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In my recent paper [9], I have introduced an invariant $\gamma(G)$ for a con-
nected semi-simple algebraic group $G$ , which generalizes the classical invariants
of Hasse and of Minkowski-Hasse, and have shown that, for a classical simple
group $G,$ $\gamma(G)$ can actually be determined explicitly in terms of these classical
invariantsi). For exceptional groups, however, I gave only a very brief indica-
tion for the case where the ground field is a local field or an algebraic number
field ([9], 250-251). The purpose of this $note^{2)}$ is to give a more comprehensive
account for a more general case, establishing a principle which enables us to
reduce the determination of $\gamma(G)$ for an exceptional group $G$ to that for a
suitably chosen classical subgroup $G^{\prime}$ of $G$ defined over the same ground field.
The existence of such a subgroup $G^{\prime}$ will be ascertained for the groups of
type $E_{6}$ and $E_{7}$ constructed recently by Tits [12].

1. Throughout this paper, $k$ is a field of characteristic zero, (though it
seems likely that most of our results remain true over any perfect field of
characteristic different from 2 and 3). $\overline{k}$ is a fixed algebraic closure of $k$ and
$g=Ga1(\overline{k}/k)$ is the Galois group of $k/k$ operating on $\overline{k}$ from the right. For an
algebraic group $G$ defined over $k$ , we write the Galois cohomology set or group
$H^{i}(\mathcal{G}, G_{k}^{-})(i=1,2)$ as $H^{i}(k, G)$ . $E_{n}=\{\zeta_{n}\}$ is the group of all n-th roots of unity
contained in le. In principle, we follow the notation in [9].

Let $G_{1}$ be an algebraic group defined over $k$ . By an inner k-form of $G_{1}$ ,

$*)$ Partially supported by NSF grant GP-6654.
1) Taking this opportunity, I would like to correct some of the misprints in the

relevant part of [9]. On page 246, line 10, for $ff^{\Sigma m_{i}}$ read $\prime R^{\Sigma im_{i}}$ ; similar correc-
tions are also necessary for the formulas (28), (28) in page 250. On page 249, line 9,
for “ $k(\sqrt{(-1)^{1/2nr}}\det(S))$ read $k(\sqrt{(-1)^{1/2nr}\det(S)})$ ”

2) By a communication from Professor Tits, the author learnt after completion of
the paper that similar topics had also been treated by him in a series of lectures de-
livered at Yale University in the winter of 1967.

Added in proof: By a communication with Tits, it appeared that in 8 the relation
$\mathfrak{C}_{2}\sim \mathfrak{D}^{\prime}$ and so (11) is always true without any assumption.
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we understand a pair $(G, f)$ formed of an algebraic group $G$ defined over $k$

and a k-isomorphism $f$ of $G$ onto $G_{1}$ such that $f^{\sigma}\circ f^{-1}$ is an inner automorphism
of $G_{1}$ for every $\sigma\in \mathcal{G}$ . To such a pair $(G, f)$ , we associate an element $\gamma(G, f)$

in $H^{2}(k, Z_{1})$ , where $Z_{1}$ is the center of $G_{1}$ , as follows. Put

$f^{\sigma}\circ f^{-1}=I_{g_{\sigma}}$ and $\delta(g_{\sigma})=g_{\sigma}^{\tau}g_{\tau}g_{\sigma\tau}^{-1}=c_{\sigma,\tau}$ ,

where $g_{\sigma}\in(G_{1})_{\overline{k}}$ and $I_{g\sigma}$ denotes the inner automorphism of $G_{1}$ defined by $I_{g\sigma}(g)$

$=g_{\sigma}gg_{\sigma}^{-1}$ for $g\in G_{1}$ . Then it is clear that $(c_{\sigma,\tau})$ is a 2-cocycle of $g$ in $(Z_{1})_{\overline{k}}$ ,

whose cohomology class is uniquely determined, independently of the choice
of the l-cochain $(g_{\sigma})$ . (We always take it implicitly that all cochains we con-
sider are k-rational and continuous in the sense of Krull topology on 9.) We
denote the cohomology class of $(c_{\sigma,\tau})$ by $\gamma_{k}(G, f)$ or simply by $\gamma(G, f)$ whenever
$k$ is tacitly fixed.

Two inner k-forms $(G, f)$ and $(G‘, f^{\prime})$ of $G_{1}$ are said to be i-equivalent if
there exists a k-isomorphism $\varphi$ of $G$ onto $G^{\prime}$ such that $f^{\gamma}\circ\varphi\circ f^{-1}$ is an inner
automorphism of $G_{1}$ . It is immediate that the cohomology class $\gamma(G, f)$ depends
only on the i-equivalenc class of $(G, f)$ .

In the case where $G_{1}$ is a connected reductive algebraic group, the number
of i-equivalence classes of inner k-forms of $G_{1}$ contained in a k-isomorphism
class of k-forms of $G_{1}$ (in the ordinary sense) is finite. Moreover, it is known
’([9], p. 242) that, for any connected semi-simple algebraic group $G$ defined
over $k$ , there exists an inner k-form $(G_{1}, f^{-1})$ of $G$ such that $G_{1}$ is of Steinberg
type, and the i-equivalence class of such $(G_{1}, f^{-1})$ is uniquely determined by $G$ .
Hence, in this case, we define the inveriant $\gamma(G)$ by setting $\gamma(G)=\gamma(G_{1}, f^{-1})$

$\in H^{2}(k, Z),$ $Z$ denoting the center of $G$ . If one denotes by $f^{*}$ the isomorphism
of $H^{2}(k, Z)$ onto $H^{2}(k, Z_{1})$ induced in a natural way by $f$, then one has

(1) $\gamma(G)=f^{*- 1}(\gamma(G, f))$ .
(Note that $f$ induces on $Z_{\overline{k}}$ a $\mathcal{G}$-isomorphism $Z_{\overline{k}}\rightarrow(Z_{1})_{\overline{k}}.$)

EXAMPLE. $G=SL(m, \theta_{r})$ , where $f8_{r}$ is a normal division algebra of degree
$r$ over $k$ . Let $f$ be a $\overline{k}$-isomorphism of $G$ onto $G_{1}=SL(mr)$ determined by the
(unique) irreducible representation of $ff_{r}$ (as an associative algebra). Then
$(G_{1}, f^{-1})$ is an inner k-form of $G$ as described above, and through the natural
identification $Z\cong Z_{1}=E_{mr}$ (induced by $f$), one has $\gamma(G)=c(\theta_{r})\in H^{2}(k, E_{mr})$

(where $c(R_{r})$ denotes the “ Hasse invariant ” of $R_{\gamma}$).

2. The following lemma is fundamental.
LEMMA 1. Let $G_{1}$ and $G_{1}^{\prime}$ be algebraic groups defmed over $k$ , and let $\varphi_{1}$ be

a k-morphism of $G_{1}^{\prime}$ into $G_{1}$ . Suppose there is a k-closed subgroup $G_{1^{\prime}}^{\prime}$ of $G_{1}$

such that, denoting by $Z_{1},$ $Z_{1}^{\prime},$ $Z_{1^{\prime}}^{\gamma}$ the center of $G_{1},$ $G_{1}^{\prime},$ $G_{1}^{\prime\prime}$ , respectively, one has

(i) $Z_{a_{1}}(\varphi_{1}(G_{1}^{\prime}))=\varphi_{1}(Z_{1}^{\prime})\cdot G_{1}^{\prime\prime}$ ,
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$Z_{G_{1}}(\cdots)$ denoting the centralizer of $\ldots$ in $G_{1}$ ;

(ii) $\varphi_{1}(Z_{1}^{\prime})=Z_{1}\times Z_{1}^{\prime}$
‘ (direct product);

(iii) the natural map $H^{1}(k, G_{1}^{\prime\prime}/Z_{1}^{\prime\prime})\rightarrow\Delta H^{2}(k, Z_{1}^{\prime\prime})$ is bejective.
Let further $(G^{\prime}, f^{\prime})$ be an inner k-form of $G_{1}^{\prime}$ . Then:

1) There exist an inner k-form $(G, f)$ of $G_{1}$ and a k-morphism $\varphi$ of $G^{\prime}$ into
$G$ such that one has $f\circ\varphi=\varphi_{1}\circ f^{\gamma}$ .

