Q}K\cong A_{1}\otimes_{Q}K\oplus\cdots\oplus A_{r}\otimes_{Q}K$ ,

$A_{i}\otimes_{Q}K\cong(A_{i}\otimes_{Q(\chi_{i)}}Q(\chi_{i}))\otimes_{Q}K\cong A_{i}\otimes_{Q(\chi_{i)}}(Q(\chi_{i})\otimes_{Q}K)$

$\cong A_{t}\otimes_{Q(i)}\gamma K(\chi_{i})\oplus\cdots\oplus A_{i}\otimes_{Q(i)}vK(\chi_{i})$ ,

where the last summands correspond respectively to the algebraic conjugate
characters $x_{i}^{\sigma},$ $\sigma\in \mathfrak{G}(Q(\chi_{i})\cap K/Q)$ . For an irreducible character $\chi$ of $G$ , the
above argument shows

$A(\chi, K)\cong A(\chi, Q)\otimes_{Q(Y)}K(\chi)$ .
If $K$ is an algebraic number field of finite degree and $\mathfrak{P}$ (resp. $\mathfrak{p}$) is a prime
ideal of $K(\chi)$ (resp. $Q(\chi)$) such that $\mathfrak{P}$ divides $\mathfrak{p}$ and that $\mathfrak{p}$ divides a prime
number $p$ , then we have

$A(\chi, K)\otimes_{K(..)}\gamma K(\chi)_{\mathfrak{P}}\cong(A(\chi, Q)\otimes_{Q(\chi)}K(\chi))\otimes_{K(\chi)}K(\chi)_{\mathfrak{P}}$

$\cong A(\chi, Q)\otimes_{Q(\gamma)}K(\chi)_{\mathfrak{P}}$

$\cong A(\chi, Q)\otimes_{Q(\chi)}(Q(\chi)_{\mathfrak{p}}\otimes_{a(\chi)}\mathfrak{p}K(\chi)_{\mathfrak{P}})$

$\cong(A(\chi, Q)\otimes_{Q(\chi)}Q(\chi)_{\mathfrak{p}})\otimes_{0^{(.)}\mathfrak{p}}\gamma K(\chi)_{\mathfrak{P}}$ .
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Here, of course, $K(\chi)_{\mathfrak{P}}$ (resp. $Q(\chi)_{P}$) denotes the completion of $K(\chi)$ (resp. $ Q(\chi)\rangle$

by the $\mathfrak{P}$ -adic (resp. $\mathfrak{p}$-adic) topology. Therefore the Hasse invariant of the
central simple algebra $A(\chi, K)$ over $K(\chi)$ at the prime ideal $\mathfrak{P}$ is equal to
that of the central simple algebra $A(\chi, Q)$ over $Q(\chi)$ at the $\mathfrak{p}$ multiplied by
$[K(\chi)_{\mathfrak{P}}:Q(\chi)_{\mathfrak{p}}]$ . If $m(\chi, Q, \mathfrak{p})$ is the $\mathfrak{p}$-index of the central simple algebra
$A(\chi, Q)$ over $Q(\chi)$ , the $\mathfrak{P}$ -index of $A(\chi, K)$ equals

$\frac{m(\chi,Q,\mathfrak{p})}{(m(\chi,Q,\mathfrak{p}),[K(\chi)_{\mathfrak{P}}:Q(\chi)_{\mathfrak{p}}}]\overline{)}$

Note that $m(\chi, Q, \mathfrak{p})$ is equal to the index of the simple component $A(\chi,$ $ Q_{p}\rangle$

of $Q_{p}[G]$ which corresponds to $\chi$ , because

$A(\chi, Q)\otimes_{Q(\chi)}Q(\chi)_{\mathfrak{p}}\cong A(\chi, Q)\otimes_{Q(\chi)}Q_{p}(\chi)\cong A(\chi, Q_{p})$ .
If $\Omega$ is a finite extension field of $Q_{p}$ , the simple component $A(\chi, \Omega)$ of $\Omega[G]$

is:
$A(\chi, \Omega)\cong A(\chi, Q)\otimes_{Q(\chi)}\Omega(\chi)$

$\cong(A(\chi, Q)\otimes_{Q(X)}Q_{p}(\chi))\otimes_{Q_{p}(\chi)}\Omega(\chi)$

$\cong A(\chi, Q_{p})\otimes_{Q_{p}(\chi)}\Omega(\chi)$ .
In order to determine the Schur index $m(\chi, Q_{p})$ of $\chi$ with respect to $Q_{p}$

($i.e.$ , the index of $A(\chi,$ $Q_{p})$), it suffices to determine the l-part $m_{\iota}(\chi, Q_{p})$ of
$m(\chi, Q_{p})$ for every prime number 1. R. Brauer [2] and E. Witt [11] inde-
pendently reduced this question to the corresponding question for hyper-
elementary subgroups at $l$ of $G$ . Here we call a group $H$ a hyperelementary
group at the prime $l$ , if $H$ is a semi-direct product $\langle a\rangle B$ of an l-group $B$ and
a cyclic normal subgroup $\langle a\rangle$ whose order is not a multiple of $l$ .

THEOREM (Brauer-Witt). $ 1f\chi$ is an irreducible character of a group $G$ , if
$K$ is a field of characteristic $0$ , then for every prime 1 there exist a hyper-
elementary subgroup at 1 and an irreducible character $\xi$ of $H$ such that the
l-part of the Schur index of $\chi$ with respect to $K$ is equal to the Schur index of
$\xi$ with respect to $K(\chi)$ . $1f$ we take $K=Q$ and determine the character $\xi$ in this
case, the same character $\xi$ can be used for every field of characteristic $0$ .

By this Theorem, the l-part $m_{\iota}$ of the Schur index $m$ of $\chi$ with respect

to $Q$ is equal to the Schur index of $\xi$ with respect to $Q(\chi)$ , and for any prime
number $p$ , the l-part $m_{\iota}(\chi, Q_{p})$ of the index $m(\chi, Q_{p})$ of $A(\chi, Q_{p})$ is equal to
the index of $A(\xi, Q_{p}(\chi))$ . The index of $A(\xi, Q_{p}(\chi))$ is equal to

$-(\overline{m}(\xi^{-}Q_{p}\overline{),}[Q_{p}(,\chi\overline{):}Q_{p}\overline{(\xi)])}m(\underline{\xi}_{\frac{Q_{p}}{\xi}})$

where $m(\xi, Q_{p})$ is the index of $A(\xi, Q_{p})$ . As was mentioned before, the index
$m(\xi, Q_{p})$ of $A(\xi, Q_{p})$ equals the $\mathfrak{p}$-index of $A(\xi, Q)$ for any $\mathfrak{p}$ of $Q(\xi)$ that
divides $p$ . Therefore we simply need to compute the $\mathfrak{p}$-index of $A(\xi, Q)$ for
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every prime ideal $\mathfrak{p}$ of $Q(\xi)$ .
R. Brauer [1] and E. Witt [11] independently reduced the question of the

Schur indices of a hyperelementary group to the case of a group $R$ which
has a cyclic normal subgroup $S$ such that $R/S$ is an abelian group. Further,
they determined the factor sets of the corresponding simple algebras of $R$ .
(R. Brauer did not publish the proof.) Here we shall give a simple proof of
their results.

