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§1. Introduction. The generalized boundary value problem of Dirichlet
type for the Laplace operator in arbitrary region D of Euclidean space R¥
was studied by R.S. Martin [8] It is shown in [8] that any non-negative
harmonic function on D is represented in the form of an integral over the
set of so-called minimal positive harmonic functions; the set of minimal func-
tions corresponds to ‘ideal boundary’ of D which we call Martin boundary.
On this subject, we may find in work of a more general nature.

Recently the theory of Martin boundary has been connected with the
theory of Markov processes; Martin boundaries for Markov chains have been
constructed by many authors, especially by J. L. Doob [3], G. A. Hunt and
T. Watanabe [10]. M.G. Sur has constructed the Martin boundary for
the linear elliptic operator of second order in an arbitrary region DC R?,
which corresponds to a diffusion process in ). His method is achieved along
the contents of Martin’s paper [8], but mostly due to the probabilistic treat-
ment.

In the present paper, we shall construct the Martin boundary for a linear
elliptic differential operator of second order in a subdomain D of a manifold
M (D may coincide with M) by means of purely analytical treatment, as a
direct extension of Martin’s method, and show that, if a part S of the boundary
dD of the domain D considered in M is ‘smooth’ and the elliptic operator is
regular on D-S, then S is homeomorphically imbedded into the Martin bound-
ary; in general, we do not assume any regularity of dD and any restriction
on the behavior of the elliptic operator near dD. Our method is essentially
same as Martin’s method in except the result on the correspondence be-
tween the smooth part of 9D and a subset of the Martin boundary. However
we use some properties of fundamental solutions of diffusion equations shown
in the author’s previous papers [5], [6], instead of some classical results in
potential theory which are well known in the case of usual Laplace operator
but whose extension to the case of general elliptic operators is not necessarily

evident.
The contents of the present paper are as follows. In §2, we state some
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properties of fundamental solutions of diffusion equations and some properties
of solutions of Dirichlet problem. In §3, we construct the Martin boundary
for a linear elliptic operator A of second order, and we prove, in §4, the
integral representation formula of positive A-harmonic functions. In §5,
extremal (=minimal in Martin’s paper functions are characterized and it
is shown that every positive A-harmonic function admits of exactly one ca-
nonical representation which involves only extremal functions. The arguments
in §§3 and 4 are not entirely same as the corresponding parts in [8]. How-
ever, once the results in §§3 and 4 are established, the argument in §5 can
be achieved in the same way as in [8]. So, in §5, we state only the outline
of the procedure. In §6, we establish some theorems on imbedding the smooth
part of the boundary of the domain into the Martin boundary. Contents of

§ 6 is not contained in works by R.S. Martin and M. G. Sur [9]. In Ap-
pendix, we give the proofs of preliminary lemmas stated in § 2.

§2. Preliminaries. Let D be a subdomain of an orientable N-dimensional
C=-manifold M (N=2), and A be a second order elliptic differential operator
defined in D as follows:

Au(x) = —== [\/a(x) @i 210 au(x) ] bi)- au(x)

where || a¥(x)|| and ||b%(x)| are contravariant tensors of class C* in D and
a(x)=det || a¥(x)||~*. We require neither regularity of the boundary of D, nor
restriction on the behavior of | a¥(x)| and | b%x)|| near the boundary of D.
We only assume that there exists at least one non-constant and non-negative
valued function u(x) satisfying Au(x)=0 in D?.

A subdomain £ of M is called a domain with property (S) if the boundary
of £ consists of a finite number of (N—1)-dimensional simple closed hyper-
surfaces of class C3.

The adjoint operator A* of the differential operator A is defined by

[ (2. au(x) bi(x)u(x)],

and we have the following Green’s formula (2.1).

_ 1°) If £ is a subdomain of D with property (S) and with compact closure
2 c D¥, and if u(x) and v(x) are functions of class C' on £ and of class C? in
£, then

A¥*u(x) =

1 9
Va® ox

1) We omit the summation sign ), according to the usual rule of tensor calculus.
2) This assumption implies that D itself is not a compact manifold.
3) @ denotes the closure of 2 as a subset of M.
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f {Au(x) - v()—u(x) - A¥v(x)}dx
@.1) g

_ f { au(x) V()4 B u(x)w(x)—ulx) av(x) }de:
_ou(x)
on

where and B(x) respectively denote the outer normal derivative of u(x)

and outer normal component of | b%x)| on the boundary 82 of the domain £,
and dx(=+a(x) dx* --- dx¥) and de‘ respectively denote the volume element in
D and the hypersurface element on 62 with respect to the Riemannian metric
defined by the tensor | a;(x)| (= a"(x)| ).

The following facts 2°), 3°) and 4°) are implied by the results of the
author’s previous paper [6]%.

2°) For any domain £ as stated in 1°), there exists one and only one
fundamental solution Uy(t, x, ) of the initial-boundary value problem for the
parabolic equation:

(22) DU Au i O, 00)X 2, uli= 1 ulscaa =0

the function Uy(t, x, ¥) is also the fundamental solution of the initial-boundary
value problem for the adjoint parabolic equation:

0 .
2.2%) S =Au i (0, )X 2, lim=1s, U|scro=¢ -

Uy(t, x, y) satisfies that

Ugyt, x, ) =0 for any <¢, x, ¥y € (0, c0)xX2x 2 ; the equality
@3 [ holds if and only if at least one of x and y belongs to 02,
and also that

jQU.Q(ts X, Z)U!J(sx Z, y)dZ: Ug(t+5: X, y) and j‘ﬂU.Q(ty X, Z)dz é 1

2.4) _

for any 't,s>0 and any x,ye Q.
Furthermore
(25) Gaolx, )= [ Udlt, x, )dt

is well-defined whenever x, v 2 and x=y, and is the Green function of the
boundary value problem for the elliptic equation:

(26) Au:f in ‘Qr qu;QZSD,

that is, the unique solution of is given by

4) Differential operators A and A* in the present paper correspond to A* and A
in [6] respectively.
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@) () = [ Galx, NIy~ [, PEEED. o),

where f(x) and ¢(x) are assumed to be Holder-continuous on 2 and on 02
respectively. Gg(x, y) is also the Green function of the boundary value prob-
lem for the adjoint elliptic equation:

(2.6%) A*u=f in 2, ulse =¢;

the solution of (2.6%) is given by a formula similar to [2.7). Gga(x, y) satisfies
that

2.8) A,Go=0 1in Q—{y} and Gglog-ty =0
as a function of x for any fixed y = 2, and
(28*) A;kG_Q: 0 in Q—{x} and G_Qlag—{x} =0

as a function of y for any fixed x < Q.
3°) Let {D,;n=0,1,2,---} be a sequence of domains with property (S)
such that D, is compact and D, C D,,,C D for any n=>0 and that lim D, = D,

n—o0

and put

2.9 U, x, y)=Up,(t, x,y) and G,(x, »)=Gp,(x,y) (n=1,2,-)
(see the above article 2°)). Then

2.10) Uyt x,9) = U, (t, x,¥) for any <, x,y) € (0, 00)xD,xD, (n=1,2,--),
and

21D U(t, x, y)= lim U,(¢, x, y)

is well-defined on (0, c0)X DX D and is independent of the choice of sequence
{D,}, U(t, x,y) is a fundamental solution of the initial-boundary value problem
of the form (2.2) and also that of the form (2.2%) considered in (0, co)x D.
(Uniqueness of solutions of these initial-boundary value problems does not
always hold unless D is compact.)