2) If $(\overline{G},\overline{f},\overline{\varphi})$ is another triple satisfying the same condition as $(G, f, \varphi)$ ,

then there is a k-isomorphism $\psi$ of $G$ onto $\overline{G}$ such that $\overline{\varphi}=\psi\circ\varphi,\overline{f}\circ\psi\circ f^{-1}$ is
an inner automorphism of $G_{1}$ , and d $\circ\psi^{-1}=I_{a_{\sigma}^{\prime\prime}}$ where $(d_{\sigma^{\prime}}^{\prime})$ is a l-cocycle of $\mathcal{G}$

’

in $\overline{f}^{-1}(Z_{1}^{\prime\prime})_{\overline{k}}$ .
3) For any inner k-form $(G, f)$ of $G_{1}$ satisfying the condition in 1), $\gamma(G, f)$

coincides with the $Z_{1}$-part of $\varphi_{1}^{*}(\gamma(G^{\prime}, f^{\prime}))$ in the direct decomposition (ii), $u$ here
$\varphi_{1}^{*}$ denotes the natural homomorphism of $H^{2}(k, Z_{1}^{\prime})$ into $H^{2}(k, \varphi_{1}(Z_{1}^{\prime}))induced$

by $\varphi_{1}$ .
PROOF. 1) Put $f^{\prime\sigma}\circ f^{\prime-1}=I_{g_{\sigma}^{\prime}}$ , $g_{\sigma}^{\prime}\in(G_{1}^{\prime})_{\overline{k}}$ , and $\delta(g_{\sigma}^{\prime})=c_{\sigma.\tau}^{\prime}\in Z_{1}^{\prime}$ . By (ii) one $\cdot$

has

(2) $\varphi_{1}(c_{\sigma.\tau}^{\prime})=C_{\sigma}{}_{\Gamma}C_{\sigma,\tau}^{\prime\prime-1}$ ,

where $(c_{\sigma,\tau})$ and $(c_{\sigma.\tau}^{\prime\prime})$ are (uniquely determined) 2-cocycles of $g$ in $Z_{1}$ and $Z_{1^{\gamma}}^{\prime\prime}$

respectively. By (iii) (the surjectivity), there exists $g_{\sigma}^{\prime\prime}\in(G_{1}^{\prime\prime})_{\overline{k}}$ such that $\delta(g_{\sigma}^{\prime\prime})\{$

$=c_{\sigma\tau}^{\prime\prime}$ . Put
$g_{\sigma}=\varphi_{1}(g_{\sigma}^{\prime})\cdot g_{\sigma}^{\prime\prime}$ ;

then by (i) one has $\delta(g_{\sigma})=c_{\sigma,\tau}$ . Hence there is an inner k-form $(G, f)$ of $G_{r}$

such that $f^{\sigma}\circ f^{-1}=I_{g\sigma}$ . Put $\varphi=f^{-1}\circ\varphi_{1}\circ f^{\gamma}$ . Then, for every $\sigma\in \mathcal{G}$, one has

$\varphi^{\sigma}=f^{-\sigma}\circ\varphi_{1}\circ f^{\prime\sigma}=f^{-1}\circ I_{g_{\sigma}}^{-1}\circ\varphi_{1}\circ I_{g_{\sigma}^{\prime}}\circ f^{\gamma}=f^{-1}\circ I_{g_{\sigma}^{-1}}.\varphi_{1(g_{\sigma}^{\prime})}\circ\varphi_{1}\circ f^{\prime}$ .

Since by (i) one has $g_{\sigma}^{-1}\cdot\varphi_{1}(g_{\sigma}^{\prime})\in G_{1}^{\prime\prime}\subset Z_{G_{1}}(\varphi_{1}(G_{1}^{\prime}))$ , one has $\varphi^{\sigma}=\varphi,$
$i$ . $e$ . $\varphi$ is

defined over $k$ . (Note that the converse of this is also true).
2) Let $(\overline{G},\overline{f},\overline{\varphi})$ be another triple satisfying the conditions stated in 1), and$\cdot$

put $\overline{f}^{\sigma}\circ\overline{f}^{-1}=I_{\overline{g}\sigma},$ $\delta(\overline{g}_{\sigma})=\overline{c}_{\sigma,\tau}$ with $\overline{g}_{\sigma}\in(G_{1})_{\overline{k}},\overline{c}_{\sigma,\tau}\in Z_{1}$ . As we have just noted
above, $\overline{\varphi}^{\sigma}=\overline{\varphi}(\sigma\in \mathcal{G})$ implies that $\overline{g}_{\sigma}^{-1}\cdot\varphi_{1}(g_{\sigma}^{\prime})\in Z_{o_{1}}(\varphi_{1}(G_{1}^{\prime}))$ . Hence, by (i), one
may put

$\overline{g}_{\sigma}^{-1}\cdot\varphi_{1}(g_{\sigma}^{\prime})=\varphi_{1}(c_{\sigma}^{f})\cdot\overline{g}_{\sigma}^{\prime\prime-1}$ or $\overline{g}_{\sigma}=\varphi_{1}(c_{\sigma^{-1}}^{\prime}g_{\sigma}^{\prime})\cdot\overline{g}_{\sigma}^{\prime\prime}$

with $c_{\sigma}^{\prime}\in(Z_{1}^{\prime})_{\overline{k}}$ and $\overline{g}_{\sigma}^{\prime\prime}\in(G_{1}^{\prime\prime})_{\overline{k}}$ . Then one has

$\overline{c}_{\sigma,\tau}=\delta(\varphi_{1}(c_{\sigma}^{\prime}))^{-1}\cdot\varphi_{1}(c_{\sigma.\tau}^{\prime})\cdot\delta.(\overline{g}_{\sigma}^{\prime\prime})$ ,

which, by (i), (ii), implies that $\delta(\overline{g}_{\sigma}^{\prime\prime})\in G_{1^{\prime}}^{\prime}\cap\varphi_{1}(Z_{1}^{\prime})=Z_{1}^{\prime\prime}$ . Writing $\varphi_{1}(c_{\sigma}^{\prime})=c_{\sigma}\cdot c_{\sigma}^{\prime\prime-1}$

with $c_{\sigma}\in Z_{1}$ and $c_{\sigma}^{\prime\prime}\in Z_{1}^{\prime\prime}$ and comparing the Z-parts and $Z^{\prime\prime}$ -parts in the above



A certain invariant of the groups of type $E_{6}$ and $E_{7}$ 325

equality, one obtains in view of (2)

(2a) $\left\{\begin{array}{l}\overline{c}_{\sigma,\tau}=\delta(c_{\sigma})^{-1}c_{\sigma,\tau},\\\delta(\overline{g}_{\sigma}^{\prime\prime})=\delta(c_{\sigma}^{\prime})^{-1}\cdot c_{\sigma.\tau}^{\prime\prime}=\delta(c_{\sigma}^{\prime\prime- 1}g_{\sigma}^{\prime\prime}).\end{array}\right.$

By (iii) (the injectivity), the second equality of (2a) implies that there is
$h\in(G_{1^{\prime}}^{\prime})_{k}^{-}$ and a l-cocycle $(a_{\sigma^{\prime}}^{\prime})$ of $\mathcal{G}$ in $(Z_{1^{\prime}}^{\prime})_{\overline{k}}$ such that one has

