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The first aim of this paper is to disscuss the central limit theorem for
additive functionals of conservative strong Feller processes on compact spaces.
Secondly, as a refinement of the limit theorem, we shall consider a conver-
gence theorem of measures on C[0, T] formed by certain continuous additive
functionals. Then the limit is the Wiener measure, that is, we shall deal
with the so-called “invariance principle”.

The central limit theorem of this type has been investigated by many
authors. Fruitful results were obtained by S.V. Nagaev [7], 1.S. Volkov
[11], J. Keilson and D.M. G. Wishart [5], and others for discrete time Markov
processes. In the case of continuous time Markov processes with finite state
spaces, M. Fukushima and M. Hitsuda [3] gave the central limit theorem and
some applications. Moreover, our central limit theorem is related to other
types of limit theorems. In particular, it seems that the limit theorems for
a stationary process under quite general conditions (Yu. A. Davydov, I. A.
Ibragimov, M.I. Gordin, V.N. Solev[1]) are very close to our theorems, where
some of our additive functionals can be considered as stationary processes.

The content of this paper:

In §1, we shall give a basic lemma related to the Fourier transform of
the semigroup, and state some results on the spectral theory of operators.
In §2, the central limit theorem will be established and we
shall give the class of the exceptional additive functionals for which the

“asymptotic variance” degenerates (Theorem 2.2). §3 will be devoted to the
proof of the invariance principle (Theorem 3.2). Finally, we shall investigate

the central limit theorem for additive vectors in § 4, where the results are
analogous to the case of one-dimensional additive functionals.

The authors wish to thank the members of “Seminar on Probability ” in
Nagoya for their many advices.



552 M. Hitsupa and A. SHIMIZU

§1. Preliminaries

Let X be a compact metric space and By a o-algebra generated by the
open subsets. Let p(t, x, '), x€ X, I' € By be a stochastic transition function.
We denote by C(X) (resp. B(X)) the space of all complex valued continuous
functions on X (resp. all bounded measurable functions on X) with the sup-
remum norm. We set

Tof) = ptt, x, d)f(3)  for any fe BX).

We shall assume the following:

AssuMmPTION 1. (a) {T,, t=0} is a strongly continuous semigroup on
C(X).

(b) For any fe B(X) and t>0, T,f belongs to C(X) (Strong Feller pro-
perty).

(¢) T.1=1, for any t=0.

(d) For any t>0, T, is a completely continuous operator on C(X).

) pt,x,I")>0, for any t>0, x< X and non-empty open set [

By Assumption 1, we have

PROPOSITION 1.1. For any t> 0, the eigenvalues of T, except 1 are less than
1 in absolute value, and the multiplicity of the eigenvalue 1 is one.

ProoF. Suppose that the equality

(L) J ot % a9 £(3) = 410
holds for some f= C(X) and |A|=1. Then, we have
(12) A Z 1A S| pet 0 d9)0)

< { pt, %, IO,
X

where |f(x,)|= max|f(x)|. Hence, noting that |f(x)| =]/, we get

(1.3) § 2. 50, A = 1)1} =0.

By Assumption 1 (e), we see that |f(x))|=|/(»)| holds for all y= X. Here,
assuming that f(x) is not a constant, we easily have

1> |f pet o d9fC)).

which contradicts (1.2). Hence we have f(x)=constant. Thus we get 1=1
and the multiplicity is one. The proof is now complete.
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It is well-known that, under Assumption 1 (a) (c), there exists a conser-
vative strong Feller process (x;, §:, P, x € X) associated with the transition
function p(t, x, ') (See for example [2]). A mapping ¢, (w): [0, c0)X £
—(—o0, +00) is called an additive functional® of the process (x;, §i, Py x€ X)
if it satisfies the following properties:

1.4) for any t=0, ¢,(w) is F,-measurable;

(1.5) Plo; o) =pw)+¢-(0:0)]1=1,
for any x< X and t>=s, where 0, is the shift operator of (x;, T Pa x< X).
In what follows, we shall consider the additive functionals which satisfy

the following
AssUMPTION 2. (a) There exists a positive number ¢ = d(f) such that

sup E.[ |p(w)|**?] < +oco  for any ¢>0,
reX

and
(b) lim sup E,[]¢y(@)|*]=0.