Let $H=\langle a\rangle B$ be a hyperelementary group at the prime [, where $B$ isan
l-Sylow subgroup of $H$ and $\langle a\rangle$ is a normal subgroup of $H$ whose order is
relatively prime to 1. Let $\xi$ be an irreducible character of $H$. It is known
that $\xi$ is monomial and the degree of $\xi$ is l-th power. For the proof of these
facts, see, for instance, Feit [6, 10.2 and 9.13] or Huppert [7, 18.4 and 17.10].

We see easily that every subgroup $N$ of $H$ whose index $(H:N)$ is l-th power,
necessarily contains the normal subgroup $\langle a\rangle$ . Consequently, if $\xi$ is induced
from a linear character of a subgroup $N$ of $H$, then $N$ contains the normal
subgroup $\langle a\rangle$ .

PROPOSITION 1. Let $H=\langle a\rangle B$ be a hyperelementary group (at 1) and $\xi$ an
irreducible character of H. Then we are able to find subgroups $F$ and $N$ of $H$

and a linear character $\psi$ of $N$ such that (i) $\xi$ is induced from $\psi,$
$i$ . $e.,$ $\xi=\psi^{H}$ ,

(ii) $ F\triangleright N\supset\langle a\rangle$ , (iii) for every $f\in F$, the character $\psi^{f}$ of $N$ defined by $\psi^{f}(n)$

$=\psi(fnf^{-1}),$ $n\in N$, is an algebraic conjugate of $\psi,$
$i$ . $e.,$ $\psi^{f}=\psi^{\tau(f)}$ for some

$\tau(f)\in \mathfrak{G}(Q(\psi)/Q)$ , (iv) $Q(\psi^{F})=Q(\xi)$ .
PROOF.2) Let $T$ be a minimal normal subgroup of $H$ such that i) there

exists a character $\theta$ of $T$ from which $\xi$ is induced, ii) for each $h\in H,$ $\theta^{h}=\theta^{\tau(h)}$

for some $\tau(h)\in \mathfrak{G}(Q(\theta)/Q)$ . Assume first that $\theta$ is a linear character of $T$.
Then, by setting $F=H,$ $T=N$ and $\psi=\theta$ , all the conditions of Proposition 1
are satisfied. Assume next that $\theta$ is non-linear. We note that a subgroup
of index $l$ of a hyperelementary group (at l) is a normal subgroup. From
the remarks before Proposition 1 it follows that $T$ is a hyperelementary group
(at 1) containing the normal subgroup $\langle a\rangle$ , and that there are a subgroup $S$

of $T$ and a character $\rho$ of $S$ such that $(T:S)=l$ and $\rho^{\tau}=\theta$ . As $S$ is normal
in $T$ and $\rho$ induces $\theta$ , it follows that $\theta$ vanishes outside $S$ . Let $U$ be the
intersection of all conjugates $hSh^{-1}(h\in H)$ of $S$ in $H$. Since $\langle a\rangle\subset S$ and
$\langle a\rangle\triangleleft H$, we have $\langle a\rangle\subset U$ . Thus $U\triangleleft H$ and $H/U$ is an l-group. Consequently
there exists a normal subgroup $Y$ of $H$ such that $U\subset Y\subset T\subset H$ and $(T:Y)$

$=l$ . Since for every $h\in H,$ $\theta^{h}$ is an algebraic conjugate of $\theta$ and $\theta$ vanishes
outside $S$ , it follows that $\theta$ vanishes outside $U$ , a fortiori outside Y. From
the equation

2) The following proof is substantially due to Solomon [9]. In Propositions 1-3,
the same assertions hold true by replacing $Q$ with any field $K$ of characteristic $0$ .
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$\frac{1}{|Y|}\sum_{Y\supset y}\theta(y)\theta(y^{-1})=\sum_{2\Rightarrow t}\theta(t)\theta(t^{-1})\overline{|}T^{l}\overline{|}\cdot=l$ ,

we see easily that there exists an irreducible character $\phi$ of $Y$ such that

$\theta|Y=\sum_{j=0}^{\iota-1}\phi^{xJ}$

where 1, $x,$ $\cdots$ , $x^{l-1}$ is a set of representatives for $T$ mod $Y$ and the characters
$\phi^{xj}$ of $Y$ are distinct from each other. Namely the inertial group of $\phi$ is $Y$

and the index of ramification of $\theta$ with respect to $Y$ is equal to 1. Thus $\phi$

induces $\theta$ and so $\phi$ induces $\xi$ , too. Let $E$ be the subgroup of all $h\in H$ such
that $\phi^{h}$ is algebraically conjugate to $\phi$ over $Q$ . By minimality of $T,$ $E$ is a
proper subgroup of $H$ which contains $\langle a\rangle$ . From the same argument as in
the proof of [13, Theorem 2] we conclude that $Q(\phi^{E})=Q(\phi^{H})=Q(\xi)$ . Thus
we have proved that if $\theta$ is non-linear, there exist a proper subgroup $E(\supset\langle a\rangle)$

of $H$ and a character $\eta(=\phi^{B})$ of $E$ such that $\eta$ induces $\xi$ and that $Q(\eta)=Q(\xi)$ .
Using these arguments successively, we are able to find subgroups $F$ and $N$

and a linear character $\psi$ of $N$ satisfying the conditions $(i)-(iv)$ of Prop-

osition 1.
In the next two propositions we use the same notation as in Proposition 1.
PROPOSITION2. If the simple component $A(\psi^{F}, Q)$ of $Q[F]$ is isomorphic

to $M_{r}(D)$ for a central division algebra $D$ over $Q(\psi^{F})$ , the simple component
$A(\xi, Q)$ of $Q[H]$ is isomorphic to $M_{rs}(D)$ , where $s=(H:F)$ .

PROOF. This is an immediate consequence of [13, Theorem 1].

PROPOSITION 3. Let $Nf_{1},$ $\cdots,$ $Nf_{t}(f_{1}=1)$ be all the distinct cosets of $N$ in
$F$ and $f_{i}f_{j}=n_{tj}f_{\nu(i,j)},$ $n_{ij}\in N$. Set $\tau(f_{i})=\tau_{i}$ and $\beta(\tau_{i}, \tau_{j})=\psi(n_{ij}),$ $1\leqq i,$ $j\leqq t$ .
Then we have (i) $F/N\cong\{\tau_{1}, , \tau_{t}\}\cong \mathfrak{G}(Q(\psi)/Q(\psi^{F}))$ , (ii) $\beta$ is a factor set of the
Galois group $\mathfrak{G}(Q(\psi)/Q(\psi^{F}))$ consisting of roots of unity, (iii) the simple algebra
$A(\psi^{F}, Q)$ is isomorphic to the crossed product

$(\beta(\tau_{i}, \tau_{j}),$ $Q(\psi)/Q(\psi^{F}))=\sum_{i=1}^{f}Q(\psi)u_{\tau_{i}}$ (direct sum)

whose defining relations are $u_{\tau_{i}}u_{\tau_{j}}=\beta(\tau_{t}, \tau_{j})u_{\tau_{i^{f_{\dot{f}}}}},$ $u_{\tau_{i}}xu_{\tau_{i}}^{-1}=x^{\tau_{i}},$ $x\in Q(\psi)$ .
PROOF. This follows at once from [13, Theorem 2].