$\overline{g}_{\sigma}^{\prime\prime}=a_{\sigma}^{\prime\prime}c_{\sigma}^{\prime\prime- 1}h^{\sigma}g_{\sigma}^{\prime\prime}h^{-1}$ ;

then one has also $\overline{g}_{\sigma}=c_{\sigma}^{-1}h^{\sigma}g_{\sigma}h^{-1}\cdot a_{\sigma}^{\prime\prime}$ . Now put $\psi=f^{-1}\circ I_{h}\circ f$. Then, since
$h\in Z_{G_{1}}(\varphi_{1}(G_{1}^{f}))$ , one has

$\psi\circ\varphi=\overline{f}^{-1}\circ I_{h}\circ f\circ\varphi=f^{-1}\circ I_{h}\circ\varphi_{1}\circ f^{\prime}=f^{-1}\circ\varphi_{1}\circ f^{\prime}=\overline{\varphi}$

and, for every $\sigma\in \mathcal{G}$ ,

$\psi^{\sigma}=\overline{f}^{-\sigma}\circ I_{h^{\sigma}}\circ f^{\sigma}=\overline{f}-\iota_{\circ I_{g}\circ I_{j_{b}}\circ I_{g_{\sigma}}\circ f=\overline{f}^{-1}\circ I_{a_{\mathcal{O}}^{\prime\prime}h}^{-1}\circ f}=_{\sigma}1\sigma$

$=I_{\overline{J}^{-1}(a_{\sigma}^{\prime\prime^{-1_{)}}}}\circ\psi$ ,

$i$ . $e.$ , one has $\psi^{\sigma}\circ\psi^{-1}=I_{a_{\sigma}^{\prime\prime}}$ with $d_{\sigma}^{\prime\prime}=\overline{f}^{-1}(a_{\sigma}^{\prime\prime- 1})\in\overline{f}^{-1}(Z_{1}^{\prime\prime})$ .
3) is clear from the definitions and (2), (2a), $q$ . $e$ . $d$ .
REMARK 1. The conditions (i), (ii) imply (i)i $Z_{G_{1}}(\varphi_{1}(G_{1}^{\prime}))=Z\times G_{1}^{\prime\prime}$ (direct

product); and $(i)^{\prime}$ in turn implies (ii)’ $\varphi_{1}(Z_{1}^{\prime})\subset Z_{1}\times Z_{1}^{\prime\prime}$ . As is seen from the
above proof, the conditions (i), (ii) in Lemma 1 can be replaced by a weaker
condition $(i)^{\prime}$ .

REMARK 2. The condition (iii) is satisfied if $G_{1}^{\prime\prime}$ is k-isomorphic to $SL(n)$

and if the ground field $k$ has the following property: $(P_{n})$ For any normal
division algebra $f\partial$ over $k$ such that $B^{n}\sim 1$ one has $\deg 9|n$ .

In fact, it is well-known that the canonical map $\Delta$ : $H^{1}(k, SL(n)/E_{n})$

$\rightarrow H^{2}(k, E_{n})$ is injective, and also there is a canonical monomorphism of $H^{2}(k, E_{n})$

into the Brauer group $\mathscr{Q}(k)$ of $k$ (see Example in 1). If the algebra class of a
normal division algebra f\S over $k$ belongs to the image of this monomorphism,
then one has clearly $R^{n}\sim 1$ . On the other hand, the algebra class of $\mathbb{R}$ comes
from an element of $H^{1}(k, SL(n)/E_{n})$ if and only if it contains a k-form of $\ovalbox{\tt\small REJECT}_{n}$

(the total matric algebra of degree $n$), or, in other words, the degree of ff
divides $n$ . Hence, under the condition $(P_{n}),$ $\Delta$ is bijective. It should also be
noted that for the proofs of 2) and 3) we needed only the injectivity of $\Delta$ ,

which holds whenever $G_{1}^{\prime\prime}$ is k-isomorphic to $SL(n)$ , without the assumption
$(P_{n})$ for $k$ .

3. We shall now apply Lemma 1 to the following situation. Let $G_{1}$ and
$G_{1}^{\prime}$ be (connected) simply connected (absolutely simple) Steinberg groups over
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$k$ of one of the types listed below:

$\frac{G}{G_{1}^{\prime}}1|\frac{12}{1A_{5}2A_{5}}|\frac{E_{7}13D_{4}6D_{4}}{1D_{6}13(3A_{1})6(3A_{1})}$

(For the meaning of the notation, see [11].) Then the centers of $G_{1}$ and $G_{\iota}^{\prime}$

are as follows:

$\frac{Z\cong}{Z_{1}^{\prime}\cong}1||\frac{E_{3}|E_{2}}{E_{6}1E_{2}\times E_{2}}|\frac{E\times E}{E_{2}\times E_{2}\times E_{2}}$

The isomorphism in this list is a $\mathcal{G}$-isomorphism, if and only if the group $G_{1}$

or $G_{1}^{\prime}$ is of Chevalley type. In general, the corresponding $G_{1}$ and $G_{1}^{\prime}$ will have
a common splitting field $k^{\prime}$ , and the action of $\mathcal{G}$ on $Z_{1}$ and $Z_{1}^{\prime}$ will be deter-
mined uniquely by $k^{\prime}$ . In each case, we shall construct a k-morphism $\varphi_{1}$ of $G_{1}^{\prime}$

into $G_{1}$ (which will turn out to be a monomorphism) in such a way that $\varphi_{1}(G_{1^{\prime}})|$

is a “ regular ” k-closed subgroup of $G_{1^{3)}}$ . (By a regular closed subgroup of $G_{1}$ .
we mean a closed subgroup corresponding to a ” regular ” subalgebra of the
Lie algebra of $G_{1}$ in the sense of Dynkin [4].) For all cases, $G_{1}^{\prime\prime}$ will be a k-
closed subgroup of $G_{1}$ which is a simply connected Chevalley group of type
$A_{1}$ and so $Z_{1^{\prime}}^{\prime}$ is $\cong E_{2}$ . Thus, by the Remark 2 in 2, the condition (iii) of
Lemma 1 is satisfied, provided $k$ satisfies the condition $(P_{2})$ .

4. The case $1E_{6}$ . Let $G_{1}$ and $G_{1}^{\prime}$ be simply connected Chevalley groups
over $k$ of type $E_{6}$ and $A_{5}$ , respectively. Then, one has $\mathcal{G}$-isomorphisms

(3) $Z_{1}\cong E_{3}$ , $Z_{1}^{\prime}\cong E_{6}$ .
Let $T_{1}$ and $T_{1}^{\prime}$ be k-trivial maximal tori in $G_{1}$ and $G_{1}^{\prime}$ , respectively. Let further

$\mathfrak{r}$ be the root system of $G_{1}$ relative to $T_{1},$ $\Delta=\{\alpha_{1}, \cdots , \alpha_{6}\}$ a fundamental system

3) It can be proven directly that, if $G_{1}$ is a simply connected semi-simple algebraic
group and if $H_{1}$ is a regular closed subgroup corresponding to a subset of a fundamentak
system of $G_{1}$ , then $H_{1}$ is also simply connected.
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of $\mathfrak{r}$, and $\mu$ the lowest root $(i. e., -\mu=\alpha_{1}+2\alpha_{2}+3\alpha_{3}+2\alpha_{4}+\alpha_{5}+2\alpha_{6})$ (see the
figure). Then it is clear that there is a k-isogeny $\varphi_{1}$ of $G_{1}^{\prime}$ onto a regular k-
closed subgroup $G_{1}(\{\alpha_{1}, \cdots , \alpha_{5}\})$ such that $\varphi_{1}(T_{1}^{\prime})\subset T_{1}$ . (In general, for any
subset $\Gamma$ of $r$ , one denotes by $G_{1}(\Gamma)$ the regular closed subgroup of $G_{1}$ corre-
sponding to the (closed) subsystem $\mathfrak{r}\cap\{\Gamma\}_{Z}$ of $r.$) One puts also $G_{1}^{\prime\prime}=G_{1}(\{\mu\})_{\vee}$

In order to see that the conditions (i), (ii) of Lemma 1 are satisfied, we
need the following

LEMMA 2. Let $\rho_{1}$ be an irreducible representation of $G_{1}$ of dimension 27
with the highest weight $\lambda_{1}=\frac{1}{3}(4\alpha_{1}+5\alpha_{2}+6\alpha_{s}+4\alpha_{4}+2\alpha_{5}+3\alpha_{6})$ . Then one has

$\rho_{1}\circ\varphi_{1}\sim\rho_{1}^{\prime}+\rho_{1}^{\prime}+\rho_{4}^{\prime}$ ,

where $\rho_{i}^{\prime}$ stands for the i-th skew-symmetric tensor representation of $G_{1}^{\prime}$ in the
standard numbering.

