## On the Gauss-Hecke sums

### By Katsumi SHIRATANI

(Received Sept. 28, 1962) (Revised Aug. 3, 1963)

### §1. Introduction.

Let k be an algebraic number field of finite degree and b be its different. Then for any non-zero number  $\omega$  in k, we decompose the ideal  $(\omega)b$  into the quotient of integral ideals a, b which are mutually prime:

$$(\omega)\delta = \frac{b}{a}$$
,  $(a, b) = 1$ .

The Gauss-Hecke sum is defined by an exponential sum

(1) 
$$C(\omega) = \sum_{\kappa \bmod \alpha} e^{2\pi i S(\omega \kappa^2)},$$

where S means the absolute trace with respect to k and  $\kappa$  runs over a complete residue system of integers  $\mathfrak o$  modulo  $\mathfrak a$ .

Hecke obtained the following formula from a transformation formula of the theta-function [2],

(2) 
$$\frac{C(\omega)}{\sqrt{N\mathfrak{a}}} = \frac{\sqrt{N2\mathfrak{b}}}{N\mathfrak{b}_1} e^{\frac{\pi i}{4} S^*(\operatorname{sgn} \omega)} C\left(\frac{-\delta^2}{4\omega}\right)$$

where  $\mathfrak{b}_1$  means an integral ideal satisfying  $\frac{\mathfrak{a}}{4\mathfrak{b}} = \frac{\mathfrak{a}_1}{\mathfrak{b}_1}$ ,  $(\mathfrak{a}_1, \mathfrak{b}_1) = 1$  and  $\delta$  a number in k determined by  $\mathfrak{b}(\delta) = \mathfrak{g}$ ,  $(\mathfrak{g}, \mathfrak{b}_1) = 1$  and N the absolute norm, finally  $S^*(\operatorname{sgn} \omega)$  the sum of signatures of real conjugates  $\omega^{(p)}$   $(p=1,2,\cdots,r_1)$  of  $\omega$ , that is,  $\sum_{n=1}^{r_1} \operatorname{sgn} \omega^{(p)}$ .

Especially for two integers  $\alpha$ ,  $\beta$  in k satisfying  $(\alpha, 2) = (\beta, 2) = (\alpha, \beta) = 1$ , Hecke derived from (2) for the quadratic power residue symbols  $\left(\frac{\beta}{\alpha}\right)$ ,  $\left(\frac{\alpha}{\beta}\right)$ , using some number  $\omega$ ,

(3) 
$$\left(\frac{\beta}{\alpha}\right) \left(\frac{\alpha}{\beta}\right) = (-1)^g \frac{C\left(\frac{-\omega\alpha}{4}\right)C\left(\frac{-\omega\beta}{4}\right)}{C\left(\frac{-\omega}{4}\right)C\left(\frac{-\omega\alpha\beta}{4}\right)},$$

$$g = g(\alpha, \beta) = \sum_{p=1}^{r_1} \frac{\operatorname{sgn} \alpha^{(p)} - 1}{2} \frac{\operatorname{sgn} \beta^{(p)} - 1}{2}$$
.

Siegel [3] treated the following sum regarded as a generalization of the Gauss-Hecke sum,

(4) 
$$G(\omega, \tau) = \sum_{\kappa \bmod a} e^{\pi i S(\omega \kappa^2 + \omega \kappa \tau) \ 1)},$$

where  $\tau$  denotes a number which satisfies the condition

(4)' 
$$S(\omega \alpha^2 + \omega \alpha \tau) \equiv 0 \pmod{2}$$
 for any  $\alpha$  in  $\alpha$ .

If we have (ab, 2) = 1, the reciprocity formula of Siegel reduces to theform:

(5) 
$$\frac{1}{\sqrt{N\mathfrak{g}}}G(\omega,\tau) = e^{\frac{\pi i}{4}\{S^*(\operatorname{sgn}\omega) - S(\omega\tau^2)\}} \frac{1}{\sqrt{N\mathfrak{b}}}G\left(-\frac{\delta^2}{\omega},\frac{\omega}{\delta}\tau\right).$$

From this formula, he gave a simple and beautiful proof of Hasse's formula on the law of quadratic reciprocity in k.

(6) 
$$\left(\frac{\beta}{\alpha}\right)\left(\frac{\alpha}{\beta}\right) = (-1)^{g+s\left(\frac{1-\alpha}{2},\frac{1-\beta}{2}\right)}, \quad (\alpha,\beta) = 1, \ \alpha \equiv \beta \equiv 1 \pmod{2}.$$

In this paper we prove in § 2 that Siegel's sum (4), under the assumption  $(\mathfrak{ab},2)=1$ , just coincides with the Gauss-Hecke sum  $C(2\omega)$ , and in § 3 therefrom we show that Hasse's formula (6) can be derived from (2). In § 4 we prove also the formula of complementary law from (2) in a similar way. One remarkable fact is that  $C\left(\frac{\omega}{8}\right)$  with  $(\omega)\mathfrak{d}=\mathfrak{b}$ ,  $(\mathfrak{b},2)=1$  consists essentially of only one term.

# § 2. A special sum $C\left(\frac{\omega}{8}\right)$ .

First we quote some important properties of the parameter  $\tau$  in (4).

In the case where  $(\mathfrak{ab}, 2) = 1$ , a number  $\tau$  which satisfies (4)' for given  $\omega$  can be chosen in  $\mathfrak{a}$  and is determined uniquely modulo  $2\mathfrak{a}^{2}$ . Hence it is legitimate to write such as  $G(\omega, \tau) = G(\omega)$ . We shall use this notation in the sequel,

Furthermore for the  $\tau$  chosen in this way, we have

$$\omega \, \tau^2 \equiv 1 \qquad \left( \bmod \, \frac{2}{\delta} \right)^{3)}$$
.