Thus we only need to compute the $\mathfrak{p}$-index of the crossed product $(\beta(\tau_{i}, \tau_{j})$ ,
$Q(\psi)/Q(\psi^{F}))$ at every prime ideal $\mathfrak{p}$ of $Q(\psi^{F})$ . Note that $Q(\psi)$ is a cyclotomic

field because $\psi$ is a linear character of $N$. Let $\mathfrak{P}$ be a prime ideal of $Q(\psi)$

which divides $\mathfrak{p}$ . Since $Q(\psi)/Q$ is abelian, we denote by Gp the decomposition
group of $\mathfrak{P}$ over $\mathfrak{p}$ and write $Q(\psi)_{\mathfrak{P}}=Q(\psi))$ so that $\mathfrak{G}_{\mathfrak{p}}=\mathfrak{G}(Q(\psi)^{\mathfrak{p}}/Q(\psi^{F})_{\mathfrak{p}})$ . Then

$A(\psi^{F}, Q_{p})\cong(\beta(\tau, \tau^{\prime}),$ $Q(\psi)/Q(\psi^{F}))\otimes_{\theta^{(\emptyset^{F})}}Q(\psi^{F})_{\mathfrak{p}}$

$\sim(\beta(\tau, \tau^{\prime})_{\mathfrak{g}_{\mathfrak{p}}},$ $Q(\psi)^{\mathfrak{p}}/Q(\psi^{F})_{\mathfrak{p}})$ , $\mathfrak{p}|p$ ,
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where $\beta(\tau. \tau^{\prime})_{G_{\mathfrak{p}}}$ denotes the factor set of $\mathfrak{G}_{\mathfrak{p}}$ with $\tau,$ $\tau^{\prime}\in \mathfrak{G}_{\mathfrak{p}}\subset \mathfrak{G}(Q(\psi)/Q(\psi^{F}))$ .

\S 3. The index of the Kreisalgebra.

Let us consider a $\mathfrak{p}$-adic ‘ Kreisalgebra ‘

$\mathfrak{A}=(\beta(\sigma, \tau),$ $K/k$) $=\sum_{\sigma}Ku_{\sigma}$

with the following properties:
i) $K$ is a cyclotomic field $Q_{p}(\zeta_{n})$ over the $p$-adic number field $Q_{p}$ , where

$\zeta_{n}$ is a primitive n-th root of unity for a natural number $n$ ,

ii) the subfield $k$ of $K/Q_{p}$ is the center of $\mathfrak{A}$ and $\mathfrak{p}$ is the prime ideal of
the integer ring in $k$ that divides $p$ ,

iii) $\beta(\sigma, \tau)$ is a factor set consisting of roots of unity,
iv) the defining relations of the crossed product $\mathfrak{A}$ are

$u_{\sigma}\lambda=\lambda^{\sigma}u_{\sigma}$ $(\lambda\in K)$ , $u_{\sigma}u_{\tau}=\beta(\sigma, \tau)u_{\sigma\tau}$ ,

v) $\sigma,$ $\tau$ are automorphisms of $K/k$ .
In the preceding paragraph the problem of determining the Schur index was
reduced to the case of the above Kreisalgebra. Now we shall calculate its
index explicitly. Recall that the index of the crossed product $(\beta(\sigma, \tau),$ $K/k$)

is equal to the order of the 2-cocycle $\beta(\sigma, \tau)$ in the second cohomology group
$H^{2}(\mathfrak{G}(K/k), K ’)$ .

Let $K=Q_{p}(\zeta_{n}),$ $n=p^{h}t,$ $(p, t)=1,$ $N_{k/Qp}(\mathfrak{p})=q$ , where $N_{k1Q_{p}}$ is the norm of
$k$ over $Q_{p}$ . In the case $h=0$ , the index of the simple algebra $\mathfrak{A}$ equals one,
because the factor set $\beta(\sigma, \tau)$ consists of units and the ramification index of
$K/k$ equals one. So, throughout this paragraph, we assume that $h\geqq 1$ . Let
the ramification index of $K/k$ be equal to $e$ and the residue class degree of
$K/k$ be equal to $f$. Denote by $U$ the (finite) group consisting of all the roots
of unity contained in $K$. The $p$-Sylow subgroup of $U$ is generated by a
primitive $p^{h}$-th root of unity $\zeta_{p^{h}}$ , and the subgroup of $U$ consisting of all the
roots of unity whose orders are relatively prime to $p$ , is generated by a
primitive $(q^{f}-1)$ -th root of unity $\zeta_{q^{f-1}}$ . Then

$ U=\langle\zeta_{q^{f-1}}\rangle\times\langle\zeta_{p^{h}}\rangle$ (direct product).

For every $\sigma,$ $\tau\in \mathfrak{G}(K/k)$ , let
$\beta(\sigma, \tau)=\alpha(\sigma, \tau)\gamma(\sigma, \tau)$ ,

$\alpha(\sigma, \tau)\in\langle\zeta_{q^{f-1}}\rangle$ , $\gamma(\sigma, \tau)\in\langle\zeta_{p^{h}}\rangle$ .
Then we have

$\mathfrak{A}=(\beta, K/k)\sim(\alpha, K/k)\otimes_{k}(\gamma, K/k)$ .
Now assume that $\rho$ is an odd prime number. The multiplicative group

$Z$ modx $p^{h}$ of integers modulo $p^{h}$ is cyclic, and the inertia group $\mathfrak{T}$ of $K/k$ is
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isomorphic to a subgroup of $Z$ modx $p^{h}$ . Fix a generator $\omega$ of the cyclic group
$\mathfrak{T}:\mathfrak{T}=\langle\omega\rangle$ . Denote by $\eta$ a Frobenius automorphism of $K/k$ . Then $\mathfrak{G}(K/k)$

$\cong\langle\omega, \eta\rangle$ .
THEOREM 3. Let $p$ be an odd prime number. Let $c$ be the index of tame

ramification of $\mathfrak{p}$ over $p$ , namely, $p=\mathfrak{p}^{cp\lambda},$ $(c, p)=1,$ $\mathfrak{p}\subset k$ , for a certain integer
$\lambda$ . Then the number

$\delta=(\alpha(\omega, \eta)/\alpha(\eta, \omega))^{\overline{q}-\overline{1}}\alpha(\omega, \omega)\alpha(\omega^{2}, \omega)\cdots\alpha(\omega^{e- 1}, \omega)$

belongs to the field $k$ , so that we can write it as $\delta=\zeta_{q-1}^{v}$ for a certain integer $v$ .
It turns out that the index of the crossed product $(\beta(\sigma, \tau),$ $K/k$) is equal to

$(,(p-1)/c)^{-}\frac{(}{v}p-1)/c$ .

