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\S 1. Introduction. The generalized boundary value problem of Dirichlet
type for the Laplace operator in arbitrary region $D$ of Euclidean space $R^{N}$

was studied by R. S. Martin [8]. It is shown in [8] that any non-negative
harmonic function on $D$ is represented in the form of an integral over the
set of so-called minimal positive harmonic functions; the set of minimal func-
tions corresponds to ‘ ideal boundary ‘ of $D$ which we call Martin boundary.
On this subject, we may find in [2] work of a more general nature.

Recently the theory of Martin boundary has been connected with the
theory of Markov processes; Martin boundaries for Markov chains have been
constructed by many authors, especially by J. L. Doob [3], G. A. Hunt [4] and
T. Watanabe [10]. M. G. \v{S}ur [9] has constructed the Martin boundary for
the linear elliptic operator of second order in an arbitrary region $D\subset R^{N}$ ,

which corresponds to a diffusion process in $D$ . His method is achieved along
the contents of Martin’s paper [8], but mostly due to the probabilistic treat-
ment.

In the present paper, we shall construct the Martin boundary for a linear
elliptic differential operator of second order in a subdomain $D$ of a manifold
$M$ ( $D$ may coincide with $M$) by means of purely analytical treatment, as a
direct extension of Martin’s method, and show that, if a part $S$ of the boundary
$\partial D$ of the domain $D$ considered in $\mathbb{J}I$ is ‘ smooth ’ and the elliptic operator is
regular on $D+S$, then $S$ is homeomorphically imbedded into the Martin bound-
ary; in general, we do not assume any regularity of $\partial D$ and any restriction
on the behavior of the elliptic operator near $\partial D$ . Our method is essentially
same as Martin’s method in [8] except the result on the correspondence be-
tween the smooth part of $\partial D$ and a subset of the Martin boundary. However
we use some properties of fundamental solutions of diffusion equations shown
in the author’s previous papers [5], [6], instead of some classical results in
potential theory which are well known in the case of usual Laplace operator
but whose extension to the case of general elliptic operators is not necessarily
evident.

The contents of the present paper are as follows. In \S 2, we state some
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properties of fundamental solutions of diffusion equations and some properties
of solutions of Dirichlet problem. In \S 3, we construct the Martin boundary
for a linear elliptic operator $A$ of second order, and we prove, in \S 4, the
integral representation formula of positive A-harmonic functions. In \S 5,

extremal ($=minimal$ in Martin’s paper [8]) functions are characterized and it
is shown that every positive A-harmonic function admits of exactly one ca-
nonical representation which involves only extremal functions. The arguments
in \S \S 3 and 4 are not entirely same as the corresponding parts in [8]. How-
ever, once the results in \S \S 3 and 4 are established, the argument in \S 5 can
be achieved in the same way as in [8]. So, in \S 5, we state only the outline
of the procedure. In \S 6, we establish some theorems on imbedding the smooth
part of the boundary of the domain into the Martin boundary. Contents of
\S 6 is not contained in works by R. S. Martin [8] and M. G. \v{S}ur [9]. In Ap-
pendix, we give the proofs of preliminary lemmas stated in \S 2.

\S 2. Preliminaries. Let $D$ be a subdomain of an orientable N-dimensional
$C^{\infty}$ -manifold $M(N\geqq 2)$ , and $A$ be a second order elliptic differential operator
defined in $D$ as follows:

Au $(x)=\frac{1}{\sqrt{a(x)}}\frac{\partial}{\partial x^{i}}[\sqrt{a(x)}a^{ij}(x)\frac{\partial u(x)}{\partial x^{j}}]+b^{i^{1)}}(x)\frac{\partial u(x)}{\partial x^{i}}$

where $\Vert a^{ij}(x)\Vert$ and $\Vert b^{i}(x)\Vert$ are contravariant tensors of class $C^{2}$ in $D$ and
$a(x)=det\Vert a^{ij}(x)\Vert^{-1}$ . We require neither regularity of the boundary of $D$ , nor
restriction on the behavior of $\Vert a^{ij}(x)\Vert$ and $\Vert b^{i}(x)\Vert$ near the boundary of $D$ .
We only assume that there exists at least one non-constant and non-negative
valued function $u(x)$ satisfying Au$(x)=0$ in $D^{2)}$ .

A subdomain $\Omega$ of $\mathbb{J}I$ is called a domain with property (S) if the boundary
of $\Omega$ consists of a finite number of $(N-1)$-dimensional simple closed hyper-
surfaces of class $C^{3}$ .

The adjoint operator $A^{*}$ of the differential operator $A$ is defined by

$A^{*}u(x)=\frac{1}{\sqrt{a(x)}}\frac{\partial}{\partial_{X^{i}}}\sqrt{a(x)}[a^{ij}(x)\frac{\partial u(x)}{\partial x^{j}}b^{i}(x)u(x)]$ ,

and we have the following Green’s formula (2.1).
1) If $\Omega$ is a subdomain of $D$ with property (S) and with compact closure

$\overline{\Omega}\subset D^{3)}$, and if $u(x)$ and $v(x)$ are functions of class $C^{1}$ on $\overline{\Omega}$ and of class $C^{2}$ in
$\Omega$ , then

1) We omit the summation sign $\sum$ according to the usual rule of tensor calculus.
2) This assumption implies that $D$ itself is not a compact manifold.
3) $\overline{\Omega}$ denotes the closure of $\Omega$ as a subset of $M$.
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$\int_{\Omega}\{Au(x)\cdot v(x)-u(x)\cdot A^{*}v(x)\}dx$

(2.1)
$=\int_{\partial\Omega}\{\frac{\partial u(x)}{\partial n}v(x)+\beta(x)u(x)v(x)-u(x)\frac{\partial v(x)}{\partial n}\}dS_{x}$ ,

where $\frac{\partial u(x)}{\partial n}$ and $\beta(x)$ respectively denote the outer normal derivative of $ u(x\rangle$

and outer normal component of $\Vert b^{i}(x)\Vert$ on the boundary $\partial\Omega$ of the domain $\Omega$ ,

and $dx(=\sqrt{a(x)}dx^{1}\cdots dx^{N})$ and $dS_{x}$ respectively denote the volume element in
$D$ and the hypersurface element on $\partial\Omega$ with respect to the Riemannian metric
defined by the tensor $\Vert a_{ij}(x)\Vert(=\Vert a^{ij}(x)\Vert^{-1})$ .

The following facts 2’), 3’) and $4^{\circ}$ ) are implied by the results of the
author’s previous paper $[6]^{4)}$ .

2’) For any domain $\Omega$ as stated in 1), there exists one and only one
fundamental solution $U_{\Omega}(t, x, y)$ of the initial-boundary value problem for the
parabolic equation:

(2.2) $\frac{\partial u}{\partial t}=Au$ in $(0, \infty)\times\Omega,$ $u|_{t=0}=u_{0},$ $ u|_{x\in\partial\Omega}=\varphi$ ;

the function $U_{\Omega}(t, x, y)$ is also the fundamental solution of the initial-boundary
value problem for the adjoint parabolic equation:

$(2.2^{*})$ $\frac{\partial u}{\partial t}=A^{*}u$ in $(0, \infty)\times\Omega,$ $u|_{t=0}=u_{0},$ $ u|_{x\in\partial\Omega}=\varphi$ .
$U_{\Omega}(t, x, y)$ satisfies that

$-$

(2.3) $\left\{\begin{array}{l}U_{\Omega}(t,x,y)\geqq 0forany\langle t,x,y\rangle\in(0,\infty)\times\Omega\times\Omega.\cdot theequa1ity\\ho1dsifandon1yifat1eastoneofXandybe1ongsto\partial\Omega,\end{array}\right.$

and also that

(2.4) $\{\int_{\Omega}U_{\Omega}(t,x,z)U_{\Omega}(s,z, y)dz=U(t+forany\rightarrow t,s>0andanyx,y^{\Omega}\in\overline{\Omega}^{s.’ x,y)}$

and $\int_{\Omega}U_{\Omega}(t, x, z)dz\leqq 1$

Furthermore

(2.5) $G_{\Omega}(x, y)=\int_{0^{\infty}}U_{\Omega}(t, x, y)dt$

is well-defined whenever $x,$
$y\in\overline{\Omega}$ and $x\neq y$ , and is the Green function of the

boundary value problem for the elliptic equation:

(2.6) $Au=f$ in $\Omega$ , $ u|_{\partial\Omega}=\varphi$ ,

that is, the unique solution of (2.6) is given by

4) Differential operators $A$ and $A^{*}$ in the present paper correspond to $A^{*}$ and $A$

in [6] respectively.
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(2.7) $u(x)=-\int_{\Omega}G_{\Omega}(x, y)f(y)dy-\int_{\partial l2}^{\underline{\partial G}_{\Omega}}\partial\frac{(x,y)}{n_{y}}\varphi(y)dS_{y}$

where $f(x)$ and $\varphi(x)$ are assumed to be H\"older-continuous on $\overline{\Omega}$ and on $\partial\Omega$

respectively. $G_{!2}(x, y)$ is also the Green function of the boundary value prob-
lem for the adjoint elliptic equation:

$(2.6^{*})$ $A^{*}u=f$ in $\Omega$ , $ u|_{\partial\Omega}=\varphi$ ;

the solution of $(2.6^{*})$ is given by a formula similar to (2.7). $G_{I2}(x, y)$ satisfies
that

(2.8) $A_{x}G_{\Omega}=0$ in $\Omega-\{y\}$ and $G_{J3}|_{\partial J2-\{y\}}=0$

as a function of $x$ for any fixed $y\in\overline{\Omega}$ , and

\langle $2.8^{*}$) $A_{y}^{*}G_{\Omega}=0$ in $\Omega-\{x\}$ and $G_{\Omega}|_{\partial\Omega-\{x\}}=0$

as a function of $y$ for any fixed $x\in\overline{\Omega}$ .
3’) Let $\{D_{n} ; n=0,1,2, \cdots\}$ be a sequence of domains with property (S)

such that $D_{n}$ is compact and $D_{n}\subset D_{n\dashv 1}\subset D$ for any $n\geqq 0$ and that $\lim_{n\rightarrow\infty}D_{n}=D$ ,

and put

(2.9) $U_{n}(t, x, y)=U_{D_{l}},(t, x, y)$ and $G_{n}(x, y)=G_{D_{l}},(x, y)$ $(n=1,2. \cdots)$

(see the above article 2)). Then

(2.10) $U_{n}(t. x, y)\leqq U_{n+1}(t, x, y)$ for any $\langle t, x, y\rangle\in(0, \infty)\times\overline{D}_{n}\times\overline{D}_{n}(n=1,2, \cdots)$ ,

and

(2.11) $U(t, x, y)=\lim_{n\rightarrow\infty}U_{n}(t, x, y)$

is well-defined on $(0, \infty)\times D\times D$ and is independent of the choice of sequence
$\{D_{n}\},$ $U(t, x, y)$ is a fundamental solution of the initial-boundary value problem
of the form (2.2) and also that of the form $(2.2^{*})$ considered in $(0, \infty)\times D$ .
(Uniqueness of solutions of these initial-boundary value problems does not
always hold unless $\overline{D}$ is compact.)