Here are some typical examples of an additive functional satisfying As-
sumption 2:

M aCx)—a(m),
@) | etx)ds,

t
(iii) L c(x;)dB,;, where B, is a Brownian motion independent of x,”,

and

(iv) a linear combination of functionals in (i)—(iii), where a(x), b(x) and
¢(x) are real valued continuous functions on X.

Now, let ¢, be an additive functional satisfying Assumption 2. For each
fe C(X) and each real number z, we define

T3f(x) = E,[ f(x)e* e ],
Then we get ,
LEMMA 1.1. (i) Tif(x)e C(X), t=0 and z< R
(i) {T3 t=0} is a strongly continuous contraction semigroup on C(X)
for each z€ R™.
(iii) For any z and t>0, T? is a completely continuous operator on C(X).

1) In this paper, the terminology additive functional means almost additive func-
tional in ordinary sense.
2) 1If we choose some suitable g-algebras &, of the process (x:, & Py x=X) and
t
the shift operator #;, then we can consider forj‘ c(xs)dBs to be an additive functional
0

of the process.
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(iv) Define the operators

Az f(0) = E,Lip (@) f(x)e™],
and
B; (%) = Eo[ — (@)’ f(x)e™ ]
for each fe C(X), z and t>0. Then, Azf and Bif belong to C(X).
v) (Twice differentiability of T? with respect to z) For any t=0 and 2,

lim |1 (T —T5— as] =0
n—afl A

and
lim %(Agﬂ—Ag)—Bgl:o,
h—0

where | -|| denotes the operator norm on C(X).

PrOOF. (i) For any positive ¢(<?) and for fe C(X), we set

T14f() = Bl f()ei=oir-seer].,
Then we have

(1.6) T7f(x) = Eul f(x-(0c0))e™ =]
= xEExs[f(xt—e)eiz%*G:’] =TT% . f(x).

Noting that 7T%_.f is bounded and measurable, we see that T#¢f e C(X) by
Assumption 1 (b) and (1.6). Now we have

| T f()—T3 /()| = EL| f(x)] - | e 0 —1] ]
< 1B 12l lpd@) 1= |21/ I(ELpda) DT .

Hence, we get

an sup | THf(9)—T1/(0| 5 |21 FI(sup Eul @)D

Assumption 2 (b) and (1.7) imply
iiﬁl I Teef(x0)—Ti /(0] =0.

Therefore T?%f(x) e C(X).
(ii) From the inequalities

| T3 /() — [ S| T =T f) |+ | T () —f(0)]
= EL1f(xo) - e =1] 1+ T. () —f(2)]

< |2/ FELo@) DT + | T f(0)—F(2)]

< 1211 7l(sup ELod@ D +ITef—f,
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we have

lim | T2/~ | =0

(iii) Because T, is completely continuous and T%_,, ¢>¢> 0, is bounded,
we can derive from [(1.6) that 7'7¢ is completely continuous. The inequality

implies
ligx I T7*—Tz)=0.

Hence T% is completely continuous.
(iv) Since we have

(18) sup| JATH 00— T4/} — 41 ()

el ]

=[hlll fllsup ELp)—0  (as h—0),

= sup E, [ 1/Ge=]

it is clear that Aif belongs to C(X). Next, noting the inequality

the__1___
el <aixpe,  0<o<,

we have

a9 sup| (41— 4113} — B S|

. i thop 17

<1h1%) 71 sup B[ 1ol hmi;: it ]

=3[hI?| fIl sup Eo[1¢e] ™1

Since A#**f and Aif e C(X), we get Bif € C(X).

(v) The results are obvious from and [(1.9).

Our results in the remainder of this section are essentially due to S.V.
Nagaev and V.N. Tutubalin [10]. So we will give only the outline of
the proofs.

Let o(T% be the spectrum of the operator 7% and p(T% the resolvent
set of T2 We define

RAA=@I-T)*, <o),

where [ is the identity operator.
By Assumption 1, the operator T, is completely continuous and has the
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simple eigenvalue 1. Hence, by Riesz-Shauder’s theorem we see that there
exists a positive number J such that

{4; 2 is complex, |A|=1—0 and 211} C p(T)).

Moreover we see by the continuity of T% with respect to z that there exists
a neighbourhood (nbd) of z=0 such that for any z in the nbd

{A; 4 is complex, |A]=1—4d and |1—A|=0d}C p(T%.