PROOF. First we shall calculate the order of the 2-cocycle $\alpha(\sigma, \tau)$ in the
second cohomology group $H^{2}(\mathfrak{G}(K/k), K^{\times})$ . We fix an unramified extension $\Omega$

of $k$ such that i) $\Omega$ contains a $(q-1)$ -th root $q-$ of $\alpha(\sigma, \tau)$ for every
$\sigma,$ $\tau\in \mathfrak{G}(K/k)$ , ii) $ef|z=[\Omega : k]$ . As unramified extensions are uniquely deter-
mined by their degrees, $\Omega=k(\zeta_{q^{z-1}})$ and $[\Omega\cap K:k]=f$. The composition
field $\tilde{K}=\Omega K=Q_{p}(\zeta_{p^{h}}, \zeta_{q^{z-1}})$ of $\Omega$ and $K$ is an abelian extension of $k$ and
$[\tilde{K};k]=ze$ . $\tilde{K}/\Omega$ is totally ramified of degree $e$ and

$\tilde{K}/K$ is unramified of degree $z/f$. Set $\mathfrak{G}(\tilde{K}/k)=\tilde{\mathfrak{G}},$ $\mathfrak{G}(\tilde{K}/K)=\mathfrak{H}$, and $\mathfrak{G}(\tilde{K}/\Omega)=\mathfrak{H}_{1}$ .
$\mathfrak{H}$ is a cyclic group of order $z/f$. The inertia group of $\tilde{K}/k$ is $\mathfrak{H}_{1}$ , and the
inertia group of $K/k$ is isomorphic to $\mathfrak{H}_{1}\mathfrak{H}/\mathfrak{H}\cong \mathfrak{H}_{1}/\mathfrak{H}_{1}\cap \mathfrak{H}\cong \mathfrak{H}_{1}$ . Take a genera-
tor $\theta$ of $\mathfrak{H}_{1}$ such that the restriction of $\theta$ on the field $K$ induces the auto-
morphism $\omega,$

$i$ . $e.,$ $\theta \mathfrak{H}=\omega$ . Also we fix a Frobenius automorphism $\varphi$ of $\tilde{K}/k$

such that the restriction of $\varphi$ on $K$ induces the Frobenius automorphism $\eta$ of
$K/k$ . Let $\mathfrak{H}_{2}$ be the cyclic subgroup of $\mathfrak{H}$ of order $e$ . Then $\mathfrak{H}_{1}\cap \mathfrak{H}_{2}=1$ because
$\mathfrak{H}_{1}\cap \mathfrak{H}=1$ . Since the factor groups $\tilde{\mathfrak{G}}/\mathfrak{H}_{1}$ and $\tilde{\mathfrak{G}}/\mathfrak{H}_{2}$ are both of order $z,$ $\varphi^{z}$ is
in $\mathfrak{H}_{1}\cap \mathfrak{H}_{2}=1$ . Hence $\varphi^{z}=1$ . Note that $z$ is the residue class degree of $\tilde{K}/k$ .
Therefore $\tilde{\mathfrak{G}}$ is a split extension of $\mathfrak{H}_{1}$ by $\langle\varphi\rangle:\tilde{\mathfrak{G}}=\mathfrak{H}_{1}\times\langle\varphi\rangle=\langle\theta\rangle\times\langle\varphi\rangle$ . Let
$L$ be the subfield of $\tilde{K}/k$ which corresponds to the subgroup $\langle\varphi\rangle$ of $\tilde{\mathfrak{G}}$ in the
sense of Galois theory: $\mathfrak{G}(\tilde{K}/L)=\langle\varphi\rangle$ . Then $L$ is a totally ramified extension
of $k$ of degree $e$ and $L\Omega=\tilde{K}$ and $L\cap\Omega=k$ .
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Denote by $\tilde{\alpha}(\tilde{\sigma},\tilde{\tau})=(Inf\alpha)(\tilde{\sigma},\tilde{\tau}),\tilde{\sigma},\tilde{\tau}\in \mathfrak{G}(\tilde{K}/k)$ , the image of the cocycle
$\alpha(\sigma, \tau)$ by the inflation map: $H^{2}(\mathfrak{G}(K/k), K^{\times})\rightarrow H^{2}(\mathfrak{G}(\tilde{K}/k),\tilde{K}^{\times})$ . Since the in-
flation map is injective, the order of the 2-cocycle $\alpha(\sigma, \tau)$ in $H^{2}(\mathfrak{G}(K/k), K^{\times})$

is equal to that of the 2-cocycle $\tilde{\alpha}(\tilde{\sigma},\tilde{\tau})$ in $H^{2}(\mathfrak{G}(\tilde{K}/k),\tilde{K}^{\times})$ . So we are going

to calculate the index of the crossed product

$\tilde{\mathfrak{A}}=(\tilde{\alpha}(\tilde{\sigma},\tilde{\tau}),\tilde{K}/k)=\sum_{\sim ,\tilde{\sigma}_{-}^{-\mathfrak{G}}}\tilde{K}u_{\tilde{\sigma}}$ ,

$u_{\tilde{\sigma}}u_{\tilde{\tau}}=\tilde{\alpha}(\tilde{\sigma},\tilde{\tau})u_{\tilde{\sigma}\tilde{\tau}}$ , $u_{\tilde{\sigma}}\lambda=\lambda^{\tilde{\sigma}}u_{\tilde{d}}$ $(\lambda\in\tilde{K})$ ,

whose factor set is $\tilde{\alpha}(\tilde{\sigma},\tilde{\tau})$ . As $\tilde{\mathfrak{G}}=\langle\theta\rangle\times\langle\varphi\rangle$ , it follows that

$\tilde{\mathfrak{A}}=\sum_{1\leqq\nu\leqq e}\tilde{K}u_{\theta}^{\nu}u_{\Psi}^{\mu}$ .
$1\leqq\mu\leqq z$

Set
$\gamma=^{q-1_{\sqrt{\alpha(\theta,\varphi)/\alpha(\varphi,\theta)}}}$ .

Since $\theta \mathfrak{H}=\omega$ and $\varphi \mathfrak{H}=\eta$ , we have

$\gamma=^{q-1}\sqrt{\alpha(\omega,\eta)/\alpha(\eta,\omega)}$ .
From the construction of $\Omega$ it follows that $\gamma\in\langle\zeta_{q^{z-1}}\rangle\subset\Omega$ , and so $\gamma u_{\theta}=u_{\theta}\gamma$ .
We get

$u_{\theta}u_{\varphi}=\frac{\tilde{\alpha}(\theta}{\tilde{\alpha}(\varphi’}\varphi\theta^{\frac{)}{)}u_{\varphi}u_{\theta}}=\gamma^{q-1}u_{\varphi}u_{\theta}$ , $(\gamma u_{\theta})u_{\varphi}=\gamma^{q}u_{\varphi}u_{\theta}=u_{\varphi}(\gamma u_{\theta})$ .