4’) If a part of the boundary $\partial D$ of $D$ consists of a simple hypersurface
$S$ of class $C^{3}$ and if $\Vert a^{ij}(x)\Vert$ and $\Vert b^{i}(x)\Vert$ are of class $C^{2}$ on $D+S$, then we can
choose the sequence $\{D_{n}\}$ stated in 3’) in such a way that $\partial D_{n}\cap S$ contains
a relatively open subregion of $S$ and $D_{n}\cap D\subset D_{n+1}$ (instead of: $\overline{D}_{n}\subset D_{n+i}$ in
3’)) for any $n\geqq 1$ and that $\lim_{n\rightarrow\infty}\partial D_{n}\cap S=S$ . In this case,

(2.12) $G(x, y)=\int_{0^{\infty}}U(l, x, y)dt$

is well-defined whenever $x,$ $y\in D+S$ and $x\neq y$ , and is independent of the
choice of $\{D_{n}\}$ . $G(x, y)$ satisfies that

(2.13) $A_{x}G=0$ in $D-\{y\}$ and $G|_{S-ty\}}=0$
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as a function of $x$ for any fixed $y\in D+S$, and

$(2.13^{*})$ $A_{y}^{*}G=0$ in $D-\{x\}$ and $G|_{S-tx\}}=0$

as a function of $y$ for any fixed $\chi\in D+S$ . Furthermore, we may easily show
the following facts $(2.14)-(2.17)$ :
(2.14) $0\leqq G_{n}(x, y)\leqq G_{n+1}(x, y)(x, y\in\overline{D}_{n} ; x\neq y),$ $n=1,2,$ $\cdots$ ,

(2.15) $\lim_{n\rightarrow\infty}G_{n}(x, y)=G(x, y)(x, y\in D+S;X\neq y)$ ,

$0>\frac{\partial U_{n}(t,x,y)}{\partial n_{y}}\geqq\frac{\partial U_{n+1}(t,x,y)}{\partial n_{y}}$

(2.16) $(x\in D_{n}, y\in\partial D_{n}\cap S)n=1,2,$ $\cdots$ ,

$0>\frac{\partial G_{n}(x,y)}{\partial n_{y}}\geqq\frac{\partial G_{n+1}(x,y)}{\partial n_{y}}$

and

$\lim_{n\rightarrow x}\frac{\partial U_{n}(t,x,y)}{\partial n_{y}}=\frac{\partial U(t,x,y)}{\partial n_{y}}>-\infty$

(2.17) $(x\in D, y\in S)$ .
$\lim_{n\rightarrow}\frac{(x,y)}{n_{y}}\underline{\partial G}_{n,\partial}=\partial\frac{(x,y)}{n_{y}}>-\infty\underline{\partial G}_{n}$

If $\Omega$ is a subdomain of $D$ such that $\Omega=\Omega_{1}\cap\Omega_{2}$ where each $\Omega_{\nu}$ is a sub-
domain of $D$ with property (S) and that $\overline{\Omega}$ is a compact subset of $D$ , then the
above stated results may be applied to the domain $\Omega$ ; here we choose the
sequence $\{D_{n}\}$ in such a way that $\lim_{n\rightarrow\infty}D_{n}=\Omega$ and $\lim_{n\rightarrow\infty}\partial D_{n}\cap S=S$ where

$S=\{x\in\partial\Omega$ ;
for a suitable neighborhood $V_{x}$ of $x,$

$ V_{x}\cap\partial\Omega$ is
$contained\}$ .

in only one of $\partial\Omega_{1}-\partial\Omega_{2},$ $\partial\Omega_{2}-\partial\Omega_{1}$ and $\partial\Omega_{1}\cap\partial\Omega_{2}$

Similar results to those in 2’) may be obtained in this case. For example,
the unique solution of the boundary value problem:

(2.6) $Au=f$ in $\Omega$ , $ u|_{s-}=\varphi$ ,

is given by the formula:

(2.7) $u(x)=-\int_{\Omega}G(x, y)f(y)dy-\int_{s}\underline{\partial c}_{\partial^{(}n^{x_{y}\underline{y})_{-\varphi(y)dS_{y}}}},$ ,

where $f(x)$ and $\varphi(x)$ are assumed to be Holder-continuous on $\overline{\Omega}$ and on $\partial\Omega$

respectively–cf. (2.6) and (2.7).
5’) Let $\{D_{n}\}$ be as mentioned in 3’), and $\gamma(z)$ be a continuous and non-

negative valued function on $D$ with support contained in $D_{0}$ and satisfying

$\int_{D}\gamma(z)dz=1$ . For any function $u(x)$ defined on $D_{m}$ and any function $H(x, y)$

defined almost everywhere on $D_{m}\times D_{n}$ (for certain $m$ and $n$), we put

(2.18) $u(\gamma)=\int_{D_{m}}\gamma(x)u(x)dx,$ $H(\gamma;y)=\int_{D_{m}}\gamma(x)H(x, y)dx$
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and

\langle 2.19) $\left\{\begin{array}{l}|lu(x)|=\{a^{ij}(x)\frac{\partial_{\mathcal{U}}(x)}{\partial x^{i}}\frac{\partial u(x)}{\partial x^{j}}\}^{\frac{1}{2}}\\|R{}_{x}H(x,y)|=\{a^{ij}(x)\frac{\partial H(x,y)}{\partial_{X^{i}}}\frac{\partial H(x,y)}{\partial x^{j}}\}^{\frac{1}{2}}\end{array}\right.$

whenever the right-hand side of each formula makes sense (for example,
$|Y_{x}G_{n}(x, y)|$ is defined whenever $x\in D_{n},$ $y\in D_{n}$ and $x\neq y$).

Let $\Omega$ be a subdomain of $D$ . A function $u(x)$ is said to be A-harmonic in
$\Omega$ if it satisfies Au$(x)=0$ in $\Omega$ .

Proof of the following lemmas will be given in Appendix.
LEMMA 2.1. If $u(x)$ is A-harmonic in $\Omega$ , then $u(x)$ takes neither the maxi-

mum nor the minimum at any interior point of $\Omega$ .
This fact implies the following
$CoROLLARY$ . If $u(x)$ is continuous on $\overline{\Omega}$ and A-harmonic in $\Omega$ , and if

$u(x)\geqq 0$ on $\partial\Omega$ , then $u(x)>0$ in $\Omega$ ; here the smoothness of $\partial\Omega$ does not neces-
sarily assumed.

LEMMA 2.2. Let $\{u_{n}(x)\}$ be a sequence of $A$-hatmonic functions in $\Omega$ and
assume that either i) $\{u_{n}(x)\}$ converges $io$ a function $u(x)$ uniformly on any
compact subset of $\Omega$ , or ii) it converges to a locally bounded function $u(x)$

monotonically in $n$ . Then $u(x)$ is A-harmonic in $\Omega$ .
LEMMA 2.3. If $\{u_{\lambda}(x);\lambda\in\Lambda\}$ is a family of A-harmonic functions on $\Omega$

and is uniformly bounded on any compact subset of $\Omega$ , then $\{|Su_{\lambda}(x)|;\lambda\in\Lambda\}$

is uniformly bounded on any compact subset of $\Omega$ .
LEMMA 2.4. Assume that $\Omega$ is a domain with property (S) and containing

$\overline{D}_{0}$ , and that $u(x)$ is a function non-negative and of class $C^{1}$ on $\overline{D_{m}\cap\Omega}(m$ being

fixed $and\geqq 1$), A-harmonic in $ D_{m}\cap\Omega$ and satisfying $u(x)=0$ on $\partial(D_{m}\cap\Omega)-D_{n}$

for some $n\leqq m$ . Then there exists a bounded Borel measure on $\partial\Omega\cap\overline{D}_{n}$ such
that

$u(x)=\int_{\partial\Omega\cap\overline{D}_{n}}\partial G^{m}(\gamma;y)\partial G_{m}(x,y)d\mu(y)$ for any $ x\in D_{m}\cap\Omega$

and $\mu(\partial\Omega\cap\overline{D}_{n})=u(\gamma)$ .
$6^{o})$ It follows from Theorem 2 in [7] that, if there exists a non-constant

positive A-harmonic function in $D$ , then

\langle 2.20) $G(x, y)=\int_{0^{\infty}}U(t, x, y)dt$ $(x, y\in D;x\neq y)$

is well-defined and is a Green function of the elliptic differential operator $A$ .
This fact plays a fundamental role throughout the present paper. In such
case, we have the following

LEMMA 2.5. Let $G_{n}(x, y)(n=1,2, \cdots)$ be as mentioned in 3’) and $G(x, y)$
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be as defined just above. Then

(2.21) $G(x, y)=\lim_{n\rightarrow\infty}G_{n}(x, y)$

uniformly on $E\times F$ for any mutually disjoint compact subsets $E$ and $F$ of $D$,
and

(2.22)
$\lim_{x\rightarrow z,y\rightarrow z}G(x, y)=\infty$

for any $z\in D$ .

LEMMA 2.6. If $E$ is a compact subset of $D$ and $F$ is a subset of $D-(EU\overline{D}_{0})$

relatively closed in $D$ , then

$((2.23)$ $\sup_{x\underline{\subset}E,y\overline{\subset}F}\frac{G(x,y)}{G(\gamma;y)}<\infty$ .
Proofs of these two lemmas will be given in Appendix.

\S 3. Construction of the ideal boundary. By means of 6’) in \S 2, it is
sufficient to consider the case where a Green function is well-defined by (2.20).

In the sequel, we assume the existence of the Green function $G(x, y)$ de-
fined by (2.20), and we fix a sequence $\{D_{n}\}$ of subdomains of $D$ as mentioned
in 3’) of \S 2 and a function $\gamma(x)$ as mentioned in 5) of \S 2. Let $G_{n}(x, y)$

($(n=1,2,$ $\cdots)$ be as defined in 3’) of \S 2, and put

(3.1) $\{K(x,y)\frac{\frac{G_{n}(x,y)}{G_{n}(\gamma;y)}G(x,y)}{G(\gamma;y)}K_{n}(x,y)_{=}=$

$(n=1,2, \cdots)$ and

\langle see (2.18)). Then, by means of $6^{o}$ ) in \S 2, we may see that

(3.2) $\left\{\begin{array}{l}K(x,y)ispositiveandA- harmonicinx\in D-\{y\}foranyfi xed\\y\in D,andiscontinuousiny\in D-\{x\}foranyfi xedx\in D,\end{array}\right.$

(3.3) $\left\{\begin{array}{l}\lim K_{n}(x,y)=K(x,y)uniform1yonE\times Fforany\\n\rightarrow\infty\\muta11ydisjointcompactsubsetsEandFofD\end{array}\right.$

and

(3.4) $\lim_{x\rightarrow z}K(x, y)=\infty$ for any $z\in D$ .
$y\rightarrow z$

It is also clear that

\langle 3.5) $K(\gamma;y)=1$ for any $y\in D$ (see (2.18)).

LEMMA 3.1. Let $F_{1}$ be a compact subset $ofDandF_{2}$ be a subset of $D-F_{1}$

relatively closed in D. Then

(3.6) $ x\in F_{1},y\in F_{d}\sup_{)}K(x, y)<\infty$ and $\sup_{x\in F_{1},y\in p_{2}}|S_{x}K(x, y)|<\infty$ .
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PROOF. The first inequality in (3.6) is nothing else than the conclusion
(2.23) of Lemma 2.6. Furthermore $\{K(\cdot, y);y\in F_{2}\}$ is a family of A-harmonic
functions in the domain $D-F_{2}$ , and is uniformly bounded on any compact
subset $E$ of $D-F_{2}$ by means of Lemma 2.6. Hence. by Lemma 2.3,
$\{|WK(\cdot, y)| ; y\in F_{2}\}$ is uniformly bounded on the compact set $F_{1}$ ; this fact
implies the second inequality of (3.6), $q$ . $e$ . $d$ .

For any $y$ and $y^{\prime}$ in $D$ , we define

(3.7) $\rho(y, y^{\prime})=\int_{D_{0}}\frac{|K(x,y)-K(x,y^{\prime})|}{1+|K(x,y)-K(x,y’)|}dx$ .

Then;–

LEMMA 3.2. The function $\rho(y, y^{\prime})$ is a metric in $D$ , which defines the same
topology as the original one in $D$ .

PROOF. It is clear that $\rho(y, y^{\prime})$ is finite, non-negative, symmetric and that
it satisfies the triangular inequality and vanishes if $y=y^{\prime}$ . If $\rho(y, y^{\prime})=0$ ,

then $K(x, y)=K(x, y^{\prime})$ for almost all $x\in D_{0}$ by (3.7). Since $K(x, y)$ is A-
harmonic in $D-\{y\},$ $K(x, y)=K(x, y^{\prime})$ for all $x\in D_{0}-\{y, y^{\prime}\}$ , and accordingly
for all $x\in D-\{y, y^{\prime}\}$ by the unique continuation theorem of Aronszajn [1].

Hence we get $y=y^{\prime}$ by virtue of (3.2) and (3.4). Thus we see that $\rho(y, y^{\prime})$ is
a metric in $D$ . To prove the $re$maining part, it is sufficient to show that the
topology defined by $\rho$ is equivalent to the original one in $D_{n}$ for any $n$ .
Since $D_{n}$ is compact with respect to the original topology, we have only to
prove that, if a sequence $\{y_{\nu}\}$ of points in $D_{n}$ converges to a point $y$ in $\overline{D}_{n}$

with respect to the original topology, then $\lim_{\nu\rightarrow\infty}\rho(y_{\nu}, y)=0$ holds. For any

such sequence $\{y_{\nu}\}$ , we have $\lim_{\nu\rightarrow\infty}K(x, y_{\nu})=K(x, y)$ for almost all $x\in D_{0}$ (in

fact, this convergence holds for any $x\in D-\{y, y_{1}, y_{2}, \cdots , y_{\nu}, \}$ by virtue of
(3.2)), and hence $\lim_{\nu\rightarrow\infty}\rho(y_{\nu}, y)=0$ by (3.7) and by Lebesgue’s convergence theorem.