Let I, be the circle with the center 1 and the radius 6. Then the image of
the operator

1
2ri

P(z) = § R, 2
1
is one-dimensional. With this 0 we have

LEMMA 1.2. For any real z in some nbd of z=0, the operator T% has the
unique eigenvalue A(z) such that |A(2)—1| <d. Furthermore, the A(z) is simple
and it has the maximum absolute value in o(T?).

We fix a point x, of X. When z belongs to the nbd, we denote by e, the
eigenfunction of T corresponding to A(z) which satisfies ¢,(x,)=1. We denote
by v, the eigenvector of the operator (T%)* on C(X)*® corresponding to A(z)
which satisfies (e,, v,)=1. We notice that e¢,(x)= 1.

THEOREM 1.2. (i) There exists a nbd of z=0 such that for any z in the
nbd

(1.10) T3 f(0) = M2 [, vex)+Q(D"f(x)

holds for any positive integer n and f in C(X), where Q(2) is a bounded operator
on C(X) such that Q(2)e,= Q(2)*v,=0 and that Lmolo 1Q)™ =0 uniformly in z.
(i) A(2) is a C?-class function in the nbd of 2=0. e, and v, are of C?-
class in the sense of the norm of the space C(x) and C(X)*, respectively. Q(z)
is of C?%-class in the sense of the operator norm.
(iii) A7(0) is purely tmaginary, —A"(0)+2/(0*=0 and

(L1D) E(¢3)—E(0n)* = n(—2"0)+2(0))+0(1),

as n-—o0, where y=y,.

From this theorem, it is easy to see

COROLLARY. y=vy, is the unique positive invariant measure for {T,, t =0}
and v(I")> 0 holds for any open set I’ x ¢.

3) C(X)* is the dual space of C(X) and T* is the dual operator of 7.
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§2. The central limit theorem

In this section, we will first prove
THEOREM 2.1. (The central limit theorem) Set

t
Ft, z, dy)=Po[ ()= -2 e dy],
then the equality,

. ; L)+ 2 )22
1Yz J—
2.1) lim Rle F(t, x, dy)=e 2

t—00

holds, and the convergence is uniform in Xx.
For the proof, we need the following lemma.
LEMMA 2.1.

1
. . —=(=210) + X/ 2y,2
2.2) hm‘f 1e“”F(n, x,dy)=e g CHOF O
n—oo vV R

holds, and the convergence is uniform in x.
ProoF. By virtue of (1.10) and

tzA’(0) _z

(2.3) j JRAICF? dy)=e¢ ¢ TY'1(x),

we have

22’ (0)
n

@y [ e Fmx an=(c ) {22 (v )es x+0( ) 100}

From Theorem 1.2, we get

(2.5) Q,vz)—1,
A
(2.6) e%(x)—»l_, uniformly in x,
and
z ” . .
2.7) Q( \/7_{) 1(x) -0, uniformly in x, as n—oo.

Noting that A(z) is of C*-class, we see by a simple calculation

22 0) n =L )22
: Ii iy (=) =¢ ° .
(2.8) lim (e ) l( Va ) e
On the other hand,
_x© 2
(2.9) (e W )@(77) 1(x)—0,  uniformly in x,
22’ (0)

because of the boundedness of (¢ ~» )* and (2.7). Hence, we have the lemma.
PrOOF OF THEOREM 2.1. For each >0, we put n=n(f) is the maximal
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integer less than £. Then we have,

l f LOVE(, x, dy) —leemF(n, x, dy)l

| fexp iz (ot 2O} —exp iz (o 2 O]
=[BLexp iz} (05 2@) }—exp iz (2 O)}]|
Blexp{iz (o 1 0) }-exp {iz (02 O)}]|
exp {iz( L pip+ 2L v @)} 1]

exp{i( -~ =) (oe—T @)} 1]

= |z[(Ex|:HDt w(00) | 1+ 12(0)])

+«/ «/n

———xf(0)|]

(because ¢ (@) = @p(@)+ i n(0n(w)))
= T | zl(sup E[E,,(|¢:-n1)]4+27(0))
l—n 1 n .o P
2l T2 <0>|] ]

The last two terms of the above inequalities converge to zero uniformly in
x as t—oo. In fact, noting that

sup E,LE,,(|pi-n])]1= sup Elef]<+oo

0=t=1

from Assumption 2, we see that the first term converges to zero. For the
second term, by differentiating twice the both sides of [(1.10) at z=0 and
putting f=1, we have

rv?z'(O)r] Y < oo

Therefore the second term also converges to zero. Thus the proof is com-

plete.
Next, we shall determine the class of additive functionals for which the

equality
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(2.11) — A7(0)+-27(0)2 = 0

holds. means that the “asymptotic variance” of ¢,/+/f degenerates.