(Cf. [2], pp. 142-143; [3], pp. 20-23. In Cartan’s notation, one has $\alpha_{i}$

$=\omega_{i,i+1}=\overline{\omega}_{T}-\overline{\omega}_{i+1}(1\leqq i\leqq 5),$ $\alpha_{6}=\omega_{667}=\overline{\omega}_{5}+\overline{\omega}_{6}+\overline{\omega}_{7},$ $\mu=\omega_{000}=3\overline{\omega}_{0}$ . The weights
of $\rho_{1}$ are given by $\overline{\omega}_{i}-\overline{\omega}_{0},\overline{\omega}_{i}+2\overline{\omega}_{0},$ $-\overline{\omega}_{i}-\overline{\omega}_{j}-\overline{\omega}_{0}(1\leqq i, j\leqq 6, i\neq j)$ . It is then
easy to see that $(-\overline{\omega}_{R}\overline{\omega}_{\Gamma}-\overline{\omega}_{0})\circ(\varphi_{1}|T_{1}^{\prime})$ (resp. $(\overline{\omega}_{T}-\overline{\omega}_{0})\circ(\varphi_{1}|T_{1}^{\prime})$ , resp. $(\overline{\omega}_{i}+2\overline{\omega}_{0})$

$\circ(\varphi_{1}|T_{1}^{\prime}))$ constitute the set of weights of $\rho_{4}^{\prime}$ (resp. $\rho_{1}^{\prime}$ , resp. $\rho_{1}^{\prime}$) relative to $T_{1}^{\prime}.$)
It follows that one can find a generator $z$ of $Z_{1}^{\prime}$ such that

$\rho_{1}(\varphi_{1}(z))=diag.(\zeta_{6}1_{12}, \zeta_{6}^{4}1_{15})$ ,

where $\zeta_{r}$ is the primitive r-th root of unity (in k) and $1_{r}$ is the unit matrix of
degree $r$. This shows that both $\rho_{1}$ and $\varphi_{1}$ are faithful and $\varphi_{1}(z^{2})$ is a generator
of $Z_{1}$ . On the other hand, it is clear that $G_{1}^{\prime\prime}$ is contained in the centralizer
$Z_{G_{1}}(\varphi_{1}(G0)$ . By Schur’s lemma, the matrices of degree 27 which commute ele-
mentwise with $\rho_{1}(\varphi_{1}(G_{1}^{\prime}))$ are of the form diag. $(x\otimes 1_{6}, \eta 1_{15})$ , where $x\in GL(2)$ and
$\eta$ is a scalar. Hence, in order to complete the proof of (i), it is enough to
show that, if a matrix of the form diag. $(\xi 1_{12}, \eta 1_{15})$ is in $\rho_{1}(G_{1})$ , then it is in
$\rho_{1}(\varphi_{1}(Z_{1}^{\prime}))$ . From the fact that $\rho_{1}(G_{1})$ leaves a certain cubic form $(\sum_{\Leftrightarrow k}x_{i}y_{k}z_{ik}$

$-\sum z_{\lambda\mu}z_{\nu\rho}z_{\sigma\tau}$ in the notation of [2] loc. cit.) invariant, it follows that $\xi^{2}\eta=\eta^{s}=1$ ,

whence $\xi^{6}=1,$ $\eta=\xi^{4}$ , which proves our assertion. At the same time, one sees
that $G_{1}^{\prime\prime}$ is k-isomorphic to $SL(2)$ and $\varphi_{1}(z^{3})$ is the generator of $Z_{1}^{\prime\prime}$ . Thus we
have also (ii).

When $k$ satisfies the condition $(P_{2})$ , the condition (iii) of Lemma 1 is also
satisfied. Therefore, applying Lemma 1, one concludes that to every i-equi-
valence class of inner k-form $(G^{\prime}, f^{\prime})$ of $G_{1}^{\prime}$ there corresponds a certain number
of i-equivalence classes of inner k-forms $(G, f)$ of $G_{1}$ , for whith one has

(4) $\gamma(G)=Z$-part of $\varphi^{*}(\gamma(G^{\prime}))$

$=\varphi^{*}(\gamma(G^{\prime}))^{4}$ ,
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where $Z$ (resp. $Z^{\prime}$ ) is the center of $G$ (resp. $G^{\prime}$ ), which is also g-isomorphic to
$E_{3}$ (resp. $E_{6}$). More specifically, when $G^{\prime}$ is k-isomorphic to $SL(6/r, ff_{r})$ , one
may identify $Z^{\gamma}$ with $E_{6}$ through the irreducible representation of $SL(6/r, \Omega_{r})$

(defined over k) which comes from the (unique) irreducible representation of $\theta_{r}$

\langle as an associative algebra). Then, by what we have proved above, this identi-
fication gives rise to the corresponding identification of $Z$ with $E_{3}$ , and in this
sense one has

(4) $\gamma(G)=c(R_{r})^{4}$ ,

where $c(\mathfrak{X}_{r})\in H^{2}(k, E_{6})$ is the Hasse invariant of $f8_{r}$ .
We may reformulate our result in the following form, which also gives a

characterization of the k-forms $G$ obtained by our method.
THEOREM 1. Let $G$ be a simply connected absolutely simple algebraic group

of type $E_{6}$ defined over $k$ . Suppose there exists a regular k-closed subgroup $G$ ‘

of type $A_{5}$ . Then $G$ is of type $1E_{6}$ . If $G^{\prime}$ is k-isomorphic to $SL(6/r, R_{r})$ , then
through the natural identification mentioned above one has

$\gamma(G)=c(ff_{r})^{4}$ .

PROOF. Since there is only one class of regular closed subgroups of type
$A_{5}$ in $G$ with respect to the inner automorphisms ([4], p. 149, Table 11), one
may suppose that $G^{\prime}$ is of the form $G(\{\alpha_{1}, \cdots , \alpha_{5}\})$ with respect to a maximal
torus $T$ defined over $\overline{k}$ and a fundamental system $\{\alpha_{1}, \alpha_{6}\}$ . Let $G_{1}$ be a
simply connected Chevalley group of type $E_{6}$ over $k$ and let $T_{1}$ be a k-trivial
maximal torus in $G_{1}$ . Then one can find a k-isomorphism $f:G\rightarrow G_{1}$ such that
$f(T)=T_{1}$ . Let $\varphi:G^{\prime}\rightarrow G$ be the inclusion monomorphism (defined over $k$), and
put $f^{\prime}=f|G^{\prime},$ $G_{1}^{\prime}=f^{\gamma}(G^{\prime})$ , and $\varphi_{1}=f\circ\varphi$ of’ $- 1$ Then $G_{1}^{\prime}=G_{1}(\{\alpha_{1}, \cdot. , \alpha_{5}\})$ (with
respect to $T_{1}$), so that $G_{1}^{\prime}$ is a k-closed subgroup of $G_{1}$ , which is a simply con-
nected Chevalley group of type $A_{5}$ over $k$ , and $\varphi_{1}$ is also defined over $k$ . Since

$G^{\prime}$ is of type $1A_{6}$ , the isomorphism $z/\cong E_{6}$ is a $\mathcal{G}$-isomorphism. Therefore the
same is also true for $Z\cong E_{s}$ , which means that $G$ is of type $1E_{6}$ . It follows
that $f^{\sigma}\circ f^{-1}$ (resp. $f^{\prime\sigma}\circ f^{\prime-1}$) is an inner automorphism of $G_{1}$ (resp. $ c_{1}\gamma$ . Thus
one restores the situation considered above (except for the condition $(P_{2})$ on
le, which we do not need), and the last statement of the Theorem follows.