4°) 1If a part of the boundary 0D of D consists of a simple hypersurface
S of class C* and if ||a¥(x)| and || b%(x)| are of class C? on D-+S, then we can
choose the sequence {D,} stated in 3°) in such a way that 9D, S contains
a relatively open subregion of S and D, D C D,,, (instead of: D,c D,., in
3°)) for any n=1 and that lim 0D, \S=S. In this case,

n— o

@12 Glx, 3= [ U, x y)dt

is well-defined whenever x,y< D+S and x+# 7y, and is independent of the
choice of {D,}. G(x, ) satisfies that

(2.13) A,G=0 in D—{y} and Glg, =0
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as a function of x for any fixed y = D+S, and
(2.13%) A¥G=0 in D—{x} and Glg»n=0

as a function of y for any fixed x D+S. Furthermore, we may easily show
the following facts (2.14)-(2.17):

(2.14) 0= Gu, N E G, ) (1, y €Dy x# ), n=1,2, -,
(2.15) Hm G.(x, ) =G(x, y) (x, y€ D+S; x+3),
0> aUng, X, ) > 0U i (t, x, )
n, on,
(2.16) (xeD,,yeoD,nS) n=1,2,--,
0> 96,2 — 0Gun(x, y)
on, = on,
and
lim BUn(z;,lx, M GU(t,nx, Moo
(2.17) ‘ 2ol ! . ! (xeD,yeS).
: Yy X, y) _ o\ X, y) -
m =, = bn. %

If 2 is a subdomain of D such that 2 =80, 2, where each £, is a sub-
domain of D with property (S) and that 2 isa compact subset of D, then the
above stated results may be applied to the domain £; here we choose the
sequence {D,} in such a way that lim D, = and lim oD, \S=S where

n—> n—0

for a suitable neighborhood V, of x, V0% is contained
in only one of 0Q2,—0%2,, 02,—082, and 02, N\ 082,

Similar results to those in 2°) may be obtained in this case. For example,
the unique solution of the boundary value problem:

2.6" Au=f in Q, u|;g':go,

is given by the formula:

S=1{ x€0R2;

@) ut) == G, NFdy—[ 250D oy,

Y

where f(x) and ¢(x) are assumed to be Hélder-continuous on 2 and on 02

respectively—cf. and [2.7).
5°) Let {D,} be as mentioned in 3°), and y(z) be a continuous and non-
negative valued function on D with support contained in D, and satisfying

j y(2)dz=1. For any function u(x) defined on D, and any function H(x, y)
D

defined almost everywhere on D, x D, (for certain m and n), we put

(2.18) u(y)= fD r(ulx)dx, H(y ; ¥) :j‘D r(H(x, y)dx
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and

) | = {00250 . 2 13

(2.19)

N 0H(x, L
| VH(x, 3| = {at 2EE D) OB D) A3

whenever the right-hand side of each formula makes sense (for example,

| N,Gu(x, ¥)| is defined whenever x D,,y D, and x+# ).

Let 2 be a subdomain of D. A function u(x) is said to be A-harmonic in
0 if it satisfies Au(x)=0 in Q.

Proof of the following lemmas will be given in Appendix.

LemMA 2.1. If u(x) is A-harmonic in £2, then u(x) takes neither the maxi-
mum nor the minimum at any interior point of £.

This fact implies the following

COROLLARY. If u(x) is continuous on £ and A-harmonic in 2, and if
w(x)=0 on 082, then u(x)>0 in 2; here the smoothness of 02 does not neces-
sarily assumed.

LEMMA 2.2. Let {u,(x)} be a sequence of A-harmonic functions in 2 and
assume that either i) {u,(x)} converges to a function u(x) uniformly on any
compact subset of 2, or ii) it converges to a locally bounded function u(x)
monotonically in n. Then u(x) is A-harmonic in £.

LEMMA 2.3. If {uxx); A€ A} is a family of A-harmonic functions on
and is uniformly bounded on any compact subset of 2, then {| Nuyx)|; 1€ A}
is uniformly bounded on any compact subset of £.

LEMMA 24. Assume that £ is a domain with property (S) and containing
D,, and that u(%) is a function non-negative and of class C* on D2 (m being
fixed and =1), A-harmonic in D, N\ Q2 and satisfying u(x)=0 on (DN 2)—D,
for some n<m. Then there exists a bounded Borel measure on 02 N\D, such
that

_ 0Gn(x, ¥)
u(x)—f 02nB, 0Gu(y; )
and (@2 N Dy)=u(y).

6°) It follows from Theorem 2 in that, if there exists a non-constant
positive A-harmonic function in D, then

du(y) for any x=D,NRQ

2.20) Gl )= UG, x,9)dt (xyeD;x#y)

is well-defined and is a Green function of the elliptic differential operator A.
This fact plays a fundamental role throughout the present paper. In such
case, we have the following

LEMMA 2.5. Let Gulx,y) (n=1,2,---) be as mentioned in 3°) and G(x, y)
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be as defined just above. Then
(2.21) G(x, ) =lim G,(x, y)

uniformly on EXF for any mutually disjoint compact subsets E and F of D,
and

(2.22) lim G(x, y)=c0  for any z€ D.

-z
Y-z

LEMMA 2.6. If E is a compact subset of D and F is a subset of D—(E\UD,)
relatively closed in D, then

_G(x, )
(2.23) P GGy S

Proofs of these two lemmas will be given in Appendix.

§3. Construction of the ideal boundary. By means of 6°) in §2, it is
sufficient to consider the case where a Green function is well-defined by (2.20).

In the sequel, we assume the existence of the Green function G(x, y) de-
fined by (2.20), and we fix a sequence {D,} of subdomains of D as mentioned
in 3°) of §2 and a function y(x) as mentioned in 5°) of §2. Let G.(x,%)
(n=1,2,---) be as defined in 3°) of §2, and put

_ Gx, ) =1.2 ...
K. (x,y)= Gl 19) (n=1,2,---) and
3.1 G )
Uy
Kx, )= GG ;)
(see (2.18)). Then, by means of 6°) in §2, we may see that

32 { K(x, y) is positive and A-harmonic in x€ D—{y} for any fixed

ye D, and is continuous in y & D—{x} for any fixed x D,

lim K,(x, y) = K(x, ¥) uniformly on EXF for any

3.3) : .

mutally disjoint compact subsets E and F of D
and
3.4 lm K(x, y) = oo for any ze D.

Tz
Y-z

It is also clear that
3.5) Kiy;»n=1 for any ye D (see .

LEMMA 3.1. Let F, be a compact subset of D and F, be a subset of D—F,
relatively closed in D. Then

3.6) sup K(x,y)<co and sup | LA, ») | <oo.

rEF1,YEF, XEF,YycFy
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PrOOF. The first inequality in (3.6) is nothing else than ‘the conclusion
(2.23) of Lemma 2.6. Furthermore {K(-,y);y €< F,} isa family of A-harmonic
functions in the domain D—F,, and is uniformly bounded on any compact
subset E of D—F, by means of Lemma 2.6. Hence, by Lemma 2.3,
{INK(.,»)|;y<= F,} is uniformly bounded on the compact set F,; this fact
implies the second inequality of (3.6), q.e.d.

For any vy and v’ in D, we define

, K(x, v)W—K(x, y
7 o 0=J, LRGSRt
Then ;—

LemMMA 3.2. The function p(y,y") is a metric in D, which defines the same
topology as the original one in D.