LEMMA 3.3. $D$ is totally bounded with respect to the metric $\rho$ .
PROOF. It suffices to prove that any sequence $\{y_{n}\}\subset D$ contains a sub-

sequence $\{y_{n_{\mathcal{V}}}\}$ satisfying $\lim_{\nu\nu\rightarrow\infty}\rho(y_{n_{\nu}}, y_{n_{\nu^{\prime}}})=0$ . If $y_{n}\in D_{1}$ for infinitely many
$n’ s$ , then such subsequence clearly exists by virtue of Lemma 3.2 since $D_{1}$ is
compact. If $\{y_{n}, n\geqq n_{0}\}\subset D-D_{1}$ for some $n_{0}$ , then the family $\{K(\cdot, y_{n});n\geqq n_{0}\}$

of functions considered on $\overline{D}_{0}$ is uniformly bounded and equi-continuous since

$\sup_{x\in\overline{D}_{0},y\in D-D_{1}}K(x, y)<\infty$
and

$\sup_{x\in\overline{D}_{0},y\in D-D_{1}}|1_{x}K(x, y)|<\infty$

by Lemma 3.1. Hence, by the Ascoli-Arzel\‘a theorem, $\{K(\cdot, y_{n_{\nu}});\nu=1, 2, \}$

converges uniformly on $\overline{D}_{0}$ for a suitable subsequence $\{n_{\nu}\}$ ; this fact implies
that $\lim_{\nu.\nu\rightarrow\infty}\rho(y_{n_{v}}, y_{n_{\nu^{\prime}}})=0$ , $q$ . $e$ . $d$ .

Let $\mathfrak{D}$ be the completion of $D$ with respect to the metric $\rho$ ; the function
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$\rho(y, y^{\prime})$ naturally extended to $\mathfrak{D}\times \mathfrak{D}$ will be denoted by the same notation.
Then

THEOREM 3.1. With respect to the metric $\rho,$

$\mathfrak{D}$ is complete and compact,
and $\mathfrak{D}-D$ is closed subset of $\mathfrak{D}$ . The relative topology in $D$ arising from the
metric is equivalent to the original topology in $D$ .

PROOF. We have only to prove that $\mathfrak{D}-D$ is closed in $\mathfrak{D}$ with respect to
$\rho$ , since the other assertions are evident from the argument just above. Sup-
pose that a sequence $\{\xi_{n}\}$ in $\mathfrak{D}-D$ converges to a point $y\in D$ . Then $y\in D_{m}$

for some $m$ , while, for each $n$ , there exists a sequence $\{x_{n\nu} ; 1)=1, 2, \}\subset D$

such that $\lim_{\nu\rightarrow\infty}\rho(x_{n\nu}, \xi_{n})=0$ . For any fixed $n$ , only a finite number of $x_{n\nu}’ s$ may

belong to $\overline{D_{m+1}}$ (since, otherwise, the sequence $\{x_{n\nu}$ ; $\iota$) $=1,2,$ $\cdots$ } would have an
accumulating point in the compact set $\overline{D_{m+1}}$ with respect to $\rho$ by Lemma 3.2),

and hence there exists $\nu_{n}$ such that $x_{n}=x_{n\nu_{n}}$ belongs to $D-\overline{D_{m+1}}$ and that
$\rho(x_{n}, \xi_{n})<1/n$ . Hence we obtain that

$\rho(x_{n}, y)\leqq\rho(x_{n}, \xi_{n})+\rho(\xi_{n}, y)\rightarrow 0$ as $ n\rightarrow\infty$ ;

this contradicts to the fact: $x_{n}\not\in D_{m+1},$ $y\in D_{m}$ and $\overline{D}_{m}\subset D_{m+1}$ . Theorem 3.1 is
thus proved.

It is clear that $\mathfrak{D}-D$ has no inner point, and the above theorem implies
that $D$ is an open subset of $\mathfrak{D}$ with respect to $\rho$ . So we can state the fol-
lowing

DEFINITION. The set $\mathfrak{S}=\mathfrak{D}-D$ is called the ideal boundary or Martin
boundary of $D$ for the elliptic operator $A$ .

THEOREM 3.2. The function $K(x, y)$ is extended to a function continuous
on $D\times \mathfrak{D}-\{\langle z, z\rangle ; z\in D\}$ , and the extended function $K(x, y)$ is A-harmonic in
$x\in D-\{y\}$ for any fixed $y\in \mathfrak{D}$ .

PROOF. For any $\xi\in \mathfrak{S}$ , there exists a sequence $\{y_{n}\}\subset D$ such that
$\lim_{n\rightarrow\infty}\rho(y_{n}, \xi)=0$ . Then, for any $D_{m}$ , there exists $n_{m}$ such that $y_{n}\in D-D_{m+1}$ for

any $n>n_{m}$ . The family of functions $\{K(\cdot, y_{n});n>n_{m}\}$ is uniformly bounded
and equi-continuous on $D_{m}$ by Lemma 3.1; here $m$ is arbitrary. Hence, by
the Ascoli-Alzel\‘a theorem and by diagonal process, we may take a subsequence
$\{n_{\nu}\}$ such that the sequence of functions $\{K(\cdot, y_{n_{\nu}});\nu=1,2, \cdots\}$ converges to
a function $v(x)$ uniformly on any compact subset of $D$ , and $v(x)$ is A-harmonic
on $D$ by Lemma 2.2. If $\{z_{m}\}$ is a sequence in $D$ such that $\lim_{m\rightarrow\infty}\rho(z_{m}, \xi)=0$ ,

and if $\{K(\cdot, z..);v=1,2, \cdots\}$ converges, for a subsequence $\{m_{\nu}\}$ , to a certain-
A-harmonic function $w(x)$ on $D$ uniformly on any compact subset of $D$ , then

$\int_{D_{0}}\frac{|K(x,y_{n\nu})-K(x,z_{m\nu})|}{1+|K(x,y_{n_{\nu}})-K(x,z_{m_{\nu}})|}dx=\rho(y_{n_{\mathcal{V}}}, z_{m_{y}})\leqq\rho(y_{n_{\mathcal{V}}}, \xi)+\rho(\xi, z_{m\nu})$
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and hence, by Fatou’s lemma, we get

$\int_{D_{0}}|v(x)-w(x)|dx\leqq\lim_{\nu\rightarrow\infty}\int_{D_{0}}\frac{|K(x,y_{n\nu})-}{1+|K(x,y_{n_{\nu}})}\frac{K(x,z_{m\nu})|}{-K(x,z_{m_{\nu}})|}dx=0$ ,

which implies $v(x)=w(x)$ on $D_{0}$ , and accordingly on the whole domain $D$ by
the unique continuation theorem of Aronszajn [1]. From this argument, we
may see that $\{K(\cdot, y_{n});n=1,2, \cdots\}$ for the original sequence $\{y_{n}\}$ converges
to $v(x)$ uniformly on any compact subset of $D$ and that $v(x)$ depends only on
$\xi(\in \mathfrak{S})$ and is independent of the sequence $\{y_{n}\}$ . Hence we can define $K(x, \xi)$

by
$K(x, \xi)=\lim_{n\rightarrow\infty}K(x, y_{n})$

for any sequences $\{y_{n}\}\subset D$ such that $\lim_{n\rightarrow\infty}\rho(y_{n}, \xi)=0$ . Thus $K(x, y)$ is defined

on $D\times \mathfrak{D}-\{\langle z, z\rangle;z\in D\}$ , and it may be seen from Lemma 3.1, Theorem 3.1
and the above definition of $K(x, \xi)$ for $\xi\in \mathfrak{S}$ that $K(x, y)$ is continuous in $y$

on $\mathfrak{D}-\{x\}$ for any fixed $x\in D$ and A-harmonic in $x$ on $D-\{y\}$ for any fixed
$y\in \mathfrak{D}$ and that

$\sup_{x\in E,y\in F}K(x, y)<\infty$ and $\sup_{x\in E,y\in F}|\tau R_{x}K(x, y)|<\infty$

for any compact subset $E$ of $D$ and any closed subset $F$ of $\mathfrak{D}$ such that $E\cap F$

$\backslash is$ empty. Hence $K(x, y)$ is continuous on $D\times \mathfrak{D}-\{\langle z, z\rangle;z\in D\}$ .
COROLLARY 1. For any compact subset $E$ of $D$ and closed subset $F$ of $\mathfrak{D}$

such that $E\cap F$ is empty, the function $K(x, y)$ is uniformly continuous on
$E\times F$ with respect to the metric $\rho$ .

This fact immediately follows from Theorem 3.2 since $\mathfrak{D}$ is, and accord-
ingly $E\times F$ is, compact with respect to the metric $\rho$ .

COROLLARY 2. If $\xi,$ $\eta\in \mathfrak{S}$ and $K(x, \xi)=K(x, \eta)$ for any $x\in D$ , then $\xi=\eta$ .
PROOF. Let $\{x_{n}\}$ and $\{y_{n}\}$ be sequences in $D$ such that $\lim_{n\rightarrow\infty}\rho(x_{n}, \xi)=0$ and

$\lim_{n\rightarrow\infty}\rho(y_{n}, \eta)=0$. Then if follows from the assumption that

$\rho(\xi, \eta)=\lim_{n\rightarrow\infty}\rho(x_{n}, y_{n})=\lim_{n\rightarrow\infty}\int_{D_{0}}\frac{|K(x,x_{n})-K(x,y_{n})|}{1+|K(x,x_{n})-K(x,y_{n})|}dx$

$=\int_{D_{0}}\frac{|K(x,\xi)-K(x,\eta)|}{1+|K(x,\xi)-K(x,\eta)|}dx=0$ ,

which implies that $\xi=\eta$ .

\S 4. The function $u_{\Gamma}(x)$ and the integral representation. Hereafter we
shall consider the compact metric space $\mathfrak{D}$ with metric $\rho$ , and the terms: open,
closed, interior, etc., will be understood in the sense of this metric considered
in $\mathfrak{D}$ . However, only the boundary notation $\partial$ and the closure notation $will$

denote respectively the boundary operation and the closure operation con-
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sidered in the original manifold $M$.
Let $\mathfrak{F}$ be the totality of closed subsets $F$ of $\mathfrak{D}$ such that $F^{o}\cap D$ is a

subdomain of $D$ with property (S) (see \S 2), where $F^{o}$ denotes the interior of
$F$. Let $\varphi$ be a function of class $C^{2}$ on $D$ such that $0\leqq\varphi(x)\leqq 1$ and that the
support of $\varphi$ , which we shall denote by spt $(\varphi)$ , is a compact subset of $D$ , and
let $\Omega$ be any subdomain of $D$ with property (S) such that spt $(\varphi)\subset\Omega\subset\overline{\Omega}\subset D$

and $\overline{\Omega}$ is compact.
Let $F\in \mathfrak{F}$ be fixed, and let $u(x)$ be a non-negative A-harmonic function on

$D-F^{o}5)$ For any $\varphi$ and $\Omega$ with properties stated above, we define the func-
tion $u_{F}(x;\varphi, \Omega)$ , by means of the formula (2.7), satisfying that

(4.1) $\left\{\begin{array}{l}Au_{F}(x.\cdot\varphi,\Omega)=0 in \Omega-F and\\u_{F}(x.\cdot\varphi,\Omega)=\varphi(x)u(x) on \partial(\Omega-F).\end{array}\right.$

Then $u_{F}(x;\varphi, \Omega)\geqq 0$ for any $x\in\Omega-F$. Further we put

(4.2) $u_{F}(x;\varphi)=\sup_{\Omega}u_{F}(x;\varphi, \Omega)$

and

(4.3) $u_{F}(x)=\sup_{\varphi}u_{F}(x;\varphi)$

where $\Omega$ in (4.2) ranges over all domains as stated above for any fixed $\varphi$ ,

and $\varphi$ in (4.3) ranges over all functions as stated above.
LEMMA 4.1. If spt $(g)\subset\Omega\subset\Omega^{\prime}\subset\overline{\Omega}^{\prime}\subset D$ , then

(4.4) $u_{F}(x;\varphi, \Omega)\leqq u_{F}(x;\varphi, \Omega^{\prime})\leqq u(x)$ for any $x\in\Omega-F$ .
PROOF. Both $u_{F}(x;\varphi, \Omega)$ and $u_{F}(x;\varphi, \Omega^{\prime})$ are A-harmonic in $\Omega-F$. Hence,

comparing the ‘ boundary values ‘ on $\partial(\Omega-F)$ and using Corollary to Lemma
2.1, we obtain the first inequality of (4.4). The second inequality may be
proved similarly.