THEOREM 2.2. In order that the equality (2.11) holds, it is necessary and
sufficient that there exist a real valued continuous function a(x) on X and a real
number y such that

(2.12) Plo; ¢(®)=a(x)—a(x)+yt]=1,  for any =0

and x< X.
First, we prove
LEMMA 2.2. (i) The equality (2.11) is equivalent to

(2.13) sup {E @) —E(¢n)*} < +oo.

(ii) If (2.11) holds, then |A(z)|=1 in some nbd of z=0.

PROOF. (i) is clear from Theorem 1.2 (iii).

(i) Set ¢(®) = (w)—E,[¢(w)] and M =sup E,[¢,(®)*], then M is finite
by (213). Since "
M

at ’

PLIgl> 1= ELu(@)]1<

for any ¢> 0, we can choose a such that

(2.14) Pll¢,.|>al<e for any n.

We fix such a for e:%. Then we have

|1—E,[e¢n]| < E,(|1—e?¢n|)
=E,[|1—e®n|; [$,| S al+E[L|1—e"n]; |¢n] > a]

§|z{a—|—%.

3

Hence, if |z| < -41?, we have |1—E, (e"¢n)| < Therefore

| E (e?¢n)| > % for any n.
Hence, if z is near by zero,
(2.15) | E(e"n)| =| E,[e*¢n]e?*Bveen) | = | E [e®n]| > 71f for all n.
On the other hand, assume that there exists z, such that z=2z, satisfies [(2.15)
and |A(z,)| <1. By virtue of [1.10), we have
E[e™#n] = A%z, )(L, v(z1))(e(z1), v)+(@Q™(z)1, »)—0  (as n—o0).
This contradicts the inequality (2.15) Thus, the proof is complete.
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ProOOF OF THEOREM 2.2. The sufficiency is obvious. Hence, we prove
that the condition (2.12) is necessary. Suppose the equality (2.11) holds.
Then, by Lemma 2.2, |A(2)|=1 in some nbd of z=0. From this fact, we see
that there exists a unique real continuous function y(z) such that

(2.16) 0l = 3(2)
and
(2.17) Tie, = e'1®te,

hold for any ?>0, where ¢, is the eigenfunction as in §1. From (2.17), we
have

(2.18) le.(x)| = |Tte,(x)| = Ex(|ex(x)|) =Tl e, [ (%) -

On the other hand, noting that v =y, is the invariant measure, we see that

(2.19) f Je@iudn= j Tile,|@(dn).
From (2.18) and (2.19), we have
(2.20) le )| =Tile,|(x)  a.e. u(dx).

By the continuity of both sides of (2.20) and Corollary to Theorem 1.2, we
get

(2.21) le ()| =T:le,|(x) for any xe X and t>0.

From Proposition 1.1 and (2.21), it follows that

(2.22) le(x)|=1 for any x = X.

By Theorem 1.2 (ii),

(2.23) le.(x)—1|| <1 in some nbd of z=0.

Since ¢,(x) is a continuous function of (z, x), it follows from (2.22) and (2.23)
that there exists a function a,(x) continuous in (z, x) such that

(2.24) e(N=e%", =0 and |a(x)|< 5

in the nbd of z=0.
By (2.17) and (2.24), we have

(225) Ex[ei(—az(l‘(,)-k-Zga;(w))] — eu~uz(x)+r(zm .

Since the right-hand side and the integrand of the left-hand side of the
equality (2.25) are equal to 1 in absolute value, we have

(2.26) @M 8B TP L@ — gll= B (D70 a.e. P, for any x€ X .
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The exceptional set does not depend on z because of the continuity of a,(x)
and y(z). Hence we have
(2.27) Pilo; —a(x)+zow) = —a,(x)+ (2t

in some nbd of z=0]=1,
for any t=0 and x< X.
If z, z and z+2z’ belong to the nbd, we have from

(2.28) o~ 10 (D48, () gI2H2)P @) — = 1(az B+ (DN iy (D47 (D)

a.e. P, for any x€ X.
Integrating [(2.28), we get
(229) T.za-z(e—iaz(.)-x-azfc.))(x) — e—i(az(x)+az'(a:))ei(r<z)+r(z'))t .