5. The case ${}^{2}E_{6}$ . Let $G_{1}$ and $G_{1}^{\prime}$ be simply connected Steinberg groups
over $k$ of type $2E_{6}$ and $2A_{5}$ , respectively. Then there exists a quadratic exten-
sion $k^{\prime}$ of $k$ over which $G_{1}$ splits ( $i$ . $e.$ , becomes of Chevalley type). For any
fixed isomorphism $Z_{1}\cong E_{s}$ , the ‘ splitting field ‘ $k^{\prime}$ can be characterized by the
action of the Galois group as follows:
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$Z_{1}\ni z\leftrightarrow\zeta\in E_{3}$

$=\rangle\left\{\begin{array}{l}z^{\sigma}\leftrightarrow\zeta^{\sigma} if \sigma\in Ga1(k/k^{\prime}),\\z^{\sigma}\leftrightarrow\zeta^{-\sigma} if \sigma\not\in Gal(\overline{k}/k’).\end{array}\right.$

The situation is quite similar for $G_{1}^{\prime}$ . Hence, if there is a k-morphism $\varphi_{1}$ :
$G_{1^{\prime}}\rightarrow G_{1}$ as described in Lemma 1, then the injection: $Z_{1}\rightarrow\varphi_{1}(Z_{1}^{\prime})$ will induce
a $\mathcal{G}$-monomorphism of $Z_{1}$ into $Z_{1}^{\prime}$ , and so the splitting fields for $G_{1}$ and $G_{1}^{\prime}$

should coincide. Conversely, if $G_{1}$ and $G_{1}^{\prime}$ have a common splitting field $k^{\prime}$ ,

then one can find a k-morphism $\varphi_{1}$ as follows. Let $T_{1}$ and $T_{1}^{\prime}$ be maximal tori
defined over $k$ in $G_{1}$ and $G_{1}^{\prime}$ , respectively, containing a maximal k-trivial torus
in the respective groups, and take a $\mathcal{G}$-fundamental system $\Delta=\{\alpha_{1}, \alpha_{6}\}$ in
the sense of [8]. (These imply that $T_{1}$ and $T_{1}^{\prime}$ are $k^{\prime}$ -trlvial and, if $\sigma_{0}$ denotes
the generator of $Ga1(k^{\prime}/k)$ , one has $\alpha_{1}^{\sigma_{0}}=\alpha_{5},$ $\alpha_{2}^{\sigma_{0}}=\alpha_{4},$ $\alpha_{3}^{\sigma_{0}}=\alpha_{S},$ $\alpha_{6}^{\sigma_{0}}=\alpha_{6}.$) It is
then clear that $G_{1}(\{\alpha_{1}, \alpha_{5}\})$ is a k-closed subgroup of $G_{1}$ , which is also a
Steinberg group with the same splitting field $k^{\prime}$ , and $T_{1}\cap G_{1}(\{\alpha_{1}, \cdots , \alpha_{6}\})$ con-
tains a maximal k-trivial torus in $G_{1}(\{\alpha_{1}, \cdots , \alpha_{5}\})$ . Therefore, there exists a
k-isogeny $\varphi_{1}$ of $G_{1}^{\prime}$ onto $G_{1}(\{\alpha_{1}$ , $\cdot$ .. , $\alpha_{5}\})$ such that $\varphi_{1}(T_{1}^{\prime})\subset T_{1}$ ([8], p. 233).

Since the conditions (i), (ii) of Lemma 1 have nothing to do with the
ground field $k$ , the proofs given in 4 remain valid in the present case. Also
one has $G_{1}^{\prime\prime}=G_{1}(\{\mu\})\cong SL(2)$ (over $k$). Hence one can apply Lemma 1 to ob-
tain a quite similar result as in 4. In particular, if $(G, f)$ is an inner k-form
of $G_{1}$ corresponding to an inner k-form $(G^{\prime}, f^{\prime})$ of $G_{1}^{\prime}$ in the sense of Lemma 1,
then $\gamma(G)$ is given by the Z-part of $\varphi^{*}(\gamma(G^{\prime}))$ . Also, by a similar argument,
one obtains the following

THEOREM $1^{\prime}$ . Let $G$ be a simply connected absolutely simple algebraic group
of type $E_{6}$ defined over $k$ . Suppose there exists a regular k-closed subgroup $c/$

of type $2A_{5}$ . Then, $G$ is of type $2E_{6}$ (belonging to the same quadratic extension
$k^{\prime}/k)$ and $\gamma(G)$ is given by the Z-part of $\gamma(G^{\prime})$ .

6. The case $E_{7}$ . Let $G_{1}$ and $G_{1}^{\prime}$ be simply connected Chevalley groups over
$k$ of type $E_{7}$ and $D_{6}$ , respectively. Then one has

(5) $Z_{1}\cong E_{2}$ , $Z_{1}^{\prime}\cong E_{2}\times E_{2}$ .
(This time the operations of the Galois group are all trivial.) Let $T_{1}$ and $T_{1}^{\prime}$

be k-trivial maximal tori in $G_{1}$ and $G_{\dot{1}^{\prime}}$ , respectively, and let $\{\alpha_{1}, \cdots, \alpha_{7}\}$ be a
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fundamental system of $G_{1}$ relative to $T_{1}$ , and $\mu$ the lowest root $(i$ . $e.,$ $-\mu$

$=\alpha_{1}+2\alpha_{2}+3\alpha_{3}+4\alpha_{4}+3\alpha_{5}+2\alpha_{6}+2\alpha_{7})$ (see the figure). Then one has a k-isogeny
$\varphi_{1}$ of $G_{1}^{\prime}$ onto $G_{1}(\{\alpha_{1}, \cdots , \alpha_{6}, \alpha_{7}\})$ such that $\varphi_{1}(T_{1}^{\prime})\subset T_{1}$ . One puts also $G_{1}^{\prime\prime}$

$=G_{1}(\{\mu\})$ . Then one has the following
LEMMA 3. Let $\rho_{1}$ be an irreducible representation of $G_{1}$ of dimension 56

with the highest weight $\lambda_{1}=\frac{3}{2}\alpha_{1}+2\alpha_{2}+\frac{5}{2}\alpha_{3}+3\alpha_{4}+2\alpha_{6}+\alpha_{6}+\frac{3}{2}\alpha_{7}$ . Then, one
has

$\rho_{1}\circ\varphi_{1}\sim\rho_{1}^{\prime}+\rho_{1}^{\prime}+\rho_{6}^{\prime}$ ,

where $\rho_{1}^{\prime}$ and $\rho_{6}^{\prime}$ are the irreducible representations of $G_{1}^{\prime}$ corresponding to the
fundamental weights $\lambda_{1}^{\prime}$ and $\lambda_{6}^{\prime}$ , respectively. (The $\lambda_{t}^{\prime}’ s$ are numerated in such a

way that $\frac{2\langle\alpha_{i}^{\prime},\lambda^{\prime}\rangle}{}=\delta_{ij}$, where $\alpha_{i}^{\prime}=\alpha_{i}\circ(\varphi_{1}|T_{1}^{\prime})$ for $1\leqq i\leqq 5$ and $\alpha_{6}^{\prime}=\alpha_{7}\circ(\varphi_{1}|T_{1}^{\prime})$ .
$\langle\alpha_{i}^{\prime}, \alpha_{i}^{\prime}\rangle$

In particular, $\rho_{6}^{\prime}$ is the ‘ second spin representation ” in this numbering.)