From the fact that $r^{u_{\theta}}$ commutes with $u_{\varphi}$ and each element of $\Omega$ (resp. $L$)

commutes with $\gamma u_{\theta}$ (resp. $u_{\varphi}$), it follows that

$\tilde{\mathfrak{A}}=\sum_{<1\leqq\nu\mapsto e_{z}}\Omega L(\gamma u_{\theta})^{\nu}u_{\varphi}^{\mu}=\{ \sum_{1\leqq\nu\leqq e,\mu\Rightarrow}L(\gamma u_{\theta})^{\nu}\}$ $\{ \sum_{1\leqq\mu\leqq z}\Omega u_{\varphi}^{\mu}\}$

$\cong((\gamma u_{\theta})^{e}, L/k, \theta)\otimes_{k}(u_{\varphi}^{z}, \Omega/k, \varphi)\sim(\gamma^{e}u_{\theta}^{e}, L/k, \theta)$ .
In the above, $(u_{\varphi}^{z}, \Omega/k, \varphi)\sim 1$ , because $u_{\varphi}^{z}=\tilde{\alpha}(\varphi, \varphi)\tilde{\alpha}(\varphi^{2}, \varphi)\cdots\tilde{\alpha}(\varphi^{z-1}, \varphi)$ is a root
of unity and $\Omega/k$ is unramified. We see easily that

$\delta=(\gamma u_{\theta})^{e}=\gamma^{e}u_{\theta}^{e}$

$=\gamma^{e}\overline{\alpha}(\theta, \theta)\tilde{\alpha}(\theta^{2}, \theta)\cdots$ a $(\theta^{e-1}, \theta)$

$=(\alpha(\omega, \eta)/\alpha(\eta, \omega))^{\frac{e}{q-1}}\alpha(\omega, \omega)\alpha(\omega^{2}, \omega)\cdots\alpha(\omega^{e-1}, \omega)$ .
Since $\delta$ is in $\tilde{K}$ and commutes with both $u_{\theta}$ and $u_{\varphi},$

$\delta$ is an element of the
ground field $k$ . As $\delta$ is a root of unity whose order is relatively prime to
$p,$ $\delta$ is expressed as $\delta=\zeta_{q-1}^{v}$ for a certain integer $v$ .

Now we are going to calculate the index of the above cyclic algebra

$(\delta, L/k, \theta)$ .
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We know that the index is equal to the order of the norm residue symbol

$(\delta, L/k)=(\underline{\delta,}\mathfrak{p}L\underline{/}k_{-})$ , $\mathfrak{p}\subset k$ .

By the local class field theory, the Galois group of $L/k$ is isomorphic to the
factor group $k^{x}/N_{L/k}(L^{x})$ . Here, $N_{L/k}$ is the norm of $L$ over $k$ . So the order
of $(\delta, L/k)$ is the smallest positive integer $m$ such that $\delta^{m}$ is in $N_{L/k}(L^{x})$ .
Recall that $L$ is a totally ramified extension of degree $e$ and that $e$ is also
the ramification index of $K/k$ . Since $K=Q_{p}(\zeta_{n})\supset k,$ $n=p^{h}\cdot t,$ $h\geqq 1,$ $(p, t)=1$ ,
$p=\mathfrak{p}^{cp^{\lambda}},$ $(c, p)=1,$ $k\supset \mathfrak{p}$, the ramification index $e$ of $K/k$ equals $p^{h-1-\lambda}(p-1)/c$ .
Let $\pi$ be a prime element of $L$ . It is well known that every element $y$ of
$L^{x}$ has a unique expression

$y=\pi^{s}\zeta_{q-1}^{r}\rho,$ $s\in Z,$ $rmod q-1,$ $\rho$ : principal unit of $L$ .
Therefore we have

$N_{L/k}(L^{\times})=$ { $N_{L/k}(\pi)^{s}\zeta_{q^{r}-1}^{e}N_{L/k}(\rho);s\in Z,$ $rmod q-1,$ $\rho$ : principal unit}.

As $N_{k/Q_{p}}(\mathfrak{p})=q$ is a p-power, it follows that $(q-1, p)=1$ and $p-1|q-1$ . Con-
sequently, we have

$N_{L/k}(L^{\times})=\{N_{L/k}(\pi)^{s}\zeta_{q-1}^{r^{t}(p-1)/c}N_{L/k}(\rho)$ ;

$s\in Z,$ $ 1\leqq r^{\prime}\leqq(q-1)/p-1c’\rho$ : principal unit}.

In the above, $N_{L/k}(\rho)$ are principal units of $k$ . If $\delta^{x}=\zeta_{q-1}^{vx}$ is in $N_{L/k}(L^{\times})$ for
a certain positive integer $x$ , then

$\zeta_{q-1}^{vx}=N_{L/k}(\pi)^{s}\zeta_{q-1}^{r^{\prime}(p-1)/c}N_{L/k}(\rho)$

for some $s,$
$r^{\prime}$ and $\rho$ . From this we see easily that the smallest positive

integer $m$ such that $\delta^{m}$ is in $N_{L/k}(L^{x})$ , is equal to

$(p-1)/c$
$\overline{(v},$ $(p-1)/c)^{-}$

Next we shall prove that the order of the 2-cocycle $\gamma(\sigma, \tau)$ in the second
cohomology group $H^{2}(\mathfrak{G}(K/k), K^{x})$ is equal to one. Denote by $\gamma^{\prime}(\iota, \kappa)=$

(Ver $\gamma$) $(\iota, \kappa),$
$\iota,$ $\kappa\in \mathfrak{G}(K/Q_{p})$ , the image of the cocycle $\gamma(\sigma, \tau)$ by the transfer

\langle Verlagerung): $H^{2}(\mathfrak{G}(K/k), K^{\times})\rightarrow H^{2}(\mathfrak{G}(K/Q_{p}), K^{x})$ . Since the transfer is an
injective homomorphism, the order of the 2-cocycle $\gamma(\sigma, \tau)$ in $H^{2}(\mathfrak{G}(K/k), K^{x})$

is equal to that of the 2-cocycle $\gamma^{\prime}(\iota, \kappa)$ in $H^{2}(\mathfrak{G}(K/Q_{p}), K^{x})$ . From the defi-
nition of the transfer, it follows that $\gamma^{\prime}(\iota, \kappa),$ $\iota,$ $\kappa\in \mathfrak{G}(K/Q_{p})$ , are roots of unity
whose orders are $p$-powers because $\gamma(\sigma, \tau),$ $\sigma,$ $\tau\in \mathfrak{G}(K/k)$ have this property.
We must prove that the index of the crossed product:

$(\gamma^{\prime}(\iota, \kappa),$ $K/Q_{p}$)
$=_{e_{-}}\sum_{-\alpha(K/Q_{p})}Ku_{e}$

,
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$u_{c}u_{\kappa}=\gamma^{\prime}(\iota, \kappa)u_{\iota\kappa}$ , $u,xu_{\iota}^{-1}=x^{\iota}$ , $x\in K$ ,

is equal to one. The cyclotomic field $K=Q_{p}(\zeta_{n}),$ $n=p^{h}\iota,$ $(p, t)=1$ is the
composite field $ L\Omega$ of $L=Q_{p}(\zeta_{p^{\hslash}})$ and of the maximal unramified subfield $\Omega$

in $K/Q_{p}$ . $L/Q_{p}$ is totally ramified and $L\cap\Omega=Q_{p}$ . $L/Q_{p}$ is cyclic because $p$

is an odd prime number. Of course, $\Omega/Q_{p}$ is cyclic. Set

$\mathfrak{G}(\Omega/Q_{p})\cong \mathfrak{G}(K/L)=\langle\varphi\rangle$ ,

$\mathfrak{G}(L/Q_{p})\cong \mathfrak{G}(K/\Omega)=\langle\theta\rangle$ .
Then we have