LEMMA 4.2. $u_{F}(x;\varphi, D_{m})$ is defined for sufficiently large $m$ , and is mono-
tone increasing with respect to $m$ . Furthermore,

(4.5) $\lim_{m\rightarrow\infty}u_{F}(x;\varphi, D_{?n})=u_{F}(x;\varphi)\leqq u(x)$ for any $x\in D-F$

and $u_{F}(x;\varphi)$ is A-harmonic in $D-F$.
PROOF. Since spt $(\varphi)$ is compact subset of $D=\lim_{m\rightarrow\infty}D_{m}$ , we have spt $(\varphi)\subset D_{m}$

for sufficiently large $m$ , and hence $u_{F}(x;\varphi, D_{m})$ is well-defined for any such $m$

and is monotone increasing with respect to $m$ by Lemma 4.1. Proof of (4.5)
may be achieved in the same way as that of Lemma 1 in [8, \S 3, p. 151], and
the A-harmonicity of $u_{F}(x;\varphi)$ may be seen by Lemma 2.2.

5) For any relatively closed set $E$ in $D$ , the statement $u(x)$ is A-harmonic on $E$ ’

means that $u(x)$ is A-harmonic in a domain containing $E$ .
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LEMMA 4.3. If $0\leqq\varphi\leqq\varphi^{\prime},$
$\varphi$ and $\varphi^{\prime}$ being as stated above, then

(4.6) $u_{F}(x;\varphi)\leqq u_{F}(x;\varphi^{\prime})\leqq u(x)$ for any $x\in D-F$ .
PROOF. For any $m$ such that spt $(\varphi^{\prime})\subset D_{m}$ , we may show that

$u_{F}(x;\varphi, D_{m})\leqq u_{F}(x;\varphi^{\prime}, D_{m})\leqq u(x)$ for any $x\in D_{m}-F$

by comparing the ’ boundary values ‘ on $\partial(D_{m}-F)$ and using Corollary to
Lemma 2.1. Hence, letting $ m\rightarrow\infty$ , we obtain (4.6) by virtue of (4.5).

LEMMA 4.4. Let $\{\varphi_{n}\}$ be a monotone increasing sequence of functions with
properties stated above, and assume that $\lim_{n\rightarrow\infty}\{x;\varphi_{n}(x)=1\}^{o}=D$ . Then $u_{F}(x;\varphi_{n})$,

is monotone increasing with respect to $n$ ,

(4.7) $\lim_{n\rightarrow\infty}u_{F}(x;\varphi_{n})=u_{F}(x)\leqq u(x)$ for any $x\in D-F$

and $u_{F}(x)$ is A-harmonic in $D-F$.
PROOF. The monotonicity of $u_{F}(x;\varphi_{n})$ with respect to $n$ is clear by

Lemma 4.3, and the remaining part may be proved similarly to Lemma 4.2.
Let $\{\varphi_{n}\}$ be a sequence of functions of class $C^{2}$ on $D$ such that $0\leqq\varphi_{n}(x)\leqq 1$

and that

$\varphi_{n}(x)=\left\{\begin{array}{l}1 on D_{n-1}\\0 on D-D_{n},\end{array}\right.$

and put
$u_{nm}^{F}(x)=u_{F}(x;\varphi_{n}, D_{m})$ and $u_{n}^{F}(x)=u_{F}(x;\varphi_{n})$

for any $m>n>0$ . Then it follows from those lemmas stated above that

(4.8) $u_{nm}^{F}(x)\uparrow u_{n}^{F}(x)$ as $ m\uparrow\infty$ (for any fixed n)

and

(4.9) $u_{n}^{F}(x)\uparrow u_{F}(x)$ as $ n\uparrow\infty$

for any $x\in D-F$ and that

(4.10) $\left\{\begin{array}{l}ifu(x)andv(x)arenon- negativeandA- harmoniconD-F^{o}\\andifu(x)\geqq v(x)inD-F,thenu_{F}(x)\geqq v_{F}(x)inD-F.\end{array}\right.$

By means of the formula (2.7), we have

(4.11) $u_{nm}^{F}(x)=-\int_{\partial F\cap D_{m}}\frac{\partial G_{D_{m}-F}(x,y)}{\partial n_{y}}\varphi_{n}(y)u(y)dS_{y}$ $(x\in D_{m}-F)$

since $\varphi_{n}(y)=0$ on $\partial D_{m}$ . $-\frac{\partial G_{Dm-F}(x,y)}{\partial n_{y}}$ is $non\llcorner negative$ and tends to

$\frac{\partial G_{D-F}(x,y)}{\partial n_{y}}$ monotonically as $ m\rightarrow\infty$ for any $x\in D$ and $y\in\partial F$ (see ($ 2.16\rangle$

and (2.17)). Hence letting $ m\rightarrow\infty$ and then $ n\rightarrow\infty$ in (4.11), we obtain by (4.8),

and (4.9) that
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(4.12) $u_{F}(x)=-\int_{\partial F}\frac{\partial G_{D-F}(x,y)}{\partial n_{y}}u(y)dS_{y}$ $(x\in D-F)$ .

LEMMA 4.5. Let $u_{\nu}(x)(\iota)=1,2,$ $\cdots$ ) and $u(x)$ be non-negative A-harmonic
functions on $D-F^{o}$ . $Then;-$

i) If $\varliminf_{\nu\rightarrow\infty}u_{\nu}(x)\geqq u(x)$ on $\partial F$, then $\varliminf_{\nu\rightarrow\infty}[u_{\nu}]_{F}(x)\geqq u_{F}(x)$ in $D-F$.
ii) If $\lim_{\nu\rightarrow\infty}u_{\nu}(x)=u(x)$ on $\partial F$ and if there exists a majorant $v(x)$ to all of

$u_{n}(x)s$ on $D-F^{O}$ where $v(x)$ is A-harmonic on $D-F^{o}$ , then $\lim_{\nu\rightarrow\infty}[u_{\nu}]_{F}(x)=u_{F}(x)$

in $D-F$.
PROOF. The first assertion is clear by the formula (4.12) and Fatou’s

lemma since $-\frac{\partial G_{D-F}(x,y)}{\partial n_{y}}\geqq 0$ . The second assertion also may be proved by

\langle 4.12) and Lebesgue’s convergence theorem since $\int_{\partial F}\{-\frac{\partial G_{D-F}(x,y)}{\partial n_{y}}\}v(y)dS_{y}$

$=v_{F}(x)<\infty$ for any fixed $x\in D-F$.
LEMMA 4.6. If $F,$ $F^{\prime}\in \mathfrak{F}$ and $F\supset F^{\prime}$ , then $[u_{F^{l}}]_{F}(x)=u_{F},(x)$ in $D-F$ for

any non-negative A-harmonic function $u(x)$ on $D-(F^{\prime})^{o}$ .
PROOF. By means of the formula $(2.7^{\prime})$ , we have

$u_{nm}^{F^{\prime}}(x)=-\int_{\partial F\cap D_{m}}\frac{\partial G_{Dm^{-F}}(x,y)}{\partial n_{y}}u_{nm}^{F^{\prime}}(y)dS_{y}$ $(x\in D_{m}-F)$

since $u_{nm}^{F^{\prime}}(y)=0$ on $\partial D_{m}$ . Letting $ m\rightarrow\infty$ and then $ n\rightarrow\infty$ , we get

$u_{F},(x)=-\int_{\partial^{p}}\frac{\partial G_{D-F}(x,y)}{\partial n_{y}}u_{F},(y)dS_{y}$ $(x\in D-F)$

by the same argument as we have derived (4.12) from (4.11). On the other
hand, if we replace $u(y)$ in (4.11) by $u_{F^{\prime}}(y)$ , we get

$[u_{F^{\prime}}]_{F}(x)=-\int_{\partial F}\frac{\partial G_{D-F}(x,y)}{\partial n_{y}}u_{F^{\prime}}(y)dS_{y}$ $(x\in D-F)$ .

Hence we obtain $[u_{F},]_{F}(x)=u_{F^{\prime}}(x)$ for any $x\in D-F$ .
$CoROLLARY$ . If $F,$ $F^{\prime}\in \mathfrak{F}$ and $F\supset F^{\prime}$ , then $u_{F}(x)\geqq u_{F},(x)$ in $D-F$.
This is clear from (4.7), (4.10) and Lemma 4.6.
LEMMA 4.7. If $F,$ $F^{\prime},$ $F^{\prime\prime}\in \mathfrak{F}$ and $FUF^{\prime}\supset F^{\prime\prime}$ , then

$u_{F}(x)+u_{F},(x)\geqq u_{F},,(x)$ in $D-(FUF^{\prime})$ .
PROOF. If $m>n>m^{\prime}>n^{\prime}$ , then

$u_{nm}^{F}(x)+u_{nm}^{F^{\prime}}(x)\geqq\left\{\begin{array}{l}u_{nm}^{F}(x)=u(x)\geqq u_{n^{l^{\prime\prime}}m^{J}}^{F}(x) on \partial F\cap(D_{m^{l}}-F^{\prime})\\u_{nm}^{F^{\prime}}(x)=u(x)\geqq u_{nm^{l}}^{p;}(x) on \partial F\cap(D_{m},-F)\end{array}\right.$

and
$u_{nm}^{F}(x)+u_{nm}^{F^{\prime}}(x)\geqq 0=u_{n^{l^{\prime\prime}}m^{J}}^{F}(x)$ on $\partial D_{m}-(FUF^{\prime})$ ,

and both $u_{nm}^{F}(x)+u_{nm}^{F^{\prime}}(x)$ and $u_{\tau m}^{F^{\prime\prime}},(x)$ are A-harmonic in $D_{m},-(FUF^{\prime})$ . Hence, by
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means of Corollary to Lemma 2.1, we get

$u_{nm}^{F}(x)+u_{nm}^{F^{\prime}}(x)\geqq u_{nm^{\prime}}^{F^{JJ}}(x)$ in $D_{m^{\prime}}-(FUF^{\prime})$ .
Letting $ m\rightarrow\infty$ , then $ n\rightarrow\infty$ , then $ m^{\prime}\rightarrow\infty$ and then $ n^{\prime}\rightarrow\infty$ , we obtain the con-
clusion of this lemma by means of (4.8) and (4.9).

Now, for any closed subset $\Gamma$ of $\mathfrak{S}$ , we denote by $\mathfrak{F}_{\Gamma}$ the totality of the
sets $F\in \mathfrak{F}$ such that $ F^{o}\supset\Gamma$ , and put

(4.13)
$u_{\Gamma}(x)=\inf_{F\in \mathfrak{F}_{\Gamma}}u_{F}(x)$

for any non-negative A-harmonic function $u(x)$ in D. $Then;-$

LEMMA 4.8. For any closed subset $\Gamma$ of $\mathfrak{S}$ , there exists a monotone decreas-
ing sequence $\{F_{n}\}\subset \mathfrak{F}_{\Gamma}$ such that $\lim_{n\rightarrow\infty}F_{n}=\Gamma$ . Furthermore

(4.14) $\lim_{n\rightarrow\infty}u_{Fn}(x)=u_{\Gamma}(x)\leqq u(x)$

for any such sequence $\{F_{n}\}$ , and $u_{\Gamma}(x)$ is A-harmonic in $D$ .
The existence of such sequence $\{F_{n}\}$ may easily be shown. Proof of (4.14)

is just the same as that of Lemma 1 in [8; \S 3, p. 151], and A-harmonicity
of $u_{\Gamma}(x)$ may be seen by Lemma 2.2.

A number of fundamental properties of the function $u_{\Gamma}(x)$ will be derived
in the following theorem, in which $u(x)$ and $v(x)$ will denote non-negative A-
harmonic functions in $D$ , and $\Gamma,$ $\Gamma^{\prime}$ , etc.–closed subsets of S.

THEOREM 4.1. The function $u_{\Gamma}(x)$ is non-negative and A-hormonic in $D$ ,

and has the following properties:
(a) $u(x)\geqq u_{\Gamma}(x)$ for any $x\in D$ .
(b) If $u(x)\geqq v(x)$ for any $x\in D$ , then $u_{\Gamma}(x)\geqq v_{\Gamma}(x)$ .
(c) $[u+v]_{\Gamma}(x)=u_{\Gamma}(x)+v_{\Gamma}(x)$ .
(d) $[c\cdot u]_{\Gamma}(x)=c\cdot u_{\Gamma}(x)$ for any non-negative constant $c$ .
$(e)$ $u_{\mathfrak{S}}(x)=u(x)$ .
(f) If $\Gamma\supset\Gamma^{\gamma}$ , then $[u_{\Gamma^{\prime}}]_{\Gamma}(x)=u_{\Gamma},(x)$ .
(g) If $\Gamma\supset\Gamma^{\gamma}$ , then $u_{\Gamma}(x)\geqq u_{\Gamma^{\prime}}(x)$ . If $\Gamma_{n}\downarrow\Gamma$ , then $u_{\Gamma_{n}}(x)\downarrow u_{\Gamma}(x)$ .
(h) $u_{\Gamma\cup\Gamma},(x)\leqq u_{\Gamma}(x)+u_{\Gamma^{\prime}}(x)$ .
PROOF. A-harmonicity of $u_{\Gamma}(x)$ and the statements (a), (b), (c) and (d) are

immediate consequences of the definition of $u_{nm}^{F}(x),$ $(4.8),$ $(4.9)$ and Lemma 4.8.
To prove (e), we take a closed set $F\in \mathfrak{F}_{\mathfrak{S}}$ . Then $D-F^{O}$ is a compact

subset of $D$ , and accordingly $D-F^{o}\subset D_{n_{0}}$ for a suitable $n_{0}$ . Hence, if $m>n>n_{0}$ ,

we have $u_{nm}^{F}(x)=u(x)$ on $\partial(D-F)$ and accordingly in $D-F$. Letting $ m\rightarrow\infty$ ,

and then $ n\rightarrow\infty$ , we obtain $u_{F}(x)=u(x)$ in $D-F$ by (4.8) and (4.9). This result
implies the statement $(e)$ by (4.13).

