J. Math. Soc. Japan
Vol. 20, Nos. 1-2, 1968

Generation of Galois extensions by matrix roots

To Professor Shokichi Iyanaga on his 60th birthday

By Shuichi TAKAHASHI

(Received July 12, 1967)

§1. Introduction.

Let us recall the Kummer theory. Let %k be a field of characteristic 0
containing m-th roots of unity. Then any cyclic group G of order g which
divides m has a faithful 1-dimensional representation :

Goo—-M,eck*=GL{, k).
This verifies the equation :
Mm=1 for all c=GCG.

Now, if K/k is a cyclic extension with the galois group G(K/k)=G, then by
Hilbert’s theorem 90 there exists an element x < K such that

M,=x°"' and K=~FX).
By the above equation for M, one knows that
x"=aec k.
Conversely, any equation of the form
xm=aec k*

has a solution in the algebraic closure k, of %2, and generates a cyclic exten-
sion K= Fk(x) of & whose galois group has a faithful representation in {x|x
ek, x™=1}.

Next consider the case where k is a field of characteristic p>0. Any
cyclic group of order p has a faithful representation :

Gso—M=[; "] mcGF®).
This gives the equation

MiM® =1 for all oG

where M® =(m¥%). If G=G(K/k) and
M,= X",
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where X = ((l) ]16>, K = k(x), then

X1 X®P=A is a matrix in k.

“This is the Artin-Schreier theory and its generalization to the case of an arbi-
trary group G has been considered by E. Inaba (1], [2], [3]).

In this paper we consider a generalization of Kummer theory to the case
of an arbitrary group G for a field 2 of characteristic 0.

The group G has always a faithful representation in %:

Goo—-M,eGL(m, k)

e. g. a regular representation. Its characters y,, 0 € G, are algebraic intergers.
Hence they satisfy an equation

Pa)—Q()=0,

‘where P, Q are polynomials with non-negative integral rational coefficients.
By the theory of representations, two representations

PLMG 5, Q<M

are equivalent, where P{M,>, or Q{(M,>, is the matrix which is obtained by
replacing the variable x by the matrix M, powers by direct products and
sums by direct sums. For example, P(x)=x?+x+1 gives a matrix:

M,xM, 0 0
P M,,>:[ 0 M, 0}
0 0 1
of degree m2-t+-m-+-1.
Now, there is a non-singular matrix C of degree P(m)=Q(m) such that

P{MYC=CQLM,) for all c=G.
If G=G/k) and X is a matrix in K satisfying
M,=X°"1,
then the matrix
PLXHICQCX>=A is in k.

Let us consider the converse. Consider two polynomials P(x), Q(x) with
non-negative integral rational coefficients such that P(m)=Q(m). Then, by a
theorem of A. Weil [8], the set

{Me GL(m, ko) | PAM)=CQ{M)C*}

forms a finite group G(P, Q,C). If £ is big enough so that all matrices in
G(P, @, C) are in k, we have the following :
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THEOREM. Let K/k be a galois extension whose galois group G=G(K/k)
has a faithful representation:

Gao—M,=GL(m, k)

such that for two polynomials P, Q and for a non-singular matrix C

P{M,>=CQ{M,>C? holds for all 6 €G.

Then there is a non-singular matrix X in K such that

Xd_leg a'ﬂd K: k(X):k(xu, 0y xmm).
Moreover the matrix
A=P{X)TCLX)
is in k.
Conversely, if for two polynomials P, Q and for non-singular matrices C, A
the finite group
G(P, Q, C)

is contained in GL(m, k) and if the matric equation

A=P{X)CLX)
has a solution in k,, then the field
K=k(X)

is galoisian over k and its galois group G =G(K/k) has a faithful representa-
tion in G(P, Q, C).

Finally, the author would like to thank Professor Y. Kawada for his kind
advices: in particular, the publications by Inaba were informed from him.

§2. Proof of the theorem.

Any representation
Gso—M,=GL(m, k)
defines a 1-cocycle: M,.= M,M.. Hence by a theorem of Speiser or [6]
p. 159) HYG(K/k), GL(m, K))=0, there is a non-singular matrix X in K such
that
Xo1=M, for all os=CG.

From the galois theory, we have K= k(X).
Consider the matrix

A=PL{X>"1CQLX>.
For any ¢ =G, one has
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A7 = PCXOYOQCX ™Y = PCXYPOM, Y CQUMLHQC X
= PCXYTCQUX) = 4,

i.e. Aisin k.
Conversely, suppose that the matric equation

A=P{X>1CQLX>
is solvable in k,. For any o< G(k,/k),
A=PL{X>1CRLX7).
Hence, M,= X! satisfies the equation
PAM>1CQAM, > =C.

i.e. M,e G(P, Q, C).
By the hypothesis, M, = GL(m, k), hence,

X =MX isin k(X).

This proves that K= k(X) is galoisian and that the galois group G is con-
tained in G(P, Q, C).

§3. Comments and an example.

By the theorem of A. Weil, the group
G(P, Q, C)={M|P{M>C=CQ{M>}
is always finite. But, to know a sufficient condition under which
G, Q,CYS GL(m, k)

holds will be interesting. There is another more profound question, what
finite subgroups of GL(m, k) are of type G(P, Q, C) for suitable P, Q and C?
The solvability of the matric equation

A=PLX)7CKXD

in k, seems to us a very difficult problem. But this was answered to some

degree, by A. Weil in [9]. With regard to the matric equation X -1 X® = A

its solvability in some extension of %2 was known to S. Lang or p. 119)
Here is an example of our theory. Consider the case where

Px)=x*, QxX)=x*+2x, m=2,
and
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01 00 00 00
0600 01 00 0O
00 00 10 00
C:OO 00 00 Ol.
00 00 00O 10
00 00 01 0 0
10 00 00 00O
0 0 10 00 0 0)

Then

6P, @, ©y={MIM=(§ 0), o =1}

0 b
u{MimM=(p, () b*=1}.
So, if % contains 3rd roots of unity,

GP,Q,C)SGL2, k)

and G(P, Q,C)=S, (the symmetric group of 3 letters). If X :(;C

Ad=xy—uv 0, is a solution of the matric equation

A=PL{X>1CRLX >,
then we have

xy+uv XV .

42 k, A2 ek, e ek
XUy x2u-+yv?

3 3 3 8

en e

Since

= A (AW 5 Sy,

one can write the above equations as follows
Aek, xytuvek, xwek, yueck, etc...

In particular, xv =yu =0 gives all cyclic extensions of degree 3:

X:(g 3), x=ack, xy=beck.

And xy-tuv=x*4+v*=0 gives all quadratic extensions :

y
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