On the other hand, T%* has a unique eigenvalue which is equal to 1 in
absolute value and which is simple (Lemma 1.2), we have

(2.30) @U@ — o=l for any xe X
and
(2.31) U @@t — plrtatznt for any t=0.

Because |a,(x)+a,.(x)| <~§—n and |a,.,.(®)]| < %, we obtain

(2.32) a (%) +a,(x) = Qpyp(X) for any xe X
and
(2.33) 7(@)+7@E@)=7r(z+2).

Because a,(x) and y(z) are continuous functions of z, it follows from ((2.32)
and [(2.33) that there exist a real valued continuous function a(x) and a real
numper y such that

(2.34) a,(x) = za(x) for any x X
and
(2.35) r(=7z.

By (2.27), (2.34) and [2.35), we obtain the theorem.

§3. Convergence on the continuous path space C[0, T]. (Invariance
principle)

In this section, we shall give a more detailed result than in § 2 for additive
functionals of a certain type. We consider only the additive functionals ¢,
of type (ii) and (iii) in the example of §1, or their linear combinations. We
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can assume Ey(got):%Z’(O):O for each #, whithout loss of generality. Of

course, these additive functionals are continuous, so each random process

o= i 1[0, T], (k=1,2, ), o=(—2(O)*

induces the measures ¢% from P, on the space of continuous paths C[0, T].
We will show that the system of measures ¢ for each x= X is relatively

compact and g% converges to Wiener measure gy on C[0, T]. The next
lemma is easy.

LEMMA 3.1. If the additive functional ¢ (w) has the type (ii), (iii) or their
linear combinations, then for 6 >0, sup E,[¢it] < +oo, and E,[¢i] belongs to
C(x). 3

LEMMA 3.2. Let ¢,w) be as in Lemma 3.1 and n be any positive integer.

Then E,[pi] =< C,n?* for some constant C,> 0, where we can choose C, indepen-
dent of x X.

PROOF. Put f=1 in (1.8) then we have
@D E,[exp izp,]= 4(2)"(1, v,)e(x)+Q(2)"1(x) .

While it is easy to prove that A(2), Q(2), ¢, and v, which appear in (3.1) are
of C*class. Thus, differentiating four times the both sides of (3.1) and put-
ting z=0, we get

(3.2) EoLph 1= (2 aco k(L )+ ()40, 1Def(%)
FAQEYP(L vP) AL, vP)e (1) + AR e (x)
+4(1, v)ef* ()44, vi)ef’ (1) +6(A2)") |.-o(L, v
+6(2(2)")® | 2=0ef (1) 1-6(1, vi)ef (x)
+12(2)" 2 | 5=o(Ls v§)ef’ (1) +(QE@" LE) P | 220 -
On the other hand, we have
(3.3) (A@R)M®| oo =n4"(0).
Moreover, we get
AN = nAD(2)A)" - 3n(n—1) AP ()AL (2)A(z)"*
+n(n—1)(n—2)AP(2)° 2(2)" 2+ 6n(n—1)(n—2)A@)AP(2)A(z)"*
+n(n—1)(n—2)(n—3)(AV(@)*A2)""* .
Then, putting z=0,
(3.4) (AR P s=g = nd™(0),
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3.5 (A@)")* | 4o = nAP(0)+3n(n—1)(2*(0))*,

because 2/(0)=iE,(¢,)= 0. Thus, the terms of the order »® and n' in the
right hand of vanish. While, in the right hand of [3.2), the derivatives
ei(x) 1=1,2,3,4) at z=0, are continuous and bounded in x= X. Moreover
@Q@™(x)®|,=, tends to zero as n—oo, because lim |Q(0)*|| =0 (See §1). Thus
is proved. "

LEMMA 3.3. For each t=1, the inequality

E,[oi]= Cyt?

holds for some constant Cy> 0 independent of x< X.
ProOoOF. Let n <t <n-1, then

E,L 1] S 4E.[ 05 +@u-n(0n0)' ] = HE L9 14+ B[ E,,(9F-,)]}

The result is easily derived from Lemma 3.2, because ¢, satisfies sup sup E,[¢4]

0=n=1
< oo,

LEMMA 3.4. For 0<t <1, the inequality
(3.6) E.[on1=Ct?

holds for some C, independent of x< X.