To prove (f), we take an arbitrary closed set $F\in \mathfrak{F}_{\Gamma}$ Then, since
$F^{o}\supset\Gamma\supset\Gamma^{\prime}$ , there exists a monotone decreasing sequence $\{F_{n}\}\subset \mathfrak{F}_{\Gamma}$, such that
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$F_{n}\subset F$ for any $n$ and that $\lim_{n\rightarrow\infty}F_{n}=\Gamma^{\gamma}$ . Hence $[u_{p_{n}}]_{F}(x)=u_{Fn}(x)$ for any $n$ and

$\lim_{n\rightarrow\infty}u_{Fn}(x)=u_{\Gamma},(x)$ in $D-F$ by Lemmas 4.6 and 4.8, and hence we get $[u_{\Gamma},]_{F}(x)$ ,

$=u_{\Gamma},(x)$ in $D-F$ by Lemma 4.5 (using $u(x)$ as a majorant), and accordingly
$[u_{\Gamma},]_{\Gamma}(x)=u_{\Gamma},(x)$ in $D$ by (4.13).

The first assertion of (g) is evident from (4.13) since $\Gamma\supset\Gamma^{\prime}$ implies $\mathfrak{F}_{\Gamma}\subset \mathfrak{F}_{\Gamma^{\prime}}$ .
For the second assertion, the sequence $\{u_{\Gamma_{n}}(x)\}$ is monotone decreasing with
respect to $n$ , and hence $v(x)=\lim_{n\rightarrow\infty}u_{\Gamma_{n}}(x)$ exists and $\geqq u_{\Gamma}(x)$ for any $x\in D$ . On

the other hand, for any $F\in \mathfrak{F}_{\Gamma},$
$\lim_{n\rightarrow\infty}\Gamma_{n}=\Gamma\subset F^{O}$ and each $\Gamma_{n}$ is compact, and

accordingly $\Gamma_{n}\subset F^{o}$ except for a finite number of $n’ s$ . Hence we have $v(x)$

$=\lim_{n\rightarrow\infty}u_{\Gamma_{n}}(x)\leqq u_{F}(x)$ , which implies that $v(x)\leqq u_{\Gamma}(x)$ by (4.13). Therefore we
get $u_{\Gamma}(x)=\lim_{n\rightarrow\infty}u_{\Gamma_{n}}(x)$ .

Finally the assertion (h) is proved as follows. For any $F\in \mathfrak{F}_{\Gamma}$ and $F^{f}\in \mathfrak{F}_{\Gamma^{\prime}}$ ,

we have $F^{o}UF^{\prime O}\supset\Gamma U\Gamma^{\prime}$ and accordingly there exists $F^{\prime\prime}\in \mathfrak{F}_{\Gamma\cup\Gamma^{\prime}}$ such that
$FUF^{\prime}\supset F^{\prime\prime}$ . $Hence,$ $byLemma4.7,$ $u_{F}(x)+u_{F},(x)\geqq u_{F},,(x)\geqq u_{\Gamma\cup\Gamma},(x)inD-(FUF^{\prime})$ .
Since $F$ and $F^{\prime}$ respectively run over $\mathfrak{F}_{\Gamma}$ and $\mathfrak{F}_{\Gamma}$ , independently, we obtain (h)

from the above inequality.
THEOREM 4.2. If $u(x)$ is non-negative and A-harmonic in $D$ and $\Gamma$ is a

closed subset of $\mathfrak{S}$ , then there exists a bounded Borel measure $\mu_{\Gamma}$ on $\Gamma$ such
that

(4.15) $u_{\Gamma}(x)=\int_{\Gamma}K(x, \xi)d\mu_{\Gamma}(\xi)$ in $D$ ,

and $\mu_{\Gamma}(\Gamma)=u_{\Gamma}(\gamma)$ .
The uniqueness of such $\mu_{\Gamma}$ does not always hold as shown in [8; \S 5].
PROOF OF THEOREM 4.2. For any $F\in \mathfrak{F}_{\Gamma}$ not intersecting with $\overline{D}_{0}$ and

any $m$ and $n(m>n)$ , there exists a bounded Borel measure $\mu_{nm}^{F}$ on $\partial F\cap\overline{D}_{n}$

such that

(4.16) $\{\mu_{nm}^{F}(\partial F\cap\overline{D}_{n})=u_{nm}^{F}(x)=\int_{n}\partial F\cap\overline{D}K_{m}(x,y)d\mu_{nm}^{F}(y)u_{nm}^{F}(\gamma)\leqq u(\gamma)$

for any $x\in D_{n}-F$ and

by Lemma 2.4 (with $\Omega=D-F$ ) and (3.1). Since $\{\mu_{nm}^{F} ; m=1,2, \cdots\}$ is a sequence
of Borel measures on the compact set $\partial F\cap\overline{D}_{n}$ uniformly bounded by $u(\gamma)$ , a
suitable subsequence $\{\mu_{nm^{\prime}}^{F}\}$ converges to a Borel measure $\mu_{n}^{F}$ on $\partial F\cap\overline{D}_{n}$

weakly as bounded linear functionals on $C(\partial F\cap\overline{D}_{n})$ . On the other hand, by
means of (3.3), $\lim_{n\rightarrow\infty}K_{n}(x, y)=K(x, y)$ uniformly in $y$ in the compact set $\partial F\cap\overline{D}_{n}$

for any fixed $x$. Hence, letting $ m=m^{\prime}\rightarrow\infty$ in (4.16), we obtain by (4.8) that

(4.17) $\left\{\begin{array}{l}u_{n}^{F}(x)=\int_{Q}oF\cap\overline{D}_{n}\\u_{n}^{F}(\partial F\cap\overline{D}_{n})\leqq u_{n}^{F}(\gamma)\leqq u(\gamma).\end{array}\right.$

$K(x, y)d\mu_{n}^{F}(y)$ for any $\chi\in D_{n}-F$ and
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Similarly, since $\{\mu_{n}^{F} ; n=1,2, \cdots\}$ may be considered as a sequence of Borel
measures on the compact set $\partial F$ uniformly bounded by $u(\gamma)$ , we may show that

(4.18) $\{u_{F}(x)=\int_{\mu_{F}(\partial F)\leqq}\partial FK(x,y)d\mu_{F}(y)u_{F}(\gamma)\leqq u(\gamma)$

for any $x\in D-F$ and

for a suitable bounded Borel measure $\mu_{F}$ on $\partial F$. Now we take a monotone
decreasing sequence $\{F_{n}\}\subset \mathfrak{F}_{\Gamma}$ such that $F_{n}\subset \mathfrak{D}-\overline{D}_{0}$ and $\lim_{n\rightarrow\infty}F_{n}=\Gamma$ . Then

$\{\mu_{Fn}\}$ may be considered to be a sequence of Borel measures on the compact
set $F_{1}$ uniformly bounded by $u(\gamma)$ . Hence a suitable subsequence $\{\mu_{Fn},\}$ con-
verges to a bounded Borel measure $\mu_{\Gamma}$ on $F_{1}$ weakly as bounded linear func-
tionals on $C(F_{1})$ . Since $\{\mu_{F_{n}} ; n\geqq m\}$ is a sequence of measures on $F_{m}$ for any
fixed $m,$ $\mu_{\Gamma}$ is a measure on $F_{m}$ ; here $m$ is arbitrary. Hence $\mu_{\Gamma}$ is a measure
on $\Gamma\equiv\bigcap_{m=1}^{\infty}F_{m}$ . Letting $F=F_{m^{l}}$ and $ m^{\prime}\rightarrow\infty$ in (4.18), we obtain (4.15); accord-

ingly we get $u_{\Gamma}(\gamma)=\mu_{\Gamma}(\Gamma)$ by (2.18) and (3.5).

THEOREM 4.3 (Representation theorem). If $u(x)$ is non-negative and A-
harmonic in $D$ , then there exists a bounded Borel measure on $\mathfrak{S}$ such that

(4.19) $u(x)=\int_{\mathfrak{S}}K(x, \xi)d\mu(\xi)$ in $D$

and $\mu(\mathfrak{S})=u(\gamma)$ . Conversely, for any bounded Borel measure $\mu$ on $\mathfrak{S}$ , the for-
mula (4.19) represents a non-negative A-harmonic function $u(x)$ in $D$ .

PROOF. The first part of this theorem immediately follows from Theorem
4.2 (with $\Gamma=\mathfrak{S}$) and (e) in Theorem 4.1. The converse statement is proved
as follows. For any compact subset $E$ of $D,$ $K(x, \xi)$ is uniformly continuous
on $E\times \mathfrak{S}$ by Corollary 1 to Theorem 3.2. Hence the integral in (4.19) is approx-
imated uniformly on $E$ by means of ‘ Riemann sum,’ that is, the function of
the form

(4.20) $\sum_{\nu=1}^{\iota}K(x, \xi_{\nu})c_{\nu}$ with $c_{\nu}’ s>0$ .

Since any function of the form (4.20) is non-negative and A-harmonic in $D$ , so
is the function $u(x)$ defined by (4.19) by virtue of Lemma 2.2.

\S 5. The extremal functions and the uniqueness theorem. In this \S , we
shall give a characterization of the extremal A-harmonic functions and men-
tion the existence of a unique canonical representation in terms of extremal
A-harmonic functions.

The argument in the preceding sections are similar to, but not quite the
same as, those in the corresponding sections in Martin’s paper [8]. However,
all properties of non-negative A-harmonic functions corresponding to those
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established in \S 3 of [8] and also some properties corresponding to those
stated in \S 1 and quoted in \S 4 of [8] are already shown in \S 4 of the present
paper. So we may achieve the essentially same arguments for A-harmonic
functions as those for classical harmonic functions in \S 4 of $[8]$–only some
minor technical modifications may be necessary. Thence it seems not to be
necessary to mention the arguments in detail. We shall state only the outline
of the process to give a characterization of the extremal A-harmonic functions
and to get a unique canonical representation.

By definition, a positive A-harmonic function $u(x)$ in $D$ is said to be ex-
tremal6) if every non-negative A-harmonic function in $D$ not exceeding7) $u(x)$

is a constant multiple of $u(x)$ .
Since $K^{\xi}(x)\equiv K(x, \xi)$ is positive and A-harmonic in $x\in D$ for any fixed

$\xi\in \mathfrak{S},$ $[K^{\xi}]_{\Gamma}(x)$ is defined for any closed subset $\Gamma$ of $\mathfrak{S}$ as stated in the
preceding section.

LEMMA 5.1. Let $u(x)$ be positive and A-harmonic in $D$ and extremal, let
$B$ be any Borel subset of $\mathfrak{S}$, and assume that

(5.1) $u(x)\geqq\int_{B}K(x, \xi)d\mu(\xi)>0$ for any $x\in D$ .

Then $u(x)=u(\gamma)K(x, \xi)$ for some point $\xi\in B$ . (Cf. Lemma 1 in \S 4 of [8].)

From this lemma immediately follows that
COROLLARY 1. Every extremal positive A-harmonic function in $D$ is a

positive multiple of $K(x, \xi)$ for some $\xi\in \mathfrak{S}$ .
COROLLARY 2. If $K^{\xi}(x)$ is extremal, and $\Gamma$ is a closed subset of $\mathfrak{S}$ such

that $[K^{\xi}]_{\Gamma}(x)$ is positive, then $\xi$ is in $\Gamma$ .
Now we put

$\psi(\xi)=[K^{\xi}]_{t_{b}^{\zeta}\}}(\gamma)$ for any $\xi\in \mathfrak{S}$

( $\{\xi\}$ is the closed set which consists of the single point $\xi$). Then,
THEOREM 5.1. The function $\psi(\xi)$ takes only two possible values 1 and $0$ .