(Cf. [2], pp. 143-144; [3], pp. 24-27. Note that in this case $\rho_{1}(G_{1})$ leaves
an alternating form invariant.)

In virtue of this Lemma, it can be proved exactly as in 4 that the condi-
tions (i), (ii) of Lemma 1 are satisfied. Moreover, one can find generators $z_{1L}$

and $z_{2}$ of $Z_{1}^{\prime}$ such that

$\rho_{1}(\varphi_{1}(z_{1}))=diag.(-1_{24},1_{\$ 2})$ ,

$\rho_{1}(\varphi_{1}(z_{2}))=-1_{56}$ .
Thus $\varphi_{1}(z_{1})$ and $\varphi_{1}(z_{2})$ are the generators of $Z_{1}^{\prime\prime}$ and $Z_{1}$ , respectively. In the
following, we shall fix once and for all the isomorphisms (5) given by this
choice of the generators.

One concludes from Lemma 1 that, if $(G, f)$ is an inner k-form of $G_{1}$ cor-
responding to an inner k-form $(G^{\prime}, f^{\prime})$ of $G_{1}^{\prime}$ , then $\gamma(G)$ is given by the Z-part
of $\varphi^{*}(\gamma(G^{\prime}))$ . Through the identification of $Z^{\prime}\cong Z_{1}^{\prime}$ (resp. $Z\cong Z_{1}$) with $E_{2}\times E_{\mathfrak{U}}$

(resp. $E_{2}$) mentioned above, one has

(6) $\gamma(G^{\prime})=(c(\mathfrak{C}_{1}), c(\mathfrak{C}_{2}))$ , $\gamma(G)=c(\mathfrak{C}_{2})$ ,

where $\mathfrak{C}_{1}$ and $\mathfrak{C}_{2}$ denote the first and the second Clifford algebras (over $k$) $t$

associated with $G^{\prime}$ supplying the spin representations $\rho_{5}^{\prime}$ and $\rho_{6}^{\prime}$ respectively
([9], p. 249). From this, one obtains the following

THEOREM 2. Let $G$ be a simply connected $ absolutel\gamma$ simple algebraic group
of type $E_{7}$ over $k$ . Suppose there exists a regular k-closed subgroup $G^{\prime}$ of type
$D_{6}$ . Then, $G^{\prime}$ is of type $1D_{6}$ and, if $\mathfrak{C}_{2}$ is the second Clifford algebra associated
with $G^{\prime}$ (in the sense explained above), one has

$\gamma(G)=c(\mathfrak{C}_{2})$ .

In fact, since there is only one class of regular closed subgroups of type
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$D_{6}$ in $G$ ([4], loc. cit.), one may suppose that $G^{\prime}$ is of the form $G(\{\alpha_{1}, \cdot.., \alpha_{5}, \alpha_{7}\})$ .
On the other hand, since the Galois group operates trivially on $Z^{\prime}=Z\times Z^{\prime\gamma},$ $G^{\prime}$

is of type $1D_{6}$ . The rest of the proof runs exactly in the same way as for
Theorem 1.

7. Tits [12] gave recently a new method of constructing k-forms of (ab-

solutely) simple Lie algebras of type $E_{6}$ and $E_{7}$ which contain in an obvious
way simple Lie algebras of type $A_{5}$ and $D_{6}$ , respectively. The invariant $\gamma(G\rangle$

of the corresponding simply connected simple algebraic group $G$ defined over
$k$ can therefore be determined by Theorems 1, 1’ and 2. Moreover, when $k$ is
a local field, all k-forms of $E_{6}$ and $E_{7}$ are obtained in this manner.

First, let us recall briefly the construction of Tits for the case $E_{6^{4)}}$ . Let
$\mathfrak{D}$ (resp. $C$) be a quaternion (resp. octanion) algebra over $k$ , and let $j$ be a
normal simple Jordan algebra of degree 3 and of dimension 9 over $k$ (with
the product $\circ)^{5)}$ . Then one obtains simple Lie algebras of type $E_{6}$ and $A_{5}$ over
$k$ in the following form:

(7) $\left\{\begin{array}{l}\mathfrak{g}=D(C)+C_{0}\otimes J_{0}+D(J),\\\mathfrak{g}=D(\mathfrak{D})+\mathfrak{D}_{0}\otimes cg_{0}+D(J),\end{array}\right.$

where $D(\cdots)$ denotes the derivation algebra of ... and $(\cdots)_{0}$ is the subspace of
... formed of all elements of (reduced) trace zero. The product $[]$ in $\mathfrak{g}$ is defined
by the following rule: (i) $D(C)$ and $D(J)$ are Lie subalgebras of $\mathfrak{g}$ satisfying
$[D(C), D(J)]=0$ ; (ii) for $D\in D(C),$ $D^{\prime}\in D(l)$ , and $a\otimes u\in C_{0}\otimes 3_{0}$ , one has

$[D+D^{\prime}, a\otimes u]=(Da)\otimes u+a\otimes(D^{\prime}u)$ ;

(iii) for $a\otimes u,$ $b\otimes v\in C_{0}\otimes i_{0}$ , one has

$[a\otimes u, b\otimes v]=(u, v)\langle a, b\rangle+(a*b)\otimes(u*v)+(a, b)\langle u, v\rangle$ ,

where $(a, b)=2^{- tr(ab)}1a*b=ab-(a, b)1\in c_{0}$ , and $\langle a, b\rangle$ is a derivation of $C$

defined by

$\langle a, b\rangle(x)=41[[a, b],$ $x]_{4}^{3}--[a, b, x]$ for $\chi\in c$ ,

and similarly $(u, v)=\frac{1}{3}tr(u\circ v),$ $u*v=u\circ v-(u, v)1_{f}$ and

$\langle u, v\rangle(x)=u\circ(v\circ x)-v\circ(u\circ x)$ for $x\in \mathcal{J}$ .

The product in $\mathfrak{g}^{\prime}$ is defined similarly.
Now suppose $\mathfrak{D}\subset c$ . Then one may write $C=\mathfrak{D}+\mathfrak{D}\epsilon_{4}$ with $\epsilon_{4}\in C_{0},$ $\epsilon_{4}^{2}=\lambda$

4) Actually there are two different constructions of the Lie algebras of type $E_{6}$

and $E_{7}$ , but for the sake of simplicity we consider here only one of them.
5) For the theory of Jordan algebras the reader is referred to [7], [10], [12], [13].
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$\in k,$ $\lambda\neq 0$ , and one has

$(a+b\epsilon_{4})(c+d\epsilon_{4})=(ac+\lambda\overline{d}b)+(da+b\overline{c})\epsilon_{4}$

for $a,$ $b,$ $c,$
$d\in \mathfrak{D}$, where the bar denotes the canonical involution in $\mathfrak{D}$ . We

imbed $D(\mathfrak{D})$ into $D(C)$ as follows. One has $D(\mathfrak{D})=\{D_{a}(a\in \mathfrak{D}_{0})\}$ , where $D.(x)$

$=[a, x]$ for $x\in \mathfrak{D}$ , and $D_{a}$ can be extended to a derivation of $C$ by setting

$D_{a}(x+y\epsilon_{4})=[a, x]-(ya)\epsilon_{4}$ .
(Note that this extension of $D_{a}$ is independent of the choice of $\epsilon_{4}.$) The injec-
tion $D(\mathfrak{D})\rightarrow D(C)$ thus defined is clearly a monomorphism of Lie algebra, and
gives rise in a natural way to a monomorphism of $\mathfrak{g}^{\prime}$ into $\mathfrak{g}$ . In this sense,
we have the following