$\mathfrak{G}(K/Q_{p})=\langle\varphi\rangle\times\langle\theta\rangle$ .
For any $\iota,$ $\kappa\in \mathfrak{G}(K/Q_{p}),$ $\gamma^{\prime}(\iota, \kappa)$ belongs to the set $T=\{\zeta_{p^{h}}^{\nu} ; 0\leqq\nu\leqq p^{h}-1\}$ . If
$\zeta_{p^{\hslash}}^{\theta}=\zeta_{p^{h}}^{r}$ , then $r$ is a primitive root $mod p^{h}$ , i. e., \langle rmod $ p^{h}\rangle$ $=Zmod^{x}p^{h}$ .
We check easily that $T^{r-1}=T$ . Set

$\gamma^{\prime}(\varphi, \theta)/\gamma^{\prime}(\theta, \varphi)=\rho^{r-1}$ , $\rho\in T$ .
Then we have

$u_{\varphi}u_{\theta}=(\gamma^{\prime}(\varphi, \theta)/\gamma^{\prime}(\theta, \varphi))u_{\theta}u_{\varphi}=\rho^{r- 1}u_{\theta}u_{\varphi}$ ,

$(\rho u_{\varphi})u_{\theta}=\rho^{r}u_{\theta}u_{\varphi}=u_{\theta}(\rho u_{\varphi})$ .
Since $\rho u_{\varphi}$ commutes with $u_{\theta}$ and $u_{\theta}$ (resp. $\rho u_{\varphi}$) commutes with $eachelement\rightarrow$

of $\Omega$ (resp. $L$), it follows that

$(\gamma^{\prime}(\iota, \kappa),$ $K/Q_{p}$)
$=\sum_{\in \mathfrak{G}(K/Q_{p})}Ku_{\iota}$

$=\sum_{1\leqq\nu\leqq p^{h-1}(p-1).1\leqq\mu\leqq f^{\prime}}L\Omega u_{\theta}^{\nu}(\rho u_{\varphi})^{\mu}$

$=(\sum_{\nu}Lu_{\theta}^{\nu})(\sum_{\mu}\Omega(\rho u_{\varphi})^{\mu})$

$\cong(\epsilon_{1}, L/Q_{p}, \theta)\otimes_{Q_{p}}(\epsilon_{2}, \Omega/Q_{p}, \varphi)\sim(\epsilon_{1}, L/Q_{p}, \theta)$ .
Here, $f^{\gamma}=[\Omega:Q_{p}]$ ,

$\epsilon_{1}=u_{\theta^{h-1(p-1)}}^{p}=\gamma^{\prime}(\theta, \theta)\gamma^{\prime}(\theta^{2}, \theta)\ldots\gamma^{\prime}(\theta^{p^{h}-1(p- 1)-1}, \theta)$ ,

$\epsilon_{2}=(\rho u_{\varphi})^{f^{\prime}}=\rho^{f}’\gamma^{\prime}(\varphi, \varphi)\gamma^{\prime}(\varphi^{2}, \varphi)\ldots\gamma^{\prime}(\varphi^{f-1}, \varphi)$ , $(\rho u_{\varphi}=u_{\varphi}\rho)$ .
Since $T\cap Q_{p}=\{1\}$ and $\epsilon_{1}\in T_{\cap}Q_{p}$ , we conclude that $\epsilon_{1}=1$ and $(\epsilon_{1}, L/Q_{p}, \theta)\sim 1$ .
This completes the proof of Theorem 3.

\S 4. The proof of Theorem 1.

Let $K$ be a field of characteristic $0$ . Let $B$ and $C$ be simple algebras
over $K$. If $L$ (resp. $M$) is the center of $B$ (resp. $C$ ), both $L$ and $M$ contain $K$.
We see easily that the tensor product $B\otimes_{K}C$ of $B$ and $C$ over $K$ is isomorphic
to $[L\cap M:K]$ copies of the central simple algebra
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$(B\otimes_{L}LM)\otimes_{LM}(C\otimes_{M}LM)$

over $LM$. If $L=M=K,$ $B\otimes_{K}C$ is a central simple algebra over $K$. Let $G_{1}$

and $G_{2}$ be finite groups and

$K[G_{1}]=B_{1}\oplus\cdots\oplus B_{s}$ , $K[G_{2}]=C_{1}\oplus\cdots\oplus C_{t}$ ,

where the $B_{i},$ $C_{j}$ are simple algebras over $K$. Then we have

$K[G_{1}\times G_{2}]\cong K[G_{1}]\otimes_{K}K[G_{2}]\cong\sum_{i.j}B_{i}\otimes_{K}C_{j}$ (direct sum).

By the above remark, each $B_{i}\otimes_{K}C_{j}$ is isomorphic to some copies of a simple
algebra over $K$.

LEMMA. Let $L$ be a finite extension field of $K$ (possibly $L=K$). Denote
by $S_{K}(L)$ the subset of the Brauer group $Br(L)$ of $L$ , consisting of those classes
that contain simple components of group algebras $K[G]$ over K. $1fS_{K}(L)$ is
non-empty, then it is a subgroup of $Br(L)$ .

REMARK. If $L=K$, then $S_{K}(K)$ is non-empty, because $K[G]\cong K$ for $G=\{1\}$

and so the identity of $Br(K)$ belongs to $S_{K}(K)$ .
PROOF. Let $A_{1}$ and $A_{2}$ be central simple algebras over $L$ . If $A_{i}(i=1,2)$

is similar to a simple component of some group algebra $K[G_{i}]$ over $K$, the
preceding arguments show that $A_{1}\otimes_{L}A_{2}$ is similar to a simple component of
$K[G_{1}\times G_{2}]$ . In fact, $[L:K]$ copies of a central simple algebra over $L$ which
is similar to $A_{1}\otimes_{L}A_{2}$ are contained in $K[G_{1}\times G_{2}]$ as simple components. Let
$G$ be a finite group and $B$ a simple component of $K[G]$ whose center is $L$ .
Denote by $U$ an absolutely irreducible (matrix) representation of $G$ which
corresponds to $B$ , and by $\chi$ the character of $U$ . Set

$\tilde{U}(g)={}^{t}U(g^{-1})$ , $g\in G$ .
Then $O$ is an absolutely irreducible representation of $G$ whose character $\tilde{\chi}$ is
given by $\tilde{\chi}(g)=x(g^{-1})$ so that $K(\tilde{\chi})=K(\chi)\cong L$ . $B$ is isomorphic to the en-
veloping algebra $env_{K}(U)=\{\sum_{g-G}\alpha_{g}U(g);\alpha_{g}\in K\}$ of $U$ over $K$ whose center

is isomorphic to $K(\chi)$ . We see easily that by the one-to-one correspondence $\Phi$

between $env_{K}(U)$ and $env_{K}(\tilde{U})$ defined by $\Phi(U(g))=\tilde{U}(g^{-1})(g\in G),$ $env_{K}(U)$

is anti-isomorphic to $env_{K}(\tilde{U})$ . Therefore, the inverse of the class $\{B\}$