The function $K^{\xi}(x)$ is extremal if and only if $\psi(\xi)=1$ . (Cf. Theorem I in \S 4
of [8].)

THEOREM 5.2. The set $\mathfrak{S}_{0}=\{\xi\in \mathfrak{S};\psi(\xi)=0\}$ is an $F_{\sigma}$ -set (possibly closed
or empty). (Cf. Theorem II in \S 4 of [8].)

In fact, we may show that $\mathfrak{S}_{0}$ is the sum of the monotone increasing
sequence $\{\Gamma_{n}\}$ of closed (possibly empty) subset of $\mathfrak{S}$ defined as follows:

$\Gamma_{n}=\left\{\xi\in \mathfrak{S} & . & [K^{\xi}]_{F}(\gamma)\leqq 1/2and & forthatthe & any\rho- diameter & F_{of}\in \mathfrak{F} & suchFis1ess & that\xi\in F^{0}than1/n\right\}$ .

6) It is called minimal in Martin’s paper [8].
7) ’ $v(x)$ does not exceed $u(x)$ ’ means that $v(x)\leqq u(x)$ for any $x\in D$ .
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By virture of these two theorems, we may see that $\mathfrak{S}_{0}$ and
$\mathfrak{S}_{1}=\mathfrak{S}-\mathfrak{S}_{0}\equiv\{\xi\in \mathfrak{S};\psi(\xi)=1\}$

are Borel subsets of $\mathfrak{S}$ and we can state the following definition of the
essential part of the Martin boundary and that of a canonical representation
involving only those $K(x, \xi)s$ which are extremal.

DEFINITION 1. $\mathfrak{S}_{1}$ is called the essential part of the Martin boundary S.
DEFINITION 2. A bounded Borel measure $\mu$ on $\mathfrak{S}$ is called canonical if

$\mu(\mathfrak{S}_{0})=0$ . A representation of the form given in Theorem 4.3 is called a
canonical representation if the measure $\mu$ occurring in it is canonical.

The following lemmas will give some steps to approach the theorem estab-
lishing the unique existence of a canonical representation. These may be
proved by the essentially same arguments as proofs of corresponding lemmas
in \S 4 of [8]; Lemma 4.5 in the present paper corresponds to part (e) of
Theorem II in \S 1 of [8] which is used in the proof of Lemma 2 in \S 4 of [8].

LEMMA 5.2. Let $\{\Gamma_{n}\}$ be as stated above. Then $u_{\Gamma_{n}}(x)=0$ for any positive
and A-harmonic function $u(x)$ in $D$ and any $n$ .

LEMMA 5.3. For any positive A-harmonic function $u(x)$ in $D$ and any $\epsilon>0$ ,

there exists a closed subset $\Gamma$ of $\mathfrak{S}_{1}$ such that $ u(\gamma)\leqq u_{\Gamma}(\gamma)+\epsilon$ .
LEMMA 5.4. Let $\Gamma$ and $\Gamma^{\prime}$ be closed subsets of $\mathfrak{S}$ such that $\Gamma\cap\Gamma^{\gamma}$ is

empty and $\Gamma^{\prime}\subset \mathfrak{S}_{1}$ , and let $\epsilon$ be an arbitrary positive number. Then there
exists $F\in \mathfrak{F}_{\Gamma}$ such that $[K^{\xi}]_{F}(\gamma)<\epsilon$ for any $\xi\in\Gamma^{\gamma}$ .

LEMMA 5.5. Let $\Gamma$ be a closed subset of $\mathfrak{S}$ andB be a Borel subset of $\mathfrak{S}_{1}$

not intersecting with $\Gamma$ . Let $u(x)$ be a harmonic function of the form

$u(x)=\int_{B}K(x, \xi)d\mu(\xi)$ .
Then $u_{\Gamma}(x)\equiv 0$ .

(Cf. Lemmas 2, 3, 4 and 5 in \S 4 of [8].)
Using these lemmas, we may prove the following
THEOREM 5.3. Every non-negative A-harmonic function $u(x)$ in $D$ admits

of exactly one canonical representation, ihat is, $u(x)$ is represented in a unique
manner in the form
(5.2) $u(x)=\int_{\mathfrak{S}_{1}}K(x, \xi)d\mu_{1}(\xi)$ $(x\in D)$

where $\mu_{1}$ is a bounded Borel measure on $\mathfrak{S}_{1}$ . The canonical measure $\mu_{1}$ repre-
senting $u(x)$ is characterized by the relation:

(5.3) $u_{\Gamma}(x)=\int_{\Gamma}K(x, \xi)d\mu_{1}(\xi)$ $(x\in D)$

for every closed subset $\Gamma$ of S.
COROLLARY 1. The function $u_{\Gamma}(x)$ , defined for closed subsets $\Gamma$ of $\mathfrak{S}_{l}$
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admits of extension to a countably additive function of Borel sets in S.
COROLLARY 2. In orderfor the representation of Theorem 4.3 to be unique

in general, it is necessary and sufficient that $\mathfrak{S}_{0}$ is empty.

\S 6. Imbedding of the smooth boundary of the domain into the Martin
boundary. In this \S , we prove the following

THEOREM 6.1. Assume that a part $S$ of the boundary $\partial D$ of the domain
$D$ considered in $M$ consists of an $(N-1)$-dimensional simple hypersurface of
class $C^{3}$ , and that $\Vert a^{ij}(x)\Vert$ and $\Vert b^{i}(x)\Vert$ are of class $C^{2}$ on $D+S$. Then $S$ is
homeomorphically imbedded in the essential part $S_{1}$ of the Martin boundary
$\mathfrak{S}^{8)}$ : more precisely, for any point $z\in S$, there corresponds a point $\xi_{z}\in \mathfrak{S}_{1}$ in
one-to-one way, and the mapping $\Phi$ defined by

(6.1) $\Phi(x)=x$ for $x\in D$ and $\Phi(z)=\xi_{z}$ for $z\in S$

gives a homeomorphism of $D+S$ as a subspace of the original manifold $M$ onto
$D+\{\xi_{z} ; z\in S\}$ as a subspace of the compact metric space $\mathfrak{D}$ .

THEOREM 6.2. Under the assumption of the preceding theorem, we have

$K(x, \xi_{z})=\frac{x,z)}{n_{z}}\underline{\partial c}_{\partial^{(}}/\underline{\partial G}(\partial\frac{\gamma;z)}{n_{z}}$ for any $x\in D$ and any $z\in S$ ,

and accordingly – $\frac{\partial G(x,z)}{\partial n_{z}}$ is an extremal A-harmonic function of $x\in D$ for
any fixed $z\in S$.

Under the assumption of Theorem 6.1, we denote by dis $(x, y)$ the Riemann-
ian distance between the points $\chi$ and $y$ in $D+S$ defined by $\Vert a_{ij}(x)\Vert$ .

LEMMA 6.1. For any fixed $x\in D,$ $K(x, y)$ is extended to a continuous func-
tion of $y$ in $D+S-\{x\}$ by putting

(6.2) $K(x, z)=\frac{\partial G(x,z)}{\partial n_{z}}/\underline{\partial G}(\partial\frac{\gamma;z)}{n_{z}}$ for $z\in S$ .

PROOF. Let $z_{0}$ be any fixed point in $S$ . Then, as is shown in Lemma 2.1
in [5], there exists a neighborhood $U(z_{0})$ of $z_{0}$ and a local coordinate system
$(x^{1}, \cdots , x^{N})$ defined in $U(z)$ with respect to which i) $S\cap U(z_{0})$ is represented by

the equation $x^{1}=0$ , ii) $x^{1}>0$ in $D\cap U(z_{0})$ and iii) $\frac{\partial f(z)}{\partial n_{z}}=-\frac{\partial f(z)}{\partial z^{1}}$ for any
$z\in S\cap U(z_{0})$ . We may takea domain $\Omega$ with property(S), with compact closure
and such that

$(U(z_{0})\cap D)U\overline{D}_{0}\subset\Omega\subset D$

and that $\overline{(\partial\Omega-S)}$ does not intersect with $\overline{U(z_{0})}UD_{0}$ . Then, by a similar argu-
ment to the proof of Lemma 2.6 (given in Appendix), we may obtain that

8) See Definition 1 in \S 5.
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$G(x, y)=G_{\Omega}(x, y)-\int_{\partial\Omega-S}G(x, z)_{\partial}\frac{(z,y)}{n_{z}}dS_{z}\underline{\partial G}_{Q}$

for any $x$ and $y\in\overline{\Omega}$ .
On the other hand, $G_{\Omega}(x_{J}y)$ is of class $C^{1}$ in $\langle x, y\rangle\in\overline{\Omega}\times\overline{\Omega}-\{\langle z, z\rangle;z\in\overline{\Omega}\}$ and
satisfies

$\frac{\partial G_{\Omega}(x,y)}{\partial n_{y}}<0$ and $\frac{\partial^{2}G_{\Omega}(z,y)}{\partial n_{z}\partial n_{y}}>0$

whenever $x\in\Omega,$ $y,$
$ z\in\partial\Omega$ and $y\neq z$ . Hence, for any fixed $x\in\Omega,$ $G(x, y)$ is of

class $C^{1}$ in $y\in\overline{\Omega}-\{x\}$ and satisfies $\partial G(x, y)/\partial n_{y}<0$ for any $y\in\partial\Omega\cap S$ . There-
fore, using the properties i), ii) and iii) of the local coordinate stated above,
we may easily show that $K(x, y)$ is continuous in $y$ on $D+S-\{x\}$ , for any
fixed $x\in D$ , if $K(x, z)$ is defined by (6.2) for $z\in S$.

LEMMA 6.2. For any $z\in S$, there corresponds one and only one point
$\xi_{z}\in \mathfrak{S}$ such that $\lim_{\nu\rightarrow\infty}\rho(y_{\nu}, \xi_{z})=0$ holds for any sequence $\{y_{\nu}\}\subset D$ satisfying

$\lim_{\nu\rightarrow\infty}$ dis $(y_{\nu}, z)=0$ .
PROOF. For any given $z\in S$, we may take a sequence $\{z_{n}\}\subset D$ such that

$\lim_{n\rightarrow\infty}$ dis $(z_{n}, z)=0$ . The sequence $\{z_{n}\}$ has no accumulating point in $D$ with

respect to $\rho$ , while $\mathfrak{D}$ is $(\rho-)$ compact. Hence there exists a subsequence
$\{z_{n_{\nu}}\}$ of $\{z_{n}\}$ and a point $\xi\in \mathfrak{S}$ such that $\lim_{\nu\rightarrow\infty}\rho(z_{n_{y}}, \xi)=0$ . Let $\{y_{\nu}\}$ be an

arbitrary sequence in $D$ satisfying $\lim_{\nu\rightarrow\infty}$ dis $(y_{\nu}, z)=0$ . Then, by Lemma 6.1, we
have

$\lim_{\nu\rightarrow\infty}|K(x, y_{\nu})-K(x, z_{n_{\mathcal{V}}})|=0$ for any fixed $x\in D_{0}$ .

Hence we obtain $\lim_{\nu\rightarrow\infty}\rho(y_{\nu}, z_{n_{\nu}})=0$ by means of the definition (3.7) of the metric

$\rho$ , and accordingly we get $\lim_{\nu\rightarrow\infty}\rho(y_{\nu}, \xi)=0$ . This result implies also that

$\lim_{n\rightarrow\infty}\rho(z_{n}, \xi)=0$ for the original sequence $\{z_{n}\}$ and consequently that the point

$\xi\in \mathfrak{S}$ is uniquely determined by $z\in S$ ; so we may write $\xi=\xi_{z}$ . Lemma 6.2
is thus proved.