Proor. It is clear that p(y, y’) is finite, non-negative, symmetric and that
it satisfies the triangular inequality and vanishes if y=y’. If p(y, y)=0,
then K(x,y)=K(x,»") for almost all xe D, by (3.7). Since K(x,y) is A-
harmonic in D—{y}, K(x, )= K(x, y’) for all xe D,—{y, '}, and accordingly
for all xe D—{y,y’} by the unique continuation theorem of Aronszajn [1].
Hence we get y=73’ by virtue of (3.2) and (3.4). Thus we see that p(y, y") is
a metric in D. To prove the remaining part, it is sufficient to show that the
topology defined by p is equivalent to the original one in D, for any n.
Since D, is compact with respect to the original topology, we have only to
prove that, if a sequence {,} of points in D, converges to a point y in D,
with respect to the original topology, then lim p(y,, ¥)=0 holds. For any

such sequence {y,}, we have lim K(x, y,)=K(x,y) for almost all x D, (in

fact, this convergence holds for any x& D—{v, ¥, ¥, -+, ¥,, ---} by virtue of
(3.2)), and hence lim p(y,,»)=0 by (3.7) and by Lebesgue’s convergence theorem.

LEMMA 3.3. D s totally bounded with respect to the metric p.
ProOOF. It suffices to prove that any sequence {y,} C D contains a sub-
sequence {y,,} satisfying lim (¥, Yn,)=0. If v, D, for infinitely many

n’s, then such subsequence clearly exists by virtue of Lemma 3.2 since D, is
compact. If {y,, n=n,} © D—D, for some n,, then the family {K(-,,); n = n,}
of functions considered on D, is uniformly bounded and equi-continuous since

sup K(x, y)<oo and sup | VLK(x, )| <o
xeﬁo,yc—‘,D-Dl xeﬁo,yED—Dl .
by Lemma 3.1. Hence, by the Ascoli-Arzela theorem, {K(.,y,);v=1,2, -}
converges uniformly on D, for a suitable subsequence {n,}; this fact implies
that lim o(yn, Yu,) =0, q.e.d.

Y,y oo

Let ® be the completion of D with respect to the metric p; the function
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o(y,y") naturally extended to ®XD will be denoted by the same notation.
Then

THEOREM 3.1. With respect to the metric p, ® is complete and compact,
and ®—D 1is closed subset of ®. The relative topology in D arising from the
metric is equivalent to the original topology in D.

PrROOF. We have only to prove that ®—D is closed in ® with respect to
o, since the other assertions are evident from the argument just above. Sup-
pose that a sequence {&,} in ®@—D converges to a point y& D. Then y= D,
for some m, while, for each n, there exists a sequence {x,,;v=12,---}C D
such that lirg 0(xpy, E,)=0. For any fixed n, only a finite number of x,,’s may

belong to D,.., (since, otherwise, the sequence {x,,;v=1,2,+-} would have an
accumulating point in the compact set D,., with respect to p by Lemma 3.2),
and hence there exists v, such that x,=x,, belongs to D—D,., and that
p(x,, £,) <1/n. Hence we obtain that

0(Xny M) = (2, En)-F 0, »)—0 as n—oo;

this contradicts to the fact: x, ¢ Dy+y, v < D, and D, D,y Theorem 3.1 is.
thus proved.

It is clear that ®—D has no inner point, and the above theorem implies
that D is an open subset of ® with respect to p. So we can state the fol-
lowing

DEFINITION. The set ©S=®—D is called the ideal boundary or Martin
boundary of D for the elliptic operator A.

THEOREM 3.2. The function K(x, ) is extended to a function continuous
on DX®D—{{z,z);ze D}, and the extended function K(x,y) is A-harmonic in
xe D—{y} for any fixed y = D.

ProOF. For any £ ©&, there exists a sequence {y,}C D such that
}Lircr}o 0(¥u, & =0. Then, for any D,, there exists n,, such that y, € D—D,,,, for

any n > n,. The family of functions {K(-, y,); n > n,} is uniformly bounded
and equi-continuous on D,, by Lemma 3.1; here m is arbitrary. Hence, by
the Ascoli-Alzela theorem and by diagonal process, we may take a subsequence
{n,} such that the sequence of functions {K(., y,);v=1,2,---} converges to
a function v(x) uniformly on any compact subset of D, and v(x) is A-harmonic
on D by Lemma 2.2. If {z,} is a sequence in D such that il_{l; 0(Zm, £)=0,

and if {K(-, zn,);v=1,2,.--} converges, for a subsequence {m,}, to a certain
A-harmonic function w(x) on D uniformly on any compact subset of D, then

] K(‘xi yny)—K(x, Zmu) , —
fpo TF K G, 30 )—K (o 20y | = PO Zm) = P OF0(E, Zm)
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and hence, by Fatou’s lemma, we get

: ‘ K(x: ynp)’"K(x’ va) I —
[ v@—w@ dslim | remen ot dx=0,

which implies v(x)=w(x) on D,, and accordingly on the whole domain D by
the unique continuation theorem of Aronszajn [I]. From this argument, we
may see that {K(.,y,);n=1,2,---} for the original sequence {y,} converges
to v(x) uniformly on any compact subset of D and that v(x) depends only on
£ (€ ©) and is independent of the sequence {y,}. Hence we can define K(x, &)
by

K(x, 5):7122{‘} K(x, ya)

for any sequences {y,} C D such that lim p(y,, §)=0. Thus K(x, y) is defined

on DX®D—{{z,z);z< D}, and it may be seen from [Lemma 31, [Theorem 3.1
and the above definition of K(x, &) for £ =©& that K(x, y) is continuous in y
on ®—{x} for any fixed x= D and A-harmonic in x on D—{y} for any fixed
yeD and that

sup K(x,y)<oco and sup | NLK(x, y)| < oo
F F

xEE,ye rEE,ye

for any compact subset E of D and any closed subset F of ® such that ENF
is empty. Hence K(x, ) is continuous on DX®D—{<z,z); z= D}.

COROLLARY 1. For any compact subset E of D and closed subset F of D
such that ENF 1is empty, the function K(x,y) is uniformly continuous on
EXF with respect to the metric p.

This fact immediately follows from since ® is, and accord-
ingly EXF is, compact with respect to the metric p.

COROLLARY 2. If £, 7@ and K(x,&)=K(x,7) for any x D, then §=n.

ProoF. Let {x,} and {¥,} be sequences in D such that Ll_r.g 0(x,, £)=0 and

lim p(y,, 7)=0. Then if follows from the assumption that

_ | K(x, ©—Kx,pl
—f,,o TH K, §—K(x, 7y =0

‘which implies that &=r7.

dx

§4. The function u;y(x) and the integral representation. Hereafter we
shall consider the compact metric space ® with metric p, and the terms: open,
closed, interior, etc., will be understood in the sense of this metric considered
in ®. However, only the boundary notation @ and the closure notation — will
denote respectively the boundary operation and the closure operation con-
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sidered in the original manifold M.

Let ¥ be the totality of closed subsets F of ® such that F° D is a
subdomain of D with property (S) (see §2), where F° denotes the interior of
F. Let ¢ be a function of class C?* on D such that 0=¢(x)=1 and that the
support of ¢, which we shall denote by spt (¢), is a compact subset of D, and
let 2 be any subdomain of D with property (S) such that spt(p)cRcC2cCD
and 2 is compact.