$=\{env_{K}(U)\}$ in $Br(L)$ belongs to $S_{K}(L)$ . This completes the proof of Lemma.
Now we are ready to prove Theorem 1 and Theorem 2. In the following

we shall use the same notation and assumption as in Theorems 1 and 2.
PROOF OF THEOREM 1. Let $G$ be a finite group and $A$ a simple component

of $Q_{p}[G]$ . Let $\chi$ be an absolutely irreducible character of $G$ which cor-
responds to $A$ . Then the center of $A$ is isomorphic to $Q_{p}(\chi)$ , which is clearly
a subfield of $\Xi$ such that $[Q_{p}(\chi):Q_{p}]$ is finite. For each prime number $l$,
there exist a hyperelementary subgroup $H$ of $G$ and a character $\xi$ of $H$ such
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that the l-part of the index of $A=A(\chi, Q_{p})$ is equal to the index of the
simple component $A(\xi, Q_{p}(\chi))$ of $Q_{p}(\chi)[H]$ corresponding to $\xi$ (cf. \S 2). But
$A(\xi, Q_{p}(\chi))$ is isomorphic to $A(\xi, Q_{p})\otimes_{Q_{p}(\xi)}Q_{p}(\xi, \chi)$ , and so the Hasse invariant
of $A(\xi, Q_{p}(\chi))$ is equal to

$h(\xi, Q_{p})\cdot[Q_{p}(\xi, \chi):Q_{p}(\xi)]$ $(mod Z)$

where $h(\xi, Q_{p})$ is the Hasse invariant of $A(\xi, Q_{p})$ . From Propositions 1–3,
it follows that $A(\xi, Q_{p})$ is similar to a Kreisalgebra $\mathfrak{A}$ whose center is $Q_{p}(\xi)$ .
If $c$ is the index of tame ramification of $Q_{p}(\xi)/Q_{p}$ , it follows from Theorem

3 that the Hasse invariant of $\mathfrak{A}$ is of the form $z^{\prime}/\frac{p-1}{c}$ for some $z^{\prime}\in Z$. If
$b$ is the index of tame ramiflcation of $Q_{p}(\chi)/Q_{p}$ , and $b_{1}$ (resp. $b_{2}$) is that of
$(Q_{p}(\xi)\cap Q_{p}(\chi))/Q_{p}$ (resp. of $Q_{p}(\chi)/(Q_{p}(\xi)\cap Q_{p}(\chi))$), then $b=b_{1}b_{2}$ and $b_{1}|c$ . Con-
sequently,

$h(\xi, Q_{p})\equiv z_{1}/\frac{p-1}{b_{1}}(mod Z)$ , $(z_{1}=z^{\prime}\frac{c}{b_{1}}\in Z)$

and the Hasse invariant of $A(\xi, Q_{p}(\chi))$ is of the form

$z_{2}/\frac{p-1}{b}(mod Z)$ , $(z_{2}=z_{1}\frac{[Q_{p}(\xi,\chi):Q_{p}(\xi)]}{b_{2}}\in Z)$ .

Hence the index of $A(\xi, Q_{p}(\chi))$ divides $\frac{p-1}{b}$ and so the l-part of the index

of $A=A(\chi, Q_{p})$ divides $\frac{p-1}{b}$ As 1 is an arbitrary prime, the index of

$A=A(\chi, Q_{p})$ divides $\frac{p-1}{b}$ Therefore the Hasse invariant of $A$ is of the
form

$z/\frac{p-1}{b}(mod Z)$ , for some $z\in Z$ .
Conversely, let $k$ be a subfield of $\Xi$ of finite degree over $Q_{p}$ , and let the

index of tame ramification of $k/Q_{p}$ be equal to $b,$ $b|(p-1)$ . We must prove
that for every $z\in Z$, the central division algebra over $k$ whose Hasse
invariant is $z/\frac{p-1}{b}(mod Z)$ , is similar to a simple component of some group
algebra $Q_{p}[G]$ . By virtue of Lemma, we only need to prove that a central

$p-1$simple algebra over $k$ whose index is –, is similar to a simple component
$b$

of some $Q_{p}[G]$ . When $k$ is contained in a cyclotomic field $Q_{p}(\zeta_{n}),$ $n=p^{\hslash}t$,
$(p, t)=1$ , we may assume that $h\geqq 1$ . Let $\mathfrak{p}$ be the prime ideal of $k$ dividing
$p$ . Set $N_{k/Q_{p}}(\mathfrak{p})=q$ . Let $e$ be the ramification index of $Q_{p}(\zeta_{n})/k$ and $f$ be the
residue class degree of $Q_{p}(\zeta_{n})/k$ . Note that the index of tame ramification
of $Q_{p}(\zeta_{n})/k$ is equal to $(p-1)/b$ . Set $a=ef$. We fix a primitive $(q^{a}-1)$ -th
root of unity $\zeta_{q^{a-1}}$ and a primitive $p^{h}$-th root of unity $\zeta_{p^{h}}$ , and set $\zeta=\zeta_{q^{a-1}}\zeta_{p^{h}}$ .
Consider the field $\tilde{K}=Q_{p}(\zeta)=k(\zeta_{q^{\alpha-1}}, \zeta_{p^{h}})$ . Note that $\zeta_{t}$ is a power of $\zeta_{qJ- 1}$
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which is a power of $\zeta_{q^{a-1}}$ . By the same argument as in the proof of Theorem
3, we conclude that there exist subfields $\Omega=k(\zeta_{q^{\alpha-1}})$ and $L$ of $\tilde{K}/k$ such that
$\Omega/k$ is unramified of degree $a$ and $L/k$ is totally ramified of degree $e$ and
$\tilde{K}=\Omega L$ . Let $\mathfrak{G}(\tilde{K}/k)=\langle\theta\rangle\times\langle\varphi\rangle,$ $\mathfrak{G}(\tilde{K}/\Omega)=\langle\theta\rangle$ and $\mathfrak{G}(\tilde{K}/L)=\langle\varphi\rangle$ . Consider
the following crossed product $\mathfrak{A}$ :

$\mathfrak{A}=\sum_{1\leqq\nu\leqq e,1\leqq\mu\leqq a}\tilde{K}u_{\theta}^{\nu}u_{\varphi}^{\mu}$ (direct sum),

$u_{\theta}x=x^{\theta}u_{\theta}$ , $u_{\varphi}x=x^{\varphi}u_{\varphi}$
$(x\in\tilde{K})$ ,

$u_{\theta}u_{\varphi}=u_{\varphi}u_{\theta}$ , $u_{\theta}^{e}=\zeta_{q- 1}=\zeta^{p^{h}(q^{\alpha}- 1)/(q-1)}$ , $u_{\varphi}^{a}=1$ .
We see easily that

$\mathfrak{A}=\sum_{1\leqq\nu\leqq e,1\leqq\mu\leqq a}L\Omega u_{\theta}^{\nu}u_{\varphi}^{\mu}$

$=(L\cdot 1+Lu_{\theta}+\cdots+Lu_{\theta}^{e-1})\cdot(\Omega\cdot 1+\Omega u_{\varphi}+ +\Omega u_{\varphi}^{a-1})$

$\cong(\zeta_{q- 1}, L/k, \theta)\otimes_{k}(1,$ $\Omega/k,$ (0) $\sim(\zeta_{q- 1}, L/k, \theta)$ .
The index of $(\zeta_{q-1}, L/k, \theta)$ is equal to the order of the norm residue symbol
$(\zeta_{q-1}, L/k)$ . Note that the index of tame ramification of $L/k$ is equal to
$(p-1)/b$ . Therefore, by the same argument as in the proof of Theorem 3,
we conclude that the order of $(\zeta_{q- 1}, L/k)$ is equal to $(p-1)/b$ .