LEMMA 4. When $\mathfrak{D}\subset c,$ $\mathfrak{g}^{\prime}$ is a regular subalgebra of $\mathfrak{g}$ .
In fact, take any non-zero element $a_{1}$ in $\mathfrak{D}_{0}$ . Then one can define another

sort of derivation of $C$ by setting

$D_{a_{1}}^{\prime}(x+y\epsilon_{4})=(a_{1}y)\epsilon_{4}$ .
It is easy to check that one has $[D_{a_{1}}^{\prime}, X]=0$ for all $X\in \mathfrak{g}^{\prime}$ . Hence, if $a_{1}$ is
semi-simple and if $\mathfrak{h}^{\prime}$ is any Cartan subalgebra of $\mathfrak{g}^{\prime}$ , then $\mathfrak{h}=\{D_{a_{1}}^{\prime}\}_{k}+\mathfrak{h}^{\prime}$ is a
Cartan subalgebra of $\mathfrak{g}$ such that $[\mathfrak{h}, \mathfrak{g}^{\prime}]\subset \mathfrak{g}^{\prime}$ . Therefore, $\mathfrak{g}^{\prime}$ is a regular sub-
algebra of $\mathfrak{g}$ with respect to $\mathfrak{h}$ .

Now we have the following two cases:
1. $c9=_{\epsilon}g(\mathfrak{A}_{3})$ , where $\mathfrak{A}_{3}$ is a normal simple (associative) algebra of degree

3 over $k$ and $3(\mathfrak{A}_{3})$ denotes the Jordan algebra obtained from $\mathfrak{A}_{3}$ by endowing

it with the Jordan product $x\circ y=_{2}^{1}--(xy+yx)$ for $x,$ $y\in \mathfrak{A}_{3}$ .
2’. $\mathcal{J}=\ovalbox{\tt\small REJECT}(\mathfrak{A}_{3}^{\prime}, c)$ , where $\mathfrak{A}_{3}^{\prime}$ is a normal simple (associative) algebra of de-

gree 3 over a quadratic extension $k^{\prime}$ of $k$ with an involution of the second
kind $f$ and $\ovalbox{\tt\small REJECT}(\mathfrak{A}_{3}^{\prime}, f)$ denotes the Jordan algebra formed of all ‘ c-hermitian ’

element in $\mathfrak{A}_{3}^{\prime}$ ( $i$ . $e.$ , all $x\in \mathfrak{A}_{3}^{\prime}$ such that $x^{f}=x$) with the Jordan product as
above. In particular, when $\mathfrak{A}_{3}^{\prime}\sim 1$ (over $k^{\prime}$ ), one may write

$d=\ovalbox{\tt\small REJECT}_{3}(k^{\prime}/k ; \gamma_{1}, \gamma_{2}, \gamma_{3})=\{X\in\ovalbox{\tt\small REJECT}_{8}(k^{\prime})|H^{-1t}\overline{X}H=X\}$ ,

where $\gamma_{i}\in k,$ $\gamma_{i}\neq 0(1\leqq i\leqq 3)$ , and $H=diag.(\gamma_{1}, \gamma_{2}, \gamma_{3})$ .
It is then easy to show that, in the case 1, $\mathfrak{g}^{\prime}$ is canonically identified

with the Lie algebra $(\mathfrak{D}\otimes \mathfrak{A}_{3})_{0}$ with the Lie product $[x, y]=xy-\gamma x$ ; while, in
the case 2, $\mathfrak{g}^{\prime}$ is canonically identified with the Lie algebra formed of all
$x\in \mathfrak{D}\otimes_{k}\mathfrak{A}_{s}^{\prime}$ such that $tr_{\mathfrak{D}\otimes i1’ 3^{k’}},(x)=0$ and $x^{\zeta^{\prime}}+x=0$ , with the Lie product as
above, where $c^{\prime}$ denotes the involution of the second kind in $\mathfrak{D}\otimes_{k}\mathfrak{A}_{3}^{\prime}$ defined
by $(x\otimes y)^{\ell^{\prime}}=\overline{\chi}\otimes y^{\prime}$ for $\chi\in \mathfrak{D},$ $y\in \mathfrak{U}_{3}^{\prime}$ . Let $G$ and $G^{\prime}$ be the simply connected
simple algebraic groups defined over $k$ correspnding to $\mathfrak{g}$ and $\mathfrak{g}^{\prime}$ , respectively.
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Then, in the case 1’, $G^{\prime}$ is of type $A_{5}$ and by Theorem 1 one has

(8) $\gamma(G)=c(\mathfrak{A}_{3})$ .
In the case 2’, $G^{\prime}$ is of type $2A_{5}$ and $\gamma(G)$ can be determined by Theorem $l^{\prime}$

and by [9], p. 245, (14); in particular, if $\mathfrak{A}_{3}^{\prime}\sim 1$ (over $k^{\prime}$), one has

$\gamma(G)=(c_{\sigma\tau}^{\prime})$ ,

where
1 if $\sigma\in Ga1(\overline{k}/k^{\prime})$ ,

$c_{\sigma\tau}^{\prime}=\{$

$\sqrt{\gamma_{1}\gamma_{2}\gamma_{3}}^{s}1-\sim\sqrt{\gamma_{1}\gamma_{2}\gamma_{3}}^{3\tau-1}$

if $\sigma\not\in Ga1(\overline{k}/k^{\prime}),$ $\tau\in Ga1(\overline{k}/k^{\prime})$ ,

if $\sigma,$ $\tau\not\in$ Gal $(\overline{k}/k^{\prime})$ ,

whence it is easy to see that $(c_{0.\tau}^{\prime})\sim 1$ and so $\gamma(G)=1$ .

8. The simple Lie algebras of type $E_{7}$ and $D_{6}$ constructed by Tits are of
the following form:4)

(9) $\left\{\begin{array}{l}\mathfrak{g}=D(C)+C_{0}\otimes 3_{0}^{\prime}+D(J^{/}),\\\mathfrak{g}^{\prime}=D(\mathfrak{D})+\mathfrak{D}_{0}\otimes J_{0}^{\prime}+D(<9),\end{array}\right.$

where $\mathfrak{D}$ and $C$ are as before, but $ij^{\prime}$ is a normal simple Jordan algebra of
degree 3 and of dimension 15 over $k$ . When $k$ satisfies $(P_{2})$ , one may assume
(10) $c\mathcal{J}^{\prime}=\ovalbox{\tt\small REJECT}_{3}(\mathfrak{D}^{\prime} ; \gamma_{1}, \gamma_{2}, \gamma_{3})$ ,

where $\mathfrak{D}^{\prime}$ is another quaternion algebra over $k,$ $\gamma_{i}\in k,$ $\gamma_{i}\neq 0$ , and $\ovalbox{\tt\small REJECT}_{3}(\mathfrak{D}^{\gamma}$ ; $\gamma_{1\prime}$

$r_{2},$ $r_{3}$) denotes the Jordan algebra formed of all $X\in \mathscr{R}_{3}(\mathfrak{D}^{\prime})$ such that $H^{-1t}\overline{X}H$

$=X$ with $H=diag.(\gamma_{1}, \gamma_{2}, \gamma_{8})$ . The products are defined quite similarly as in 7.
Now, analogously to Lemma 4, one sees that, when $\mathfrak{D}\subset C,$ $\mathfrak{g}^{\prime}$ is a regular

subalgebra of $fi$ . Also, it is easy to see that $\mathfrak{g}^{\prime}$ can be identified canonically
with the Lie algebra formed of all $X\in \mathscr{R}_{s}(\mathfrak{D}\otimes \mathfrak{D}^{\prime})$ such that $tr(X)=0$ and
${}^{t}\overline{X}H+HX=0$ , where $\overline{X}$ is defined by means of the involution of the first kind
in $\mathfrak{D}\otimes \mathfrak{D}^{\prime}$ defined by $\overline{x\otimes y}=\overline{x}\otimes\overline{y}$ for $x\in \mathfrak{D},$ $y\in \mathfrak{D}^{\prime}$ . It follows that $G^{\prime}$ is
of type $1D_{6}$ and so by Theorem 2, denoting by $\mathfrak{C}_{2}$ the second Clifford algebra
associated with $G^{\prime}$ , one has

$\gamma(G)=c(\mathfrak{C}_{2})$ .