Let Fe ¥ be fixed, and let u(x) be a non-negative A-harmonic function on
D—F°®, For any ¢ and £ with properties stated above, we define the func-
tion ug(x; ¢, 2), by means of the formula (2.7/), satisfying that

Aug(x; 0, 2)=0 in 2—F and
ur(x; 0, D=9e@Xux) on 9L2—F).
Then ug(x; ¢, 2)=0 for any x 2—F. Further we put

(CHY)

4.2) up(x; @)= sup up(x; @, 2)
and
4.3) up(x) = sgp up(x; @)

where £ in ranges over all domains as stated above for any fixed ¢,
and ¢ in ranges over all functions as stated above.
LEMMA 4.1. If spt(p)Cc R C Q' C Q' D, then

4.4) up(x; @, DS uplx; o, QY u(x) for any x=Q—F.

PROOF. Both uz(x; ¢, £2) and uy(x; ¢, 2’) are A-harmonic in £2—F. Hence,
comparing the ‘boundary values’ on 0(2—F) and using Corollary to Lemma
2.1, we obtain the first inequality of (4.4). The second inequality may be
proved similarly.

LEMMA 4.2. ug(x; ¢, D,) is defined for sufficiently large m, and is mono-
tone increasing with respect to m. Furthermore,

4.5) Hmug(x; ¢, D) =uplx; ) =u(x) for any xe D—F

and up(x; @) is A-harmonic in D—F.
PROOF. Since spt (¢) is compact subset of D=1im D,,, we have spt (p)=D,,

m=oo

for sufficiently large m, and hence up(x; ¢, D,,) is well-defined for any such m
and is monotone increasing with respect to m by Lemma 4.1. Proof of (4.5)
may be achieved in the same way as that of Lemma 1 in [8, §3, p. 1517, and
the A-harmonicity of uz(x; ¢) may be seen by Lemma 2.2.

5) For any relatively closed set E in D, the statement ‘u(x) is A-harmonic on E’
means that #(x) is A-harmonic in a domain containing E.
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LEMMA 43. If 0= o =¢’, ¢ and ¢’ being as stated above, then
(4.6) up(x; @) Sup(x; o) =u(x) for any xe D-—F.
ProoF. For any m such that spt(¢’)C D,, we may show that
up(x; @, Dp) Zuplx; ¢, D) <u(x) for any xe D,—F

by comparing the ‘boundary values’ on o(D,—F) and using Corollary to
Lemma 2\1. Hence, letting m— oo, we obtain (4.6) by virtue of
LEMMA 4.4. Let {¢,} be a monotone increasing sequence of functions with
properties stated above, and assume that lim {x; ¢,(x)=1}°=D. Then ug(x; @)
n—co
1s monotone increasing with respect to n,

“.n limup(x; ¢,) =ug(x) Sulx) for any xeD—F

and uyx(x) is A-harmonic in D—F.
Proor. The monotonicity of uz(x; ¢,) with respect to n is clear by
Lemma 4.3, and the remaining part may be proved similarly to Lemma 4.2.
Let {¢,} be a sequence of functions of class C? on D such that 0=¢,(x)=1
and that
1 on D,

on D-—D,,

@n(x) =
and put
UFn(X) = up(x; ©n, Dp) and  ul (x) =up(x; ¢©5)

for any m>n >0. Then it follows from those lemmas stated above that

4.8 ul (D Tuf(x) as m1eo (for any fixed n)
and
4.9) uy (x) T up(x) as nfoo

for any x= D—F and that

. if u(x) and v(x) are non-negative and A-harmonic on D—F°
(4.10)

and if u(x)=v(x) in D—F, then uz(x)=vy(x) in D—F.

By means of the formula (2.7), we have

@ unw=—f e o yuiyds, (xeDu—F)
0FND, on,
since ¢,(»)=0 on aD,,. __BG_D%:',:(_X,_y)_ is non-negative and tends to
Y

_ 0Gp-p(%, ¥)
on,

and (2.17)). Hence letting m—oco and then n—oo in (4.11), we obtain by (4.8)
and (4.9) that

monotonically as m-—-oco for any x& D and y < dF (see (2.16)
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“4.12) up(x) = — [ apﬁ%‘& W(3)dS, (xe D—F).

LEMMA 4.5. Let u,(x) (v=1,2,--) and u(x) be non-negative A-harmonic
Sfunctions on D—F°. Then;—
1) If limu,(x) = u(x) on OF, then 11m Cu, Jp(x) = up(x) tn D—F.

y—)OQ

i) If lim u,(x) = u(x) on 0F and zf there exists a majorant v(x) to all of
u,(xys on D—F° where v(x) is A-harmonic on D—F°, then lim [u,]z(xX)=uz(x)
in D—F. ’

PrROOF. The first assertion is clear by the formula (4.12) and Fatou’s

lemma since —ﬁ%ﬂzo. The second assertion also may be proved by
Yy

(4.12) and Lebesgue’s convergence theorem since f { -B—G’%F(—x—y)—} v(»)dS,

=vp(x)<co for any fixed xe D—F.

LEMMA 4.6. If F,F' % and FOF’, then [upleX)=up(x) in D—F for
any non-negative A-harmonic function u(x) on D—(F")°.

ProoOF. By means of the fqrmula (2.7), we have

. 0Gp, (%, )

F — Dip—F\*)y F _
uf=—[  SEPrn 2t ()dS,  (£€ Da—F)
since uZ,(¥y)=0 on 0D,,. Letting m—co and then n—co, we get

UpX) = jap BGDa,:l(x 2) up(y)dS, (x€ D—F)

by the same argument as we have derived (4.12) from (4.11). On the other
hand, if we replace u(y) in (4.11) by uz(y), we get

Cr )= aGl’éF(" D up(3)dS, (xe D—F).

Hence we obtain [uz (%) = up(x) for any x= D—F.
COROLLARY. If F,F'c & and FOF', then up(x)=uzp(x) in D—F.
This is clear from (4.7), (4.10) and Lemma 4.6.
LEMMA 4.7. If F,F/,F"e$ and F\UF' DF", then

up(X)+up () Z upx) in D—F\JF),
PrOOF. If m>n>m’>n’, then
ul () =u(x) = ul(x) on OF N(Dp—F)
ul () ubn () =
ubn () =ulx)=uf;;(x) on OFN(D,—F)

and
Ul () ub (%) = 0=uZ,(x) on 08D,—(F\JF),

and both uf,(x)+uf,(x) and ufl,(x) are A-harmonic in D,,—(F\J F’). Hence, by
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means of Corollary to Lemma 2.1, we get

UL () uln(x) Z ufipdx) in Dp—(F\J FY).
Letting m— oo, then n—oco, then m’—oco and then n’—co, we obtain the con-
clusion of this lemma by means of [4.8) and (4.9}

Now, for any closed subset I” of &, we denote by Fp the totality of the
sets F & such that F° DI, and put

(4.13) up(x) = inf ug(x)
Fe§p

for any non-negative A-harmonic function u(x) in D. Then;—
LEMMA 4.8. For any closed subset I" of &, there exists a monotone decreas-
ing sequence {F,} C%p such that im F,=1I". Furthermore

n—00

4.14) lim up,(x) = up(x) < u(x)

for any such sequence {F,}, and up(x) is A-harmonic in D.