Proor. This inequality is easily derived from the expression of the
additive functional ¢,. First, in the case of

Spt = ‘fO a(xs)ds )
we have
37) Efpll=llalt*= llal*,  for 0=t<1.
Next, in the case of
t
o= | b(x)dB,,
]
we have
t 4 ¢ 2
(3:8) L] EJ EY | btxas] |= 38 (f ete)rds) ]
<3jole.

It is easy to prove the inequality for the linear combination

Q= J:a(xs)ds—l—f:b(xs)dB s

from and [(3.8).
Using and Lemma 3.5, we get
THEOREM 3.1. The inequality

ELot]= Ct*
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holds, where C is independent of x< X.
THEOREM 3.2. Let A be of the g-algebra N on C[0, T, then the sequence
of induced measures,

A= P,[o®P e A], (k=12 ..),

converges weakly to Wiener measure on C[0, T] in the Prokhorov’s sense.
PRrOOF. First, we prove that the finite dimensional distribution of g con-
verges to the one of Wiener process. For simplicity, we consider only the
case of two time points; 0<?¢ <?,<7. Then the proof is complete if we
prove that the Fourier transform of the distribution g¥'s
E.[exp (iz,pf +1z,(0® — o))]

= E [ exp (i1z,0{P) Exy, (€XP (12,084,))]

converges to exp (w--%-(tlz’f’+(t2~tl)z§)> uniformly in x as k—oo. This fact

is easily verified by Theorem 2.1. Next, we prove that the system of meas-
ures b is relatively compact. For this, it is sufficient to prove that Prok-
horov’s criterion [8] is satisfied. Indeed,

L0 —0@) 1= o EL(pu— 1))

1
- ?zo.j*Ex[Ewks(soéc—ks)]
< C 2
=——&4—~(t—s) , (Theorem 3.1).

Thus the proof is complete.

§4. Remarks on the case of additive vectors

Let ¢}, ¢}, .-+, ¢? be additive functionals of the Markov process (x;, &,
P,, x€ X). The Assumption 1 and 2 are satisfied for the process x, and the
additive functionals ¢} ; k=1, 2, ---, n. We define an additive vector @,(w) by
@;((D) - (90%7 ¢g1 s SD?) .
We consider the n-dimensional central limit theorem for the additive vector
?,(w). By the same way as in § 1~§ 3, we can derive the following results.
We set

Tf(x) = E, Lo 1 000 ) )]

for t=0, z=(z, -,z )€ R" and fe C(X).
Then, for any t>0, T: is a compact operator on C(X), and for sufficiently
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small z, 7% has the unique and simple eigenvalue A(z) = A(z,, --+, z,) which is
maximal in absolute value. The function A(z) is of C*-class in a nbd of z=0.

ﬁi@) by A(z) (resp. 2%(2). We put

We denote derivatives i;gl(resp. 02,02;

M= (_}z;(O), ., »}—2;(0))

and
€ = (=255 (0)+210)25(0)) .

Here, M is a vector with real components and € is a matrix which is non-
negative definite. We get

THEOREM 4.1. The characteristic function jneiwm;(dy) of the measure
R
Loow
mé(A):Px[:/];t:(@;(W)_mt)E A] on R™ converges to ¢ % as t— oo, where z/

is the transposed vector of z.

Moreover, we get the analogous result to

THEOREM 4.2. The matrix € degenerates if and only if some linear com-
bination of ¢f,

jéyj‘P{: 3y, s V) (0, -+, 0),

is expressed in the form (2.12).

COROLLARY. Let ay(x) i=1,2,.--,n) be real valued continuous functions
on X. If ay(x) i=1,2,---,n) and 1 ave linearly independent, then the matrix
G corresponding to the additive vector

D(w)= (j:al(xs)ds, f:ag(xs)ds, ., f:an(xs)ds)

never degenerates.

Next, we consider only the additive vector @,= (¢}, ---, ¢}) where each
ot (1=1, -, n) is of the type (ii) or (iii) or their linear combination. Then
we get the following theorem by the same way as in §3.

THEOREM 4.3. If the matrix € corresponding to @, does not degenerate,
then the system of measures induced by

_L
# = (@t

on the space of continuous path space C"[0,T1=C[0,T]1X -+ XC[0,T] (n
fold direct product) converges weakly to n-dimensional Wiener measure as k—oo.
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