In the special cases, where $\mathfrak{D}^{\prime}\subset C$ or $C\sim 1$ , one can show that $\mathfrak{C}_{2}\sim \mathfrak{D}^{\prime}$ and so

(11) $\gamma(G)=c(\mathfrak{D}^{\prime})$ .
(This is always the case when $k$ is a local field.)

In fact, if $\mathfrak{D}^{\prime}\subset C$, one may take $\mathfrak{D}=\mathfrak{D}^{\prime}=(\beta, \gamma)$ . Then $\mathfrak{D}\otimes \mathfrak{D}^{\prime}\sim 1$ and the
3-dimensional hermitian vector space over $\mathfrak{D}\otimes \mathfrak{D}^{\gamma}$ with the hermitian form $H$
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reduces in an obvious manner to a 12-dimensional quadratic vector space over
$f$? with a symmetric bilinear form $S=diag.(1, -\beta, -\gamma, \beta\gamma)\otimes H$. By an easy
calculation, one then sees that the full Clifford algebra $C(S)$ is $\sim(\beta, \gamma)$ and so
$\mathfrak{C}_{1}\sim \mathfrak{C}_{2}\sim(\beta, \gamma)$ . Next, when $C^{\prime}\sim 1$ , one may take $\mathfrak{D}\sim 1$ ; put $\mathfrak{D}^{\prime}=(\beta^{\prime}, \gamma^{\prime})$ .
Then the 3-dimensional hermitian vector space over $\mathfrak{D}\otimes \mathfrak{D}^{\prime}$ reduces to a 6-
dimensional (right) vector space $V^{\prime}$ over $\mathfrak{D}^{\prime}$ with a skew-hermitian form of
index 3. Let $(e_{1}$ , $\cdot$ .. , $e_{6})$ be any basis of $V^{\prime}$ over $\mathfrak{D}^{\prime}$ for which the skew-

hermitian form takes the form $\left(\begin{array}{ll}0 & -1_{8}\\1_{3} & 0\end{array}\right)$ and put $e_{i}=e_{i}\epsilon_{11}^{\prime}(1\leqq i\leqq 6)$ , where

$\epsilon_{1}^{\prime}\in \mathfrak{D}_{0}^{\prime},$ $\epsilon_{1^{2}}^{\prime}=\beta^{\prime},$
$\epsilon_{11}^{\prime}=-2-(1+\sqrt{\beta^{\prime}}- 31\epsilon_{1^{\prime}})$ . Put further $K=k(\sqrt{\beta^{\prime}})$ . Then $W=\{e_{1}$ ,

... , $e_{6}\}_{K}$ is a maximal totally isotropic subspace of $V_{K}^{\prime}\epsilon_{11}^{\prime}$ , which is now viewed
as a 12-dimensional quadratic vector space over $K$. Let $W^{\prime}=\{e_{7}, \cdots , e_{12}\}_{K}$ be a
complementary totally isotropic subspace such that $S(e_{i}, e_{j+6})=\delta_{ij}(1\leqq i, j\leqq 6),$ $S$

denoting the symmetric bilinear form on $V_{K}^{\prime}\epsilon_{11}^{\prime}$ . $ln$ terms of this basis, one can
show that the second Clifford algebra $\mathfrak{C}_{2}$ (in the sense explained in 6) corresponds
to the simple component of the even Clifford algebra $C^{+}(S)$ whose unit element is

given by $\frac{1}{2}\{1+\prod_{i=1}^{6}(e_{i}e_{i+6}-e_{i+6}e_{i})\}$ . From this, one can conclude by a straight-

forward calculation that $\mathfrak{C}_{2}\sim(\beta^{\prime}, \gamma^{\prime})$ .

9. The cases ${}^{3}D_{4}$ and ${}^{6}D_{4}$ . Let $G_{1}$ and $G_{1}^{\prime}(=\prod_{i=1}^{3}G_{1i}^{\prime})$ be simply connected

Steinberg groups over $k$ of type $3D_{4}$ (or $6D_{4}$) and $3(3A_{1})$ (or $6(3A_{1})$), respectively.
Then, there is a cubic extension $k_{1}^{\prime}$ of $k$ such that $G_{1}^{\prime}=R_{k_{1}/k}(G_{11}^{\prime})$ , and the
splitting field $k^{f}$ for $G_{1}^{\prime}$ is the smallest Galois extension (of degree 3 or 6) of
$k$ containing $k_{1}^{\prime}$ . One has

(12) $\left\{\begin{array}{l}Z_{1}\cong E_{2}\times E_{2},\\Z_{1}\cong E_{2}\times E_{2}\times E_{2}(=R_{k_{1}^{\prime}/k}(E_{2})).\end{array}\right.$

In view of the operations of the Galois group on $Z_{1}$ and Z\’i, it is easy to see
(as in 5) that one has a k-isogeny $\varphi_{1}$ of $G_{1}^{\prime}$ onto $G_{1}(\{\alpha_{1}, \alpha_{3}, \alpha_{4}\})$ if and only if
$G_{1}$ has the same splitting field $k^{\prime}$ . One puts also $G_{1^{\prime}}^{\prime}=G_{1}(\{\mu\})$ , where $\mu$ is the
lowest root. Then (as in 4) one can show that all the assumptions of Lemma
1 are satisfied, provided $k$ satisfies $(P_{2})$ . Moreover, if one calls $z_{i}$ the generator
of the center of $G_{1i}^{\prime}(i=1,2,3)$ , one sees that $\varphi_{1}(z_{1}z_{2})$ and $\varphi_{1}(z_{1}z_{3})$ are generators
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of $Z_{1}$ and $\varphi_{1}(z_{1}z_{2}z_{3})$ is the generator of $Z_{1}^{\prime\prime}$ . One fixes once and for all the
isomorphisms (12) defined by this choice of the generators. Then, by the same
argument as before one obtains the following

THEOREM 3. Let $G$ be a simply connected absolutely simple algebraic group
of type $D_{4}$ defined over $k$ . Suppose there exists a regular k-closed subgroup $G^{\prime}$

of type $3(3A_{1})$ or $6(3A_{1})$ . Then, $G$ is of type $3D_{4}$ or $6D_{4}$ (with the same ‘ nuclear’
field $k^{\gamma 6)}$). If $G^{\prime}$ is k-isomorphic to $R_{k_{1}/k}(SL(1, \mathfrak{D}^{\prime}))$ , where $k_{1}^{\prime}$ is a cubic exten-
sion of $k$ and $\mathfrak{D}^{\prime}$ is a quaternion algebra over $k_{1}^{\prime}$ , then $\gamma(G)$ is given by the Z-
part of $R_{k_{1}/k}^{*}(c(\mathfrak{D}^{\prime}))\in H^{2}(k, Z^{\prime})$ .

In particular, if there is a quaternion algebra $\mathfrak{D}$ over $k$ such that $\mathfrak{D}^{\prime}$

$=\mathfrak{D}\otimes_{k}k^{\prime}$ (as is always the case when $k$ is a local field), then it can easily be
seen that $\gamma(G)=1$ .

University of Chicago
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