The existence of such sequence {F,} may easily be shown. Proof of
is just the same as that of Lemma 1 in [8; §3, p. 151], and A-harmonicity
of up(x) may be seen by

A number of fundamental properties of the function up(x) will be derived
in the following theorem, in which u#(x) and v(x) will denote non-negative A-
harmonic functions in D, and I’, I'’, etc.—closed subsets of &.

THEOREM 4.1. The function up(x) is non-negative and A-hormonic in D,
and has the following properties:

@) u(x)=up(x) for any x= D.

() If u(x)=v(x) for any x< D, then up(x)=vp(x).

© [utvIr(d = up(D+vr).

(d) [c-ulp(x)=c-up(x) for any non-negative constant c.

(€) ue(x)=u(x).

) If I'DI7, then [upJp(x) = up(x).

(g If I'DI", then up(x)=uplx). If I', |, then upn(x)lup(x)

() upyrdx) = up(x)+up(x).

PrOOF. A-harmonicity of up(x) and the statements (a), (b), (c) and (d) are
immediate consequences of the definition of uZ,(x), (4.8), (4.9) and Lemma 4.8.

To prove (e), we take a closed set Fe®s. Then D—F° is a compact
subset of D, and accordingly D—F ° C D,, for a suitable n,. Hence, if m>n>n,,
we have uf,(x)=u(x) on d(D—F) and accordingly in D—F. Letting m— co,
and then n—co, we obtain uz(x)=wu(x) in D—F by (4.8) and (4.9). This result
implies the statement (e) by (4.13).

To prove (f), we take an arbitrary closed set Fe@p. Then, since
F°DI'DI", there exists a monotone decreasing sequence {F,} C & such that
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F,C F for any n and that lim F,,=1I"". Hence [up,17(x) = up,(x) for any n and

lim up (%) = up(x) in D—F by Lemmas h.6land 4.8, and hence we get [up]x(x).
lzr,(x) in D—F by (using u(x) as a majorant), and accordingly
Lupdp(x)=up(x) in D by [(4.13).

The first assertion of (g) is evident from since I' D'’ implies FrCFp.
For the second assertion, the sequence {ur,(x)} is monotone decreasing with.
respect to n, and hence v(x) :},Lr;l ur,(x) exists and = up(x) for any xD. On

the other hand, for any Fe §p, lim/[’, =1 CF° and each I, is compact, and

accordingly I',C F° except for a finite number of n’s. Hence we have v(x)
=lim ur,(*) =< up(x), which implies that v(x) S up(x) by [(4.13) Therefore we

get up(x)=1lim up,(x).

Finally the assertion (h) is proved as follows. For any Fe & and F'e¥p,.
we have F°\UF/°>DI'UI'" and accordingly there exists F” € §pyp. such that
FUF'DF”, Hence, by Lemma 4.7, up(x)+up{x) = tp. (%) = upyp(x) in D—(FIF).
Since F and F’ respectively run over ¥ and §r. independently, we obtain (h).
from the above inequality.

THEOREM 4.2. If u(x) is non-negative and A-harmonic in D and I' is a
closed subset of ©, then there exists a bounded Borel measure pp on I' such
that

(4.15) Uup(x) = j K &dpp@®)  in D,

and pp(l) = up(y).
The uniqueness of such g, does not always hold as shown in [8; §5].
Proor OF THEOREM 4.2. For any F & & not intersecting with D, and
any m and n (m > n), there exists a bounded Borel measure pf, on 0FND,
such that

uf’,m(x):j _ K (x, )dpE.(y) for any xe D,—F and
0FND,,

(4.16) _

5 (0F N D) =ull, () S uy)

by (with 2 =D—F) and[3I). Since {¢f,; m=1,2, -} is a sequence
of Borel measures on the compact set 0F N D, uniformly bounded by u(y), a
suitable subsequence {uf,} converges to a Borel measure pZ on 0FND,
weakly as bounded linear functionals on C@FND,). On the other hand, by

means of (3.3), lim K,,(x, ¥)= K(x, ) uniformly in ¥ in the compact set dF N\ D,
for any fixed x. Hence, letting m =m’—co in we obtain by that
u;’;’(x):j _ K(x, y)dpE(y) for any xe D,—F and

8FND,

(4.17) a
uFO@F N\Dy) S uf () =u(p).
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Similarly, since {¢%;n=1,2,---} may be considered as a sequence of Borel
measures on the compact set 0F uniformly bounded by u(y), we may show that

uF(x):jaFKu, Wdpe(y) for any xe D—F and
4.18)

pr@F) Surly) =u(y)
for a suitable bounded Borel measure p, on 0F. Now we take a monotone
decreasing sequence {F,} C ¥y such that F,CD—D, and lim F,=1". Then

n—oo

{¢r,} may be considered to be a sequence of Borel measures on the compact
set F, uniformly bounded by u(y). Hence a suitable subsequence {yp,/} con-
verges to a bounded Borel measure g, on I, weakly as bounded linear func-
tionals on C(F,). Since {ur,; n=m} is a sequence of measures on F,, for any
fixed m, pp is a measure on F,; here m is arbitrary. Hence gy is a measure

on I’ = ﬁ F,. Letting F=F,, and m’—oco in (4.18), we obtain [(4.1I5); accord-

m=1

ingly we get up(y)=pur(I") by and (3.5).
" THEOREM 4.3 (Representation theorem). If u(x) is non-negative and A-
harmonic in D, then there exists a bounded Borel measure on & such that

(4.19) u(x)= | K &dp@  in D

and p(@)=u(y). Conversely, for any bounded Borel measure p on &, the for-
mula (4.19) represents a non-negative A-harmonic function u(x) in D.

Proor. The first part of this theorem immediately follows from Theorem
4.2 (with I' =) and (e) in Theorem 4.1. The converse statement is proved
as follows. For any compact subset E of D, K(x, §) is uniformly continuous
on EXS by Corollary 1 to Theorem 3.2. Hence the integral in (4.19) is approx-
imated uniformly on E by means of ‘Riemann sum, that is, the function of
the form

(4.20) S K(x, &), with  ¢’s>0.
y=1

Since any function of the form (4.20) is non-negative and A-harmonic in D, so
is the function u(x) defined by (4.19) by virtue of Lemma 2.2.

§5. The extremal functions and the uniqueness theorem. In this §, we
shall give a characterization of the extremal A-harmonic functions and men-
tion the existence of a unique canonical representation in terms of extremal
A-harmonic functions.

The argument in the preceding sections are similar to, but not quite the
same as, those in the corresponding sections in Martin’s paper [8]. However,
all properties of non-negative A-harmonic functions corresponding to those
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established in §3 of [8] and also some properties corresponding to those
stated in §1 and quoted in §4 of [8] are already shown in §4 of the present
paper. So we may achieve the essentially same arguments for A-harmonic
functions as those for classical harmonic functions in §4 of [8]—only some
minor technical modifications may be necessary. Thence it seems not to be
necessary to mention the arguments in detail. We shall state only the outline
of the process to give a characterization of the extremal A-harmonic functions
and to get a unique canonical representation.

By definition, a positive A-harmonic function u(x) in D is said to be ex-
tremal® if every non-negative A-harmonic function in D not exceeding® u(x)
is a constant multiple of u(x).

Since K&x)=K(x, &) is positive and A-harmonic in x< D for any fixed
£e®, [K&p(x) is defined for any closed subset I’ of & as stated in the
preceding section.

LEMMA 5.1. Let u(x) be positive and A-harmonic in D and extremal, let
B be any Borel subset of &, and assume that

(G.1) u(x) = jBKoc, £)du(€)>0 for any xeD.