We easily check that $\zeta,$
$u_{\theta}$ and $u_{\varphi}$ generate a finite group $G$ in the simple

algebra $\mathfrak{A}$ . Defining relations are:
$\zeta^{(q^{\alpha}-1)p^{h}}=1$ , $\zeta=\zeta_{q^{a-1}}\zeta_{p^{h}}$ , $u_{\theta}^{e}=\zeta^{p^{h}(q^{a}-1)/(q- 1)}$ ,

$u_{\varphi}^{\alpha}=1$ , $u_{\theta}\zeta_{q^{\alpha-1}}=\zeta_{q^{\alpha-1}}u_{\theta}$ , $u_{\theta}\zeta_{p^{h}}=\zeta_{p^{h}}^{r}u_{\theta}$ , $u_{\varphi}\zeta_{q^{a-1}}=\zeta_{q}^{q_{a-1}}u_{\varphi}$ ,

$u_{\varphi}\zeta_{p^{h}}=\zeta_{p^{h}}^{s}u_{\varphi}$ , $u_{\theta}u_{\varphi}=u_{\varphi}u_{\theta}$ ,

where $r^{e}\equiv 1mod p^{h},$ $r^{\iota}\not\equiv 1mod p^{h}$ , $1\leqq\kappa\leqq e-1$ and $s^{\alpha}\equiv 1mod p^{h}$ . In fact,
$ G=\langle\zeta, u_{\theta}, u_{\varphi}\rangle$ is an extension of the cyclic normal subgroup $\langle\zeta\rangle=\langle\zeta_{q^{a-1}}\rangle$

$\times\langle\zeta_{p^{h}}\rangle$ by an abelian group which is a direct product of a cyclic group of
order $e$ and a cyclic group of order $a$ (cf. Zassenhaus [14, III, \S 8]). It is
clear that the finite group $G$ spans $\mathfrak{A}$ over $Q_{p},$ $i$ . $e.$ ,

$\mathfrak{A}=\{\sum\alpha_{\nu\mu\lambda}\zeta^{\nu}u_{\theta}^{\mu}u_{\varphi}^{\lambda} ; \alpha_{\nu\mu\lambda}\in Q_{p}, 1\leqq\nu\leqq(q^{a}-1)p^{\hslash}, 1\leqq\mu\leqq e, 1\leqq\lambda\leqq a\}$ .

The absolutely irreducible representation in the algebraic closure $\overline{Q}_{p}$ of $Q_{p}$

(unique up to equivalence) of the central simple algebra $\mathfrak{A}$ over $k$ gives an
absolutely irreducible representation $U$ of the finite group $ G=\langle\zeta, u_{\theta}, u_{\varphi}\rangle$ .
And it is clear that the simple component of $Q_{p}[G]$ which corresponds to $U$

is isomorphic to $\mathfrak{A}$ . As was already shown, the index of $\mathfrak{A}$ is equal to $(p-1)/b$ .
This completes the proof of Theorem 1.

Theorem 2 is clearly equivalent to the following
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THEOREM 2’. A given central simple algebra $A$ over $K$ is similar to a
simple component of the group algebra $K[G]$ over $K$ of a finite group $G$ if and
only if the Hasse invariant of $A$ is of the form

$\frac{\kappa}{(p-1)/bs}(mod Z)$ , $\kappa\in Z$ .

PROOF OF THEOREM $2^{\prime}$ . From Theorem 1 it follows that for every $z\in Z$,

the central division algebra $A$ over $k$ whose Hasse invariant is $z/\frac{p-1}{b}(mod Z)$ ,

is similar to a simple component of the group algebra $Q_{p}[G]$ of a certain
group $G$ . Hence $A$ is similar to a simple component of the group algebra
$k[G]\cong Q_{p}[G]\otimes_{\theta p}k$ over $k$ of the same group $G$ . And the central simple
algebra $A\otimes_{k}K$ over $K$ is similar to a simple component of $K[G]\cong k[G]\otimes_{k}K$.
The Hasse invariant of $A\otimes_{k}K$ is equal to

$\frac{z}{(p-1)/b}[K:k]=\frac{z[K:k]}{(p-1)/bss}$ , $(\frac{p-1}{bs},$ $\frac{[K:k]}{s})=1$ .

Hence for every $\kappa\in Z$, the central division algebra over $K\ovalbox{\tt\small REJECT}$ whose Hasse

invariant is equal to $\kappa/\frac{p-1}{bs}(mod Z)$ , is similar to a simple component of a
group algebra $K[G]$ over $K$.

Conversely, let $A$ be a simple component of the group algebra $K[G]$ over
$K$ of a group $G$ such that the center of $A$ is $K$. If $\chi$ is an absolutely irre-
ducible character of $G$ which corresponds to $A$ , then $K(\chi)=K$ and $A$ is
isomorphic to $A(\chi, Q_{p})\otimes_{Qp^{(\chi)}}K$ where $A(\chi, Q_{p})$ is the simple component of
$Q_{p}[G]$ which corresponds to $\chi$ . The field $Q_{p}(\chi)$ is contained in $\Xi\cap K=k$ .
If the index of tame ramification of $Q_{p}(\chi)/Q_{p}$ (resp. of $k/Q_{p}(\chi)$) is equal to
$b_{1}$ (resp. $b_{2}$), then $b=b_{1}b_{2}$ and the Hasse invariant of the central simple

algebra $A(\chi, Q_{p})$ over $Q_{p}(\chi)$ is equal to $z/\frac{p-1}{b_{1}}$ for a certain $z\in Z$. So the

Hasse invariant of the central simple algebra $A$ over $K$ is equal to

$\frac{z}{(p-1)/b_{1}}[K:Q_{p}(\chi)]=\frac{z}{(p-1)/b}\frac{[k:Q_{p}(\chi)]}{b_{2}}[K:k]$

$=\frac{z}{(p-1)/bs}\frac{[k:Q}{b}\mapsto(\chi\underline{)]}2\frac{[K:k]}{s}(mod Z)$ .

Thus the Hasse invariant of $A$ is of the form $\kappa/\frac{p-1}{bs}(mod Z),$ $\kappa\in Z$. This
completes the proof of Theorem 2’.

Tokyo Metropolitan University
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