$CoROLLARY$ .
$K(x, \xi_{z})=\frac{\partial G(x,z)}{\partial n_{z}}/\frac{\partial G(\gamma;z)}{\partial n_{z}}$

for any $x\in D$ and any $z\in S$ ,

This is a direct consequence of Theorem 3.2 and the preceding two lemmas.
LEMMA 6.3. i) If $E$ is a compact subset of $D+S$ and $F$ is a subset of

$D-(EU\overline{D}_{0})$ relatively closed in $D$ , then $K(x, y)$ is bounded on $E\times F$.
ii) For any $z,$

$z^{\prime}\in S$ and any sequence $\{x_{n}\}\subset D$ satisfying $\lim_{n\rightarrow\infty}$ dis $(x_{n}, z^{\prime})=0$ ,

it holds that $\lim_{n\rightarrow\infty}K(x_{n}, \xi_{z})=\infty$ or $0$ according as $z^{\prime}=z$ or $z^{\prime}\neq z$ .
(Part i) is a generalization of Lemma 2.6.)
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PROOF. i) By virtue of the assumption, we may take a domain $\Omega$ with
property (S) and such that $EU\overline{D}_{0}\subset\overline{\Omega}\subset\overline{D}-F,$ $(EU\overline{D}_{0})\cap(\overline{\partial\Omega-S})$ is empty and

$\overline{\Omega}$ is compact. Then, by the same argument as the proof of Lemma 2.6 (given

in Appendix), we may obtain that

(6.3) $G(x, y)=G_{\Omega}(x, y)+\int_{\partial\Omega-s}\{-\underline{\partial G}_{\Omega,\partial}\frac{(x,z)}{n_{z}}\}G(z, y)dS_{z}$

for any $ x\in\Omega$ and $y\in D$

where

(6.4) $G_{\Omega}(x, y)=0$ for $x\in\overline{\Omega}$ and $ y\in D-\Omega$ ,

and that there exist constants $C_{1}$ and $C_{2}$ such that

(6.5) $0\leqq\underline{\partial G}_{\Omega,\partial}\frac{(x,z)}{n_{z}}\leqq C_{1}$ for any $x\in E$ and $z\in\partial\Omega-S$

and

(6.6) $0<C_{2}\leqq-\frac{\partial G_{\Omega}(\gamma;z)}{\partial n_{z}}\leqq C_{1}$ for any $z\in\partial\Omega-S$ .

Hence, combining (6.3) and (6.4), we get

$ K(x, y)=\frac{G(x,y)}{G(\gamma;y)}\leqq\frac{\int_{\partial\Omega-S}C_{1}G(z,y)dS_{z}}{\int_{\partial\Omega-S}C_{2}G(z,y)dS_{z}}=\frac{C_{1}}{C_{2}}<\infty$

for any $x\in E$ and $ y\in D-\Omega$ , and accordingly $K(x, y)$ is bounded on $E\times F$ .
ii) It follows from the assumption that there exists a subdomain $\Omega$ of $D$

with property (S), with compact closure and such that
$E=\{z, z^{\prime}, x_{1}, x_{2}, \cdots , x_{n}, \}^{9)}$ and $ F=D-\Omega$

satisfy the assumption in i); accordingly we may use (6.3), (6.4), (6.5) and (6.6)

stated above. Furthermore, since $-\frac{\partial G(y,z)}{\partial n_{z}}$ is non-negative and continuous

in $y\in\overline{D}-\{z\}$ , there exists a constant $C_{s}$ such that

$0\leqq-\frac{y,z)}{n_{z}}\underline{\partial c_{\partial^{(}}}\leqq C_{3}$ for any $y\in\partial\Omega-S$ .
Hence, by Corollary to Lemma 6.2, we have

$-\underline{\partial G_{\Omega}}(\underline{x_{n},z)}$

$K(x_{n}, \xi_{z})=\frac{-\frac{\partial G(x_{n},z)}{\partial n_{z}}}{-\frac{\partial G(\gamma,\cdot z)}{\partial n_{z}}}\left\{\begin{array}{l}\geqq\frac{\partial n_{z}}{\frac{\partial G_{\Omega}(\gamma.\cdot z)}{\partial n_{z}}-\int_{\partial\Omega-S}C_{1}C_{s}dS_{y}}>0’\\\leqq\underline{-\frac{\partial G_{\Omega}(x_{n},z)}{\partial n_{z}}-\int_{\partial\Omega-SC_{2}}}\frac{\partial G_{\Omega}(x_{n},y)}{\partial n_{y}}C_{3}dS_{y}\end{array}\right.$

$-9)$ $z^{\prime}$ may coincide with $z$ .
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On the other hand, it may be seen from the construction of the fundamental
solution $U_{9}(t, x, y)$ and the Green function $G_{\Omega}(x, y)$ (stated in [6]) that

$\lim_{n\rightarrow\infty}\frac{\partial G_{\Omega}(x_{n},z^{\prime})}{\partial n_{z}}=\infty$

and
$\lim_{n\rightarrow\infty}\frac{\partial G_{\Omega}(x_{n},y)}{\partial n_{y}}=0$ uniformily in $y\in B$

for each compact subset $B$ of $\partial\Omega$ not containing $z^{\prime}$ . Hence we obtain
$\lim_{n\rightarrow\infty}K(x_{n}, \xi_{z})=\infty$ or $0$ according as $z^{\prime}=z$ or $z^{\prime}\neq z$ .

LEMMA 6.4. If $\lim_{n\rightarrow\infty}\rho(y_{n}, \xi_{z})=0$ where $\{y_{n}\}\subset D$ and $z\in S$, then $\lim_{n\rightarrow\infty}$ dis $(y_{n}, z)$

$=0$ .
PROOF. Suppose that $\lim_{n\rightarrow\infty}$ dis $(y_{n}, z)=0$ does not hold. Then there exists

a neighborhood $U(z)$ of $z$ and a subsequence $\{y_{n_{\nu}}\}$ of the sequence $\{y_{n}\}$ such
that $y_{n_{\nu}}\not\in U(z)$ for any $\nu$ . Let $\{x_{m}\}$ be a sequence in $U(z)\cap D$ such that
$\lim_{m\rightarrow\infty}dis(x_{m}, z)=0$ . Then, by part i) of Lemma 6.3 (with $E=\{z, x_{1}, x_{2}, \}$ and

$F=D-U(z))$ , there exists a constant $C$ such that

(6.7) $K(x_{m}, y_{n_{\nu}})\leqq C$ for any $m$ and $\nu$ .
Since $\lim_{\nu\rightarrow\infty}\rho(y_{n_{y}}, \xi_{z})=0$ and $K(x, y)$ is continuous in $y\in D$ with metric $\rho$ for

any fixed $x$, it follows from (6.7) that
$K(x_{m}, \xi_{z})\leqq C$ for any $m$ ,

which contradicts to part ii) of Lemma 6.3.
From this lemma, immediately follows that
$CoROLLARY$ . $z\neq z^{\prime}(z, z^{\prime}\in S)$ implies $\xi_{z}\neq\xi_{z^{l}}$ , and accordingly, for any

$\xi\in \mathfrak{S}_{J}$ there exists at most one point $z\in S$ such that $\xi=\xi_{z}$ .
LEMMA 6.5. For any point $z\in S$, there corresponds a point $\xi_{z}\in \mathfrak{S}$ in one

to one way, and the mapping $\Phi$ defined by

(6.1) $\Phi(x)=x$ for $x\in D$ and $\Phi(z)=\xi_{z}$ for $z\in S$

gives a homeomorphism of $D+S$ as a subspace of $M$ into $\mathfrak{D}$ .
(This lemma would be nothing else than Theorem 6.1 if $\mathfrak{S}$ be restricted

to $\mathfrak{S}_{1}$ . We first prove this lemma, by virtue of which we can prove the fol-
lowing two lemmas which imply that $\Phi(\mathfrak{S})\subset S_{1}$ . Combining this result with
the above lemma, we can finally obtain Theorem 6.1.)

PROOF. For any $z\in S$, there corresponds one and only one point $\xi_{z}\in \mathfrak{S}$

with the property stated in Lemma 6.2. From this fact and Corollary to
Lemma 6.4, it follows that (6.1) defines a one-to-one mapping of $D+S$ into
$\mathfrak{D}(=D+\mathfrak{S})$ . The bi-continuity of the mapping $\Phi$ at any point $x\in D$ is obvious.
We shall prove the bi-continuity at any point $z\in S$.



Martin boundary for linear elliptic differential operators 329

For any sequence $\{x_{n}\}\subset D$ and any $z\in S,\lim_{n\rightarrow\infty}$ dis $(x_{n}, z)=0$ implies, and is

implied by, $\lim_{n\rightarrow\infty}\rho(\Phi(x_{n}), \Phi(z))\equiv\lim_{n\rightarrow\infty}\rho(x_{n}, \xi_{z})=0$ by means of Lemma 6.2 and 6.4.
Therefore, it is sufficient to prove, under the condition: $\{z, z_{1}, z_{2}, \}\subset S$, that
$\lim_{n\rightarrow\infty}\rho(\xi_{zn}, \xi_{z})=0$ if and only if $\lim_{n\rightarrow\infty}$ dis $(z_{n}, z)=0$ .

For each $z_{n}\in S$, we may take $x_{n}\in D$ such that both dis $(x_{n}, z_{n})<1/n$ and
$\rho(x_{n}, \xi_{z_{n}})<1/n$ hold (by Lemma 6.2), and consequently

$\{dis(x_{n},z_{z})-\frac{1}{n}\leqq dis(z_{n},z)dis_{n}(x_{z},z)+\frac{1}{n}\rho(x_{n},\xi)-\frac{1}{n}\leqq\rho(\xi_{z_{n}},\xi_{z})\leqq^{\leqq_{\rho(x,\xi^{n})+\frac{1}{n}}}$

.

and

Since $\lim_{n\rightarrow\infty}$ dis $(x_{n}, z)=0$ implies and is implied by $\lim_{n\rightarrow\infty}\rho(x_{n}, \xi_{z})=0$ (by Lemmas

6.2 and 6.4), we may see from the above inequalities that $\lim_{n\rightarrow\infty}$ dis $(z_{n}, z)=0$ is
equivalent to $\lim_{n\rightarrow\infty}\rho(\xi_{z_{n}}, \xi_{z})=0$ .

LEMMA 6.6. Let $\Gamma$ be a compact subset of $S$, and $u(x)$ be a non-negative
A-harmonic function in $D$ satisfying that $\lim_{dis(x,z)\rightarrow 0}u(x)=0$ for any $ z\in\Gamma$ . Then

the canonical measure $\mu_{1}$ representing $u(x)$ satisfies that $\mu_{1}(\Gamma)=0$.
PROOF. For any $\epsilon>0$, there exists a subdomain $\Omega$ of $M$ with property

(S) and such that $\Omega\supset\Gamma$ and $ u(x)\leqq\epsilon$ for any $x\in\overline{\Omega}\cap D$ ; here we may assume
that $\overline{\Omega}$ does not intersect with $\overline{D}_{0}$ and that the set $F=\overline{\Omega}\cap\overline{D}$ is compact. In
view point of the preceding lemma, we may consider that $\Gamma$ is a compact
subset of $\mathfrak{S}$ and accordingly that $F\in \mathfrak{F}_{\Gamma}$ (see \S 4). Then the function $u_{nm}^{F}(x)$

\langle defined in \S 4) satisfies $ u_{nm}^{F}(x)\leqq\epsilon$ on $\partial(D_{m}-F)$ , and accordingly on $D_{m}-F$ by
Lemma 2.1. Hence, by means of (4.8), (4.9), (4.13) and (2.18), we have

$ u_{\Gamma}(\gamma)\leqq u_{F}(\gamma)=\lim_{n\rightarrow\infty}u_{n}^{F}(\gamma)=\lim_{n\rightarrow\infty}\lim_{m\rightarrow\infty}u_{nm}^{F}(\gamma)\leqq\epsilon\int_{D_{0}}\gamma(x)dx=\epsilon$ .

On the other hand, the formula (5.3) in Theorem 5.3 implies that $u_{\Gamma}(\gamma)=\mu_{1}(\Gamma)$

since $K(\gamma;\xi)=1$ by (3.5) and Theorem 3.2. Hence we get $\mu_{1}(\Gamma)\leqq\epsilon$ ; here $\epsilon$ is
arbitrary. So we may conclude that $\mu_{1}(\Gamma)=0$ .

LEMMA 6.7. For any $z_{0}\in S,$ $K(x, \xi_{z_{0}})$ is an extremal positive harmonic
function of $x$.

PROOF. Let $\mu_{1}$ be the canonical measure representing the function

\langle 6.8) $u(x)=K(x, \xi_{z_{0}})$ ,

and suppose that $K(x, \xi_{z_{0}})$ is not extremal. Then

\langle 6.9) $\mu_{1}(\{\xi_{zo}\})=0$ .
Let $\Omega$ be an open subset of $M$ containing $z_{0}$ and with compact closure 9.
Then, for any compact set $\Gamma\subset S\cap\Omega-\{z_{0}\}$ , the function $u(x)$ defined by (6.8)
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satisfies the assumption of Lemma 6.6 by virtue of part ii) of Lemma 6.3.
Hence we have $\mu_{1}(\Gamma)=0$, and accordingly we may obtain $\mu_{1}(S\cap\Omega-\{z_{0}\})=0$ .
Combining this result with (6.9), we get $\mu_{1}(S\cap\Omega)=0$ . Hence the canonical
representation of $u(x)$ is reduced to the following form:

(6.10) $u(x)=\int_{\mathfrak{S}_{1}-\Omega}K(x, \xi)d\mu_{1}(\xi)$ .