Then u(x)=u()K(x, &) for some point £ = B. (Cf. Lemma 1 in §4 of [8])

From this lemma immediately follows that

COROLLARY 1. Every extremal positive A-harmonic function in D is a
positive multiple of K(x, &) for some & @.

COROLLARY 2. If K&(x) is extremal, and I' is a closed subset of & such
that [K&)p(x) is positive, then & is in I

Now we put

&) =[KE)(p) for any £

({&€} is the closed set which consists of the single point &). Then,

THEOREM 5.1. The function ¢(§) takes only two possible values 1 and 0.
The function K&x) is extremal if and only if ¢(&)=1. (Cf. Theorem I in §4
of [8])

THEOREM b5.2. The set ©,={£=&; ¢(§)=0} is an F,-set (possibly closed
or empty). (Cf. Theorem II in §4 of [8])

In fact, we may show that &, is the sum of the monotone increasing
sequence {/",} of closed (possibly empty) subset of & defined as follows:

[K&(r)<1/2 for any F § such that £ F°
and that the p-diameter of F is less than 1/n

6) It is called minimal in Martin’s paper [8]
7) “v(x) does not exceed u(x)’ means that v(x) Zu(x) for any x<D.
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By virture of these two theorems, we may see that &, and
€, =6-6,={{c6;y¢é=1}

are Borel subsets of © and we can state the following definition of the
essential part of the Martin boundary and that of a canonical representation
involving only those K(x, &£)’s which are extremal.

DEFINITION 1. &, is called the essential part of the Martin boundary ©.

DEFINITION 2. A bounded Borel measure ¢ on & is called canonical if
wS)=0. A representation of the form given in Theorem 4.3 is called a
canonical representation if the measure p occurring in it is canonical

The following lemmas will give some steps to approach the theorem estab-
lishing the unique existence of a canonical representation. These may be
proved by the essentially same arguments as proofs of corresponding lemmas
in §4 of [8]; Lemma 4.5 in the present paper corresponds to part (€) of
Theorem II in §1 of [8] which is used in the proof of Lemma 2 in §4 of [8].

LEMMA 52. Let {I",} be as stated above. Then ur,(x)=0 for any positive
and A-harmonic function u(x) in D and any n.

LEMMA 53. For any positive A-harmonic function u(x)in D and any >0,
there exists a closed subset I' of &, such that u(y) < up(y)+e.

LEMMA 54. Let I" and I'’ be closed subsets of © such that I' NI’ is
empty and I''C S, and let ¢ be an arbitrary positive number. Then there
exists F e Fp such that [K&(y)<e for any E 1.

LEMMA 5.5. Let I' be a closed subset of & and B be a Borel subset of ©,
not intersecting with I'. Let u(x) be a harmonic function of the form

)= [ K(x &du(@).
Then up(x)=0.
(Cf. Lemmas 2, 3, 4 and 5 in §4 of [8])
Using these lemmas, we may prove the following
THEOREM 5.3. Every non-negative A-harmonic function u(x) in D admils
of exactly one canonical representation, that is, u(x) is represented in a unique
manner in the form

(52) u={ K, &dp@ weD)

where p, is a bounded Borel measure on ©,. The canonical measure p, repre-
senting u(x) is characterized by the relation:

(53) ur()=[ K, &dm&  (x€D)

for every closed subset I' of S.
COROLLARY 1. The function up(x), defined for closed subsets I' of &,
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admits of extension to a countably additive function of Borel sets in ©.
COROLLARY 2. In order for the representation of Theorem 4.3 to be unique
in general, it is necessary and sufficient that &, is empty.

§ 6. Imbedding of the smooth boundary of the domain into the Martin
boundary. In this §, we prove the following

THEOREM 6.1. Assume that a part S of the boundary 0D of the domain
D considered in M consists of an (N—1)-dimensional simple hypersurface of
class C3% and that | a¥(x)| and | b%x)| are of class C* on D+S. Then S is
homeomorphically imbedded in the essential part ©, of the Martin boundary
&®: more precisely, for any point z € S, there corresponds a point &, €S, in
one-to-one way, and the mapping @ defined by

(6.1) D(x)=x for x&€ D and O(z)=E&, for z€ S

gives a homeomorphism of D-+S as a subspace of the original manifold M onto
D+-{&,; z= S} as a subspace of the compact metric space D.
THEOREM 6.2. Under the assumption of the preceding theorem, we have

K, &)= 8G(x 2) / 8G(r 2). for any x€ D and any z€ S,

is an extremal A-harmonic function of x& D for

and accordingly — 7QG§;;’§L

2

any fixed ze S.

Under the assumption of [Theorem 6.1, we denote by dis (x, ¥) the Riemann-
ian distance between the points x and y in D+S defined by | a;{(x)|.

LEMMA 6.1. For any fixed x< D, K(x, y) is extended to a continuous func-
tion of y in D+S—{x} by putting

6.2) K(x, 2)= aGa(j; 2 JOCUD  for zes.

PrROOF. Let z, be any fixed pointin S. Then, as is shown in Lemma 2.1
in [5], there exists a neighborhood U(z,) of z, and a local coordinate system
(at, -+, x) defined in U(z) with respect to which 1) S\ U(z,) is represented by

the equation x*=0, ii) x* >0 in D~ U(z,) and iii) aggf) = — agg) for any

ze SN U(z,). We may take a domain £ with property (S), with compact closure
and such that
(Ue)ND)UD,cQcD

and that (02—S) does not intersect with U(z,)\W D,. Then, by a similar argu-
ment to the proof of Lemma 2.6 (given in Appendix), we may obtain that

8) See in §5.
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Gl )= Gl D=, G 220402 ds,

for any x and ye 2.

On the other hand, Gg(x, y) is of class Ctin (x, ) € 2X2—{{z, 2); z= 2} and
satisfies

0Ga(x, ) <0 and 0°Go(z, ¥)

on, onon, 0

whenever x€ 2,y, z€ 0f2 and y # z. Hence, for any fixed x= 2, G(x, y) is of
class C! in y € 2—{x} and satisfies dG(x, ¥)/0n, <0 for any y = 92 N S. There-
fore, using the properties i), ii) and iii) of the local coordinate stated above,
we may easily show that K(x,y) is continuous in y on D-+4S—{x}, for any
fixed xe D, if K(x, z) is defined by for z& S.

LEMMA 6.2. For any z<S, there corresponds one and only one point
£,€© such that limp(y,, £,)=0 holds for any sequence {y,} C D satisfying

Y00

lim dis (y,, 2) =0.

y—o0

Proofr. For any given z < S, we may take a sequence {z,} C D such that
lim dis (z,, 2)=0. The sequence {z,} has no accumulating point in D with

N0

respect to p, while ® is (p-) compact. Hence there exists a subsequence
{z,,} of {z,} and a point £ =& such that lim p(z,, §)=0. Let {y,} be an

arbitrary sequence in D satisfying lim dis (y,, 2)=0. Then, by Lemma 6.1, we
have g
lim| K(x, y,)—K(x, z,,)| =0 for any fixed xe& D,.

y—00

Hence we obtain lim p(y,, z,,)=0 by means of the definition of the metric

p, and accordingly we get limp(y,, £)=0. This result implies also that
lim p(z,, £)=0 for the original sequence {z,} and consequently that the point

& =& is uniquely determined by z€ S; so we may write &§=¢,.
is thus proved.

COROLLARY.
0G(x, 0G(y ;
R A e
for any x€ D and any z< S,
This is a direct consequence of and the preceding two lemmas.

LEMMA 6.3. i) If E is a compact subset of D+S and F is a subset of
D—(E\JD,) relatively closed in D, then K(x,) is bounded on EXF.
i) For any z,z’ €S and any sequence {x,} C D satisfying lim dis (x,, 2") =0,

1t holds that lim K(x,, £,)=oc0 or O according as 2’ =z or 2z’ + z.
(Part i) is a generalization of Lemma 2.0)
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PrROOF. i) By virtue of the assumption, we may take a domain £ with
property (S) and such that EUD,c2c D—F, (EU D) N (02—S) is empty and
02 is compact. Then, by the same argument as the proof of Lemma 2.6 (given
in Appendix), we may obtain that

_ aGQ(x z)

(6.3) G, 3)=Gala, ) +[  {—"5=5-}6(z 54,
for any x€ £ and ye D

where
6.9 Go(x,3)=0 for xe Q2 and yeD—Q,
and that there exist constants C; and C, such that
65) 0= 20858 < for any xe E and 2905
and
(6.6) 0<C = ——a—G%LZ—;iL <C, for any z€02-S.

z

Hence, combining (6.3) and (6.4), we get

C.,G(z, y)dS,
K(.X,y): G(X y) < j& — Cl < oo

CTiN T oG,

for any x€ E and y € D—£2, and accordingly K(x, ) is bounded on EXF.
ii) It follows from the assumption that there exists a subdomain £ of D
with property (S), with compact closure and such that

E={z,2, %, Xgy *+ , X, -} and F=D—2

satisfy the assumption in i); accordingly we may use (6.3), (6.4), (6.5) and (6.6)
_0G(y,2)
0

stated above. Furthermore, since — is non-negative and continuous

2
in y = D—{z}, there exists a constant C, such that

aG(y,

0= — z) -<C, for any ye0df2-S.

Hence, by Corollary to Lemma 6.2, we have

_0Go(xy, 2)
on
> z >0
= 0Go(r; ’
0G(xy, 2) - %%’—i)——fag_SC1C3dSy
K (o )= — OB _ z
L TE (R 0G o(Xn, 2) 0Go(xy, ¥)
—eeria ) Seedng) j -C,dS,
n, - on,  Jeas  On,

G,

9) 2z’ may coincide with z.
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On the other hand, it may be seen from the construction of the fundamental
solution Ugy(t, x, ¥) and the Green function Gg(x, y) (stated in that

}LLIE  On,
and
lim 245 _o  uniformily in y < B
n—Co0 y

for each compact subset B of 0f£ not containing z’. Hence we obtain
lim K (x,, &,)=oc0 or 0 according as z' =z or z’ + z.
n—00

LEMMA 64. If lim p(y,, §,) =0 where {y,} C D and z € S, then lim dis (Y., )
=0.

PROOF. Suppose that lim dis (y,, 2) =0 does not hold. Then there exists

N=200

a neighborhood U(z) of z and a subsequence {y,,} of the sequence {y,} such
that y,, & U(z) for any v». Let {x,} be a sequence in U(z)nD such that
lim dis (x,, 2)=0. Then, by part i) of Lemma 6.3 (with E={z, x, x,, ---} and

m=—co

F=D—U(z)), there exists a constant C such that
6.7) KX, yu) =C for any m and v.
Since lim p(¥,,, ;) =0 and K(x, y) is continuous in y= D with metric p for
any ﬁ£$§ x, it follows from (6.7) that
Kl E)=C for any m,

which contradicts to part ii) of Lemma 6.3.

From this lemma, immediately follows that

COROLLARY. z# 2z (z,z/ €S) implies &,+ &, and accordingly, for any
§ =&, there exists at most one point z< S such that £=E§,.

LEMMA 6.5. For any point z < S, there corresponds a point &, =S in one
to one way, and the mapping @ defined by

6.19) OxX)=x for x€ D and D(2)=E&, for z& S

gives a homeomorphism of D+S as a subspace of M into D.

(This lemma would be nothing else than if & be restricted
to &,. We first prove this lemma, by virtue of which we can prove the fol-
lowing two lemmas which imply that @(&)C &,. Combining this result with
the above lemma, we can finally obtain [Theorem 6.1.)

Proor. For any ze S, there corresponds one and only one point £, &
with the property stated in From this fact and Corollary to
it follows that (6.1") defines a one-to-one mapping of D-+S into
D(= D+®). The bi-continuity of the mapping @ at any point x< D is obvious.
We shall prove the bi-continuity at any point z < S.
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For any sequence {x,} C D and any z < S, lim dis (x,, 2) =0 implies, and is
implied by, lim p(@(x,), @(2)) = lim p(x,, £&,) =0 by means of and 6.4.

Therefore, it is sufficient to prove, under the condition: {z, z;, z,, ---} C S, that
lim p(¢,,, &) =0 if and only if lim dis (z,, 2)=0.

-0

For each z,< S, we may take x, < D such that both dis (x,, z,) <1/n and
0(x,, €,,) <1/n hold (by Lemma 6.2), and consequently

dis (1, 2)— - = dis (2, 2) = dis (v, D+ and

p(xm Sz)'—'in g ‘O(Szn; Sz) é p(xn, Ez)_{_%“ .

Since lim dis (x,, z) =0 implies and is implied by lim p(x,, £&,)=0 (by Lemmas

n->00

and [6.4), we may see from the above inequalities that lim dis (2, 2)=0 is

7 co

equivalent to lim p(§,,, &,)=0.

LEMMA 6.6. Let I' be a compact subset of S, and u(x) be a non-negative
A-harmonic function in D satisfying that lim w(x)=0 for any z€I'. Then

dis(z,2)—0
the canonical measure p, representing u(x) satisfies that p,(I")=0.

PrOOF. For any e¢>0, there exists a subdomain £ of M with property
(S) and such that 2 D7 and u(x)<e for any x< 2 " D; here we may assume
that £ does not intersect with D, and that the set F=Q ~D is compact. In
view point of the preceding lemma, we may consider that I’ is a compact
subset of © and accordingly that F < %, (see §4). Then the function uZ,(x)
(defined in §4) satisfies uf,(x)=<¢ on d(D,—F), and accordingly on D,—F by
Lemma 2.1. Hence, by means of (4.8), (4.9), (4.13) and (2.18), we have

up(y) < up(y) =lim uZ () = lim lim uZ,() < ¢ j r(dx=e.
n-+co N0 M—>00 Dy

On the other hand, the formula (5.3) in Theorem 5.3 implies that u (y)=p, ")
since K(r; &)=1 by (3.5) and Theorem 3.2. Hence we get p,(I")<¢; here ¢ is
arbitrary. So we may conclude that p,(I")=0.

LEMMA 6.7. For any z,=S, K(x,&,,) is an extremal positive harmonic
Sfunction of x.

PRrOOF. Let p; be the canonical measure representing the function

6.8) u(x) =K(x, &),
and suppose that K(x, &,,) is not extremal. Then
(6.9) ({E.,,1)=0.

Let 2 be an open subset of M containing z, and with compact closure 2.
Then, for any compact set I'C S 2—{z,}, the function u(x) defined by (6.8)
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satisfies the assumption of by virtue of part ii) of
Hence we have p¢,(I")=0, and accordingly we may obtain p,(SN£2—{z})=0.
Combining this result with (6.9), we get p,(SN£2)=0. Hence the canonical
representation of u(x) is reduced to the following form:

(6.10) un=[_ K ).