Now let $\{x_{n}\}$ be a sequence in $ D\cap\Omega$ such that $\lim_{n\rightarrow\infty}$ dis $(x_{n}, z_{0})=0$. Then, by

part i) of Lemma 6.3 and Theorem 3.2, we have

$\sup_{\xi\in S-\Omega,n\geqq 1}K(x_{n}, \xi)\leqq C$

for a suitable constant $C$ . Hence we obtain from (6.10) that

$\sup_{n\geqq 1}u(x_{n})\leqq C\mu_{1}(\mathfrak{S}_{1})=Cu(\gamma)<\infty$ .

On the other hand, it follows from (6.8) and part ii) of Lemma 6.3 that
$\lim_{n\rightarrow\infty}u(x_{n})=\infty$ contrary to the above result. Hence $K(x, \xi_{z_{0}})$ must be extremal.

PROOF OF THEOREMS 6.1. AND 6.2. By Lemma 6.5, there corresponds
$\xi_{z}\in \mathfrak{S}$ for any $z\in S$ in one-to-one way, and the mapping $\Phi$ defined by $(6.1\lambda$

gives a homeomorphism of $D+S$ as a subspace of $M$ into $\mathfrak{D}=D+S$. Further-
more, for any $z\in S,$ $K(x, \xi_{z})$ is extremal by Lemma 6.7, and hence $\xi_{z}$ belongs
to $\mathfrak{S}_{1}$ by Theorem 5.1 and Definition 1 in \S 5. Therefore we get the conclu-
sion of Theorem 6.1, and accordingly Theorem 6.2 follows immediately from
Corollary to Lemma 6.2 and Lemma 6.7.

Appendix. Proofs of Lemmas stated in \S 2.

In the sequel, notations should be understood as stated in \S 2.
PROOF OF LEMMA 2.1 may be easily obtained by Lemma 3.1 and Theorem

1 in the author’s previous paper [7].

PROOF OF LEMMA 2.2. Let $\Omega_{1}$ be an arbitrary subdomain of $\Omega$ with com-
pact closure $\overline{\Omega}_{1}\subset\Omega$ and with property (S). Then, by the formula (2.7), we
have

$u_{n}(x)=-\int_{\partial\Omega_{1}}\frac{\partial G_{\Omega_{1}}(x,y)}{\partial n_{y}}u_{n}(y)dS_{y}$ $(n=1,2, \cdots)$ .

Hence, if i) or ii) in Lemma 2.2 is assumed, we obtain by Lebesgue’s conver-
gence theorem that

$u(x)=-\int_{\partial\Omega_{1}}\frac{\partial G_{\Omega_{1}}(x,y)}{\partial n_{y}}u(y)dS_{y}$ .

Consequently $u(x)$ is A-harmonic in $\Omega_{1}$ ; this shows Lemma 2.2 by arbitrariness
of $\Omega_{1}$ .
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PROOF OF LEMMA 2.3. For any compact subset $E$ of $\Omega$ , there exists a
domain $\Omega_{1}$ with property (S) such that $ E\subset\Omega_{1}\subset\overline{\Omega}_{1}\subset\Omega$ and that $\overline{\Omega}_{1}$ is compact.
Then, by the formula (2.7), we have

$u_{\lambda}(x)=-\int_{\partial\Omega_{1}}\frac{\partial G_{\Omega_{1}}(x,y)}{\partial n_{y}}u_{\lambda}(y)dS_{y}$ for any $x\in\Omega_{1}$ .

On the other hand,

$\sup_{x\in E,y\in\partial\Omega_{1}}|1_{x}\frac{\partial G_{\Omega_{1}}(x,y)}{\partial n_{y}}|<\infty$

since $E$ and $\partial\Omega_{1}$ are mutually disjoint compact sets, and

$\sup_{y\in\Omega_{1},\lambda\in\Lambda}|u_{\lambda}(y)|<\infty$

by the assumption. Hence $\{|^{\kappa}Su_{\lambda}(x)| ; \lambda\in\Lambda\}$ is uniformly bounded on $E$ .
PROOF OF LEMMA 2.4. For any $y\in\partial\Omega\cap D_{m},$ $\frac{\partial}{\partial n_{y}}$ denotes the outer

normal derivative at $y$ as a boundary point of the domain $ D_{m}\cap\Omega$ (accordingly
it denotes the inner normal derivative at $y$ as a boundary point of $ D_{m}-\Omega$).

Since Au$(y)=0$ in $ D_{m}\cap\Omega$ and $u(y)=0$ on $\partial(D_{m}\cap\Omega)-D_{n}$ , we have, by Green’s
formula (2.1),

$-\frac{\partial}{\partial t}\int_{D_{m}\cap\Omega}U_{m}(t, x, y)u(y)dy=-\int_{D_{m}\cap\Omega}A_{y}^{*}U_{m}(t, x, y)u(y)dy$

$=\int_{\partial\Omega\cap D_{n}}\{U_{m}(t, x, y)\frac{\partial u(y)\partial U_{m}(t,x,y)}{\partial n_{y}\partial n_{y}}u(y)\}dS_{y}$

for any $ x\in D_{m}\cap\Omega$ .
Integrating in $t$ over $(0, \infty)$ , we obtain

(1) $u(x)=\int_{\partial\Omega\cap D_{n}}\{G_{m}(x, y)_{\partial}^{m}\frac{\partial u(y)\partial G}{\partial n_{y}}\frac{(x,y)}{n_{y}}u(y)\}dS_{y}$

by means of (2.5) and by the fact; $\varliminf_{t\rightarrow\infty}\int_{D_{m}}U_{m}(t, x, y)dy=0$, which follows from-

(2) $\int_{0^{\infty}}dt\int_{D_{m}}U_{m}(t, x, y)dy<\infty$

proved in $[6]^{10)}$ . Next we put

(3) $v(x)=\int_{\partial\Omega-D_{n}}\frac{\partial G_{Dm^{-}\Omega}(x,y)}{\partial n_{y}}u(y)dS_{y^{1}}$
1) .

Then $v(x)$ is A-harmonic in $ D_{m}-\Omega$ and

10) See Lemma 10. 1 in [6].
11) As for the equalities (3), (4) and (5), readers should remember the definition

of $\frac{\partial}{\partial n_{y}}$ mentioned at the beginning of this proof of Lemma 2.4.
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$v(x)=\{u(x)0$
for $x\in\partial\Omega\cap D_{n}$

for $x\in\partial(D_{m}-\Omega)-D_{n}$ .
On the other hand, for any fixed $x\in D_{m}\cap\Omega,$ $G_{m}(x, y)$ satisfies $A_{y}^{*}G_{m}(x, y)=0$

in $ D_{m}-\Omega$ as a function of $y$ by $(2.8^{*})$ . Hence, by Green’s formula (2.1), we have

(4) $0=\int_{\partial\Omega\cap D_{n}}\{G_{m}(x, y)_{\partial}^{m}\frac{\partial v(y)\partial G}{\partial n_{y}}\frac{(x,y)}{n_{y}}u(y)\}dS_{y}$ for any $ x\in D_{m}\cap\Omega$ .

Substracting (4) from (1) term by term, we get

$4(5)$ $u(x)=\int_{\partial\Omega\cap D_{n}}G_{m}(x, y)\{\frac{\partial u(y)\partial v(y)}{\partial n_{y}\partial n_{y}}\}dS_{y}$ for any $ x\in D_{m}\cap\Omega$ .

Here we prove that the function $\varphi(y)$ defined by

\langle 6) $\varphi(y)=\frac{\partial u(y)\partial v(y)}{\partial n_{y}\partial n_{y}}$

is non-negative on $\partial\Omega\cap D_{n}$ . Clearly $\varphi(y)$ is continuous on $\partial\Omega\cap D_{n}$ . Hence,
if $\varphi(y_{0})<0$ at some point $y_{0}\in\partial\Omega\cap D_{n}$ , then $\varphi(y)<0$ in $ V(y_{0})\cap\partial\Omega$ for a
suitable neighborhood $V(y_{0})$ of $y_{0}$ . On the other hand, it may be seen from
the construction of $U_{m}(t, x, y)$ (stated in [6]) that

(7) $\lim_{x\rightarrow y_{0},y\rightarrow y_{0}}G_{m}(x, y)=\lim_{x\rightarrow y_{0},y\rightarrow y_{0}}\int_{0^{\infty}}U_{m}(t, x, y)dt=\infty$ .

Hence, by means of (5), we obtain $\varliminf u(x)<0$ contrary to the assumption of
$x\rightarrow y_{0}$

this lemma. Thus we see that $\varphi(y)\geqq 0$ on $\partial\Omega\cap D_{n}$ . Hence

$d\mu(y)=G_{m}(\gamma;y)\varphi(y)dS_{y}$

is a Borel measure on $\partial\Omega\cap\overline{D}_{n}$ , and it follows from (5) and (6) that

$u(x)=\int_{\partial!2\cap\overline{D}_{n}}\frac{G_{m}(x,y)}{G_{m}(\gamma;y)}d\mu(y)$ for any $ x\in D_{m}\cap\Omega$ .

Multiplying both sides by $\gamma(x)$ and integrating in $x$ over $D_{0}$ , we obtain
$u(\gamma)=\mu(\partial\Omega\cap\overline{D}_{n})$ .

Lemma 2.4 is thus proved.
PROOF OF LEMMA 2.5. We may see from (2.5), (2.10), (2.11) and (2.20) that

$G(x, y)=\int_{0^{\infty}}U(t, x, y)dt=\lim_{n\rightarrow\infty}\int_{0^{\infty}}U_{n}(t, x, y)dt=\lim_{n\rightarrow\infty}G_{n}(x, y)$

whenever $x\neq y$ and that $\{G_{n}(x, y)\}$ is monotone increasing with respect to $n$ .
On the other hand, $G(x, y)$ and $G_{n}(x, y)$ are continuous on the compact set
$E\times F$ whenever $D_{n}\supset EUF$. Hence the convergence in (2.21) holds uniformly
on $E\times F$ . Furthermore, by the fact (7) mentioned in the proof of Lemma 2.4
just above, we have
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$\lim_{x\rightarrow z,y\rightarrow z}G(x, y)\geqq\lim_{x\rightarrow z,y\rightarrow z}G_{m}(x, y)=\infty$

for any $z\in D_{m}$ ; here $m$ may be chosen arbitrarily. Hence (2.22) holds for any
$z\in D$ .

PROOF OF LEMMA 2.6. By virtue of the assumption of Lemma 2.6, we
may take a domain $\Omega$ with property (S) and such that $EU\overline{D}_{0}\subset\Omega\subset\overline{\Omega}\subset D-F$

and $\overline{\Omega}$ is compact. Then we may see from Lemma 2.1 in [7] that, for any
$x\in\overline{\Omega},$ $y\in D$ and $t>0$ ,

$U(t, x, y)=U_{\Omega}(t, x, y)-\int_{0^{t}}d\tau\int_{\partial\Omega}\frac{\partial U_{\Omega}(t-\tau,x,z)}{\partial n_{z}}U(\tau, z, y)dS_{z}$

where we define $U_{\Omega}(t, x, y)=0$ for any $x\in\overline{\Omega},$ $y\in D-\overline{\Omega}$ and $t>0$ . Integrating
both sides of the above equality in $t$ over $(0, \infty)$ , we obtain, by (2.5) and (2.20),

(8) $G(x, y)=G_{\Omega}(x, y)+\int_{\partial\Omega}\{-\frac{\partial G_{\Omega}(x,z)}{\partial n_{z}}\}G(z, y)dS_{z}$

for $x\in\overline{\Omega}$ and $y\in D$

where we put

(9) $G_{\Omega}(x, y)=0$ for $x\in\overline{\Omega}$ and $y\in D-\overline{\Omega}$ .
Since $EU\overline{D}_{0}$ and $\partial\Omega$ are mutually disjoint compact sets, we have, for suitable
constants $C_{1}$ and $C_{2}$ ,

(10) $0\leqq-\frac{\partial G_{\Omega}(x;z)}{\partial n_{z}}\leqq C_{1}$ for any $x\in E$ and $ z\in\partial\Omega$

and

(11) $0<C_{2}\leqq-\frac{\partial G_{\Omega}(\gamma;z)}{\partial n_{z}}\leqq C_{1}$ for any $ z\in\partial\Omega$ .

Hence, combining (8) with (9), we get

$\frac{G(x,y)}{G(\gamma;y)}\leqq\frac{\int_{\partial\Omega}C_{1}\cdot.G(z,y)dS_{z}}{\int_{\partial\Omega}C_{2}G(z,y)dS_{z}}=\frac{C_{1}}{C_{2}}<\infty$

for any $x\in E$ and $ y\in D-\Omega$ ; this fact implies (2.23).
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