Now let {x,} be a sequence in D £ such that lim dis (x,, z,)=0. Then, by
part i) of Lemma 613 and [Theorem 3.2, we have
sup  K(x, §)=C

fesS-2,nz1
for a suitable constant C. Hence we obtain from that
sup u(x,) < Cuy(S) = Cu(y) < oo.
nzi

On the other hand, it follows from (6.8) and part ii) of that
lim u(x,) = co contrary to the above result. Hence K(x, &,;) must be extremal.

PrROOF OF THEOREMS 6.1. AND 6.2. By there corresponds
£,€© for any ze S in one-to-one way, and the mapping @ defined by (6.1)
gives a homeomorphism of D+S as a subspace of M into ®= D-+S. Further-
more, for any z& S, K(x, £,) is extremal by and hence &, belongs
to &, by and in §5. Therefore we get the conclu-
sion of [Theorem 6.1, and accordingly follows immediately from
Corollary to Lemma 6.2 and Lemma 6.7

Appendix. Proofs of Lemmas stated in § 2.

In the sequel, notations should be understood as stated in § 2.

PROOF OF LEMMA 2.1 may be easily obtained by Lemma 3.1 and Theorem
1 in the author’s previous paper [7].

PROOF OF LEMMA 2.2. Let £, be an arbitrary subdomain of 2 with com-
pact closure 2, 2 and with property (S). Then, by the formula [2.7), we
have

- aG.Q (x: y) . .
==, e u0)dS, =12,

Hence, if i) or ii) in is assumed, we obtain by Lebesgue’s conver-
gence theorem that

u(x) = —f

Consequently u(x) is A-harmonic in £, ; this shows by arbitrariness
of 2..

jgﬂﬁ’,

»)
: Lda ds, .
001 Ony (3)dS,
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ProOF oF LEMMA 2.3. For any compact subset E of £, there exists a
domain 2, with property (S) such that EC 2, = 2, 2 and that 2, is compact.
Then, by the formula (2.7), we have

(%) = ——f ﬁgl&x’_&ul(y)dSy for any x€ 2.
601  Omy,

On the other hand,

qw aG.Ql(xJ y) <

(e}
on,

sup
TEE,YE021

since £ and 0£2, are mutually disjoint compact sets, and

sup AI w(y) | < oo

yEQ1,2€

by the assumption. Hence {| Wu,(x)|; 2 < A} is uniformly bounded on E.
ProOF OF LEMMA 24. For any ye0df2 N D,, ~a%~ denotes the outer
Yy

normal derivative at ¥y as a boundary point of the domain D, "\ £ (accordingly
it denotes the inmmer normal derivative at y as a boundary point of D,,—Q).
Since Au(y)=0 in D, n £ and u(y)=0 on d(D,, "\ 2)—D,, we have, by Green’s
formula (2.1),

3t J pyyn gl % YUY = f oo 1 Unly 2 yu(dy
= ou(y) oU(t, x, %)
fo j‘agﬂDn{ Um(t: X, y) any - any u(y)}dsy

for any x€ D, N 2.
Integrating in ¢ over (0, o), we obtain

® w@={  {Gulw 9 50— 0085 s y)Las,

ny

by means of (2.5) and by the fact; lim Un(t, x, v)dy =0, which follows from

t—00 ¥ Dy

@ [Tat{ Ut % p)dy < oo
0 D
proved in [6]'®. Next we put
_ 0Gp,-g(x, ¥) 1
3) v(x)= fag-nn—’m——“@dsy :

Then v(x) is A-harmonic in D,—£ and

10) See Lemma 10. 1 in [6].
11) As for the equalities (3), (4) and (b), readers should remember the definition.

mentioned at the beginning of this proof of

f
° on,
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u(x) for x€e 22N\ D,
v(x) = {

for x€ d(D,,—2)—D,.

On the other hand, for any fixed x< D,, N\ £, G,(x, y) satisfies A} G,(x, y)=0
in D,,—£ as a function of y by (2.8%). Hence, by Green’s formula (2.1), we have

, 6‘v<y> __0Gn(x,9)
4 0= jm {Gm( -2 anyﬁu(y)}dsy for any x& D, 2.

Substracting (4) from (1) term by term, we get

{5) u(x):jag Gnlx, y){ au(y) av(y) }dS for any xe D, N\ 2.

Here we prove that the function ¢(») defined by

ou(y) _ duv(y)
g 6 =t ——
(6) oY=

on,
is non-negative on 92 N\ D,. Clearly ¢(y) is continuous on a2 N\ D,. Hence,
if (y,) <0 at some point ¥, €92 N\D,, then ¢(»)<0 in V(y,)N02 for a
suitable neighborhood V(y,) of y,. On the other hand, it may be seen from
the construction of U,(Z, 1, ¥) (stated in [6]) that

) im Gur, )= lim [ U, x 3)dt=oo
=Yg, Y—YoY 0

T=Y0,YYo

Hence, by means of (5), we obtain lim u(x) < 0 contrary to the assumption of
T=YQ

this lemma. Thus we see that ¢(¥)=0 on 02 " D,. Hence

dp(y) = Gy ; Me(3)dS,
is a Borel measure on 02 N D,, and it follows from (5) and (6) that

G, )

u(x):jmmn eNCEED)

dp(y) for any xe D, N\ Q2.

Multiplying both sides by y(x) and integrating in x over D,, we obtain

u(r) =02 N D,).
Lemma 2.4 is thus proved.
PROOF OF LEMMA 2.5. We may see from [2.5) ﬁ (2.10), (2.11) and (2.20) that

GG, 3= UG, 5, 3)dt=lim [ "UL(, 5 )dt = lim Ga(x, 3)

whenever x#y and that {G,(x, ¥)} is monotone increasing with respect to n.
On the other hand, G(x, y) and G,(x, y) are continuous on the compact set
ExF whenever D,DE\UF. Hence the convergence in holds uniformly
on ExF. Furthermore, by the fact (7) mentioned in the proof of
just above, we have
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lim G(x, v)= lim G,(x, y) =00

X2, Y-z L2, Y—2

for any z & D, ; here m may be chosen arbitrarily. Hence holds for any
ze D, .

PROOF OF LEMMA 2.6. By virtue of the assumption of we
may take a domain £ with property (S) and such that EUD,cQ2c@2cD-F
and £ is compact. Then we may see from in [7] that, for any
xeQ,yeD and t >0,

oUo(t—7

58U, 2, 5)dS,

t
U(t: X, y) - Uﬂ(t) X, y)——‘fo dfj‘a_{)

where we define Uy(t, x, y)=0 for any x& Q,yeD— and t>0. Integrating
both sides of the above equality in ¢ over (0, c0), we obtain, by and (2.20),

@® G, 9)=Gala [, {—-2985D Y60, yyas,

for x€ 2 and ye D
where we put
9) Gglx,»)=0 for xe 2 and ye D—0.
Since E\U D, and 02 are mutually disjoint compact sets, we have, for suitable
constants C; and C,,

(10) og—ai%(,’;ﬁgcl for any xe E and z < 00
and
a1 0<c2§—_aﬁ%_(g;_z)_gcl for any z< 09 .

Hence, combining (8) with (9), we get

Gry) _ §.Ci- Gl ps,

= = G, < o0
G(@; jagcz . G(z, ¥)dS,

C,

for any xe E and y € D—£; this fact implies (2.23).
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