Now we will simplify the sum  $C(\frac{\omega}{8})$  under the conditions  $(\omega)\mathfrak{d} = \frac{\mathfrak{b}}{\mathfrak{a}}$ .  $(\mathfrak{ab}, 2) = (\mathfrak{a}, \mathfrak{b}) = 1$ . First

<sup>1)</sup> In the case were  $2|\mathfrak{b}$  holds, we may take 0 as  $\tau$ , and (4) becomes (1). Furthermore note that (2) can be derived from the general formula of Siegel in [3].

<sup>2)</sup> See [3, p. 11].

<sup>3)</sup> See Hilfssatz 2 in [3].

$$C\left(\frac{\omega}{8}\right) = \sum_{\kappa \mod 80} e^{2\pi i S\left(\frac{\omega}{8}\kappa^2\right)} = 2^n \sum_{\kappa \mod 40} e^{2\pi i S\left(\frac{\omega}{8}\kappa^2\right)}.$$

By making use of an integer  $\alpha_0$  such that  $\alpha c = (\alpha_0)$ ,  $(c, 2\alpha b) = 1$ , we have

$$\sum_{\kappa \bmod a} e^{\frac{\pi i S\left(\frac{\omega}{8}\kappa^2\right)}{2}} = \sum_{\kappa_1 \bmod a, \kappa_2 \bmod 4} e^{2\pi i S\left(\frac{\omega}{8}(\kappa_1 + \alpha_0 \kappa_2)^2\right)},$$

$$= \sum_{\kappa_3 \bmod 2} \sum_{\kappa_1 \bmod a, \kappa_2 \bmod 2} e^{2\pi i S\left(\frac{\omega}{8}(4\kappa_1 + 2\kappa_2 \alpha_0 + \kappa_3 \alpha_0)^2\right)},$$

$$= \sum_{\alpha \mid \tau' \bmod 2a} H(\omega, \tau'),$$

where we set  $H(\omega, \tau') = \sum_{\alpha \mid \kappa \mod 2\mathfrak{a}} e^{2\pi i S\left(\frac{\omega}{8}(2\kappa + \tau')^2\right)}$ . The numbers  $\tau'$  belong to a and are determined modulo  $2\mathfrak{a}$ .

We assert that  $H(\omega, \tau') = 0$  if  $\tau'$  does not coincide with Siegel's number  $\tau$  indicated in the first part of this section.

When  $\tau'$  is not equal to  $\tau$ , there exists a number  $\alpha'$  in a such that  $S(\omega \alpha'^2 + \omega \tau' \alpha') \neq 0 \pmod{2}$ . Hence

$$C = \sum_{\substack{\alpha \mid \alpha \bmod 2a}} e^{2\pi i S\left(\frac{\omega}{8}(2\alpha + \tau')^2\right)} = \sum_{\substack{\alpha \mid \alpha \bmod 2a}} e^{2\pi i S\left(\frac{\omega}{8}(2\alpha + 2\alpha' + \tau')^2\right)},$$

$$= e^{2\pi i S\left(\frac{\omega}{2}(\alpha'^2 + \alpha'\tau')\right)} \cdot \sum_{\substack{\alpha \mid \alpha \bmod 2a}} e^{2\pi i S\left(\frac{\omega}{8}(2\alpha + \tau')^2\right)},$$

from which we conclude C=0.

Now a short calculation shows that

$$H(\omega, \tau') = e^{-2\pi i S\left(\frac{\omega}{8}\tau'^2\right)} \cdot C \cdot \sum_{2 \mid \kappa \bmod a} e^{2\pi i S\left(\frac{\omega}{8}(2\kappa + \tau')^2\right)}.$$

Hence our assertion is valid.

On the other hand if  $\tau'$  is equal to  $\tau$ , then

$$H(\omega, \tau) = 2^n \sum_{0 \mid \kappa \mod a} e^{2\pi i S\left(\frac{\omega}{8}(2\kappa + \tau)^2\right)}$$
.

Therefore we obtain

(7) 
$$C\left(\frac{\omega}{8}\right) = 4^n \cdot e^{\pi i \, S\left(\frac{\omega}{4}\tau^2\right)} \cdot G(\omega).$$

In particular, we see for a = 0,

(8) 
$$C\left(\frac{\omega}{8}\right) = 4^n \cdot e^{\pi i S\left(\frac{\omega}{4}\tau^2\right)},$$

where the integer  $\tau$  satisfies the condition  $S(\omega \nu^2 + \omega \nu \tau) \equiv 0 \pmod{2}$  for any  $\nu$  in o.

By the way, for  $(\tilde{\omega})b = \frac{b}{\alpha_1\alpha_2}$ ,  $(\alpha_1, \alpha_2) = 1$ , choose two numbers  $\alpha_1$ ,  $\alpha_2$  such

that  $a_1c_1=(\alpha_1)$ ,  $a_2c_2=(\alpha_2)$ ,  $(c_1, a_2)=(c_2, a_1)=1$  hold, then we have by Hecke [2],

(9) 
$$C(\tilde{\omega}) = C(\tilde{\omega}\alpha_1^2) \cdot C(\tilde{\omega}\alpha_2^2).$$

Therefore for our number  $\omega$ , we have

(10) 
$$C\left(-\frac{\omega}{8}\right) = C\left(-\frac{\omega\alpha_1^2}{8}\right) \cdot C(8\omega),$$

where  $\alpha_1$  means an integer determined by  $\alpha c_1 = (\alpha_1)$ ,  $(c_1, 2) = 1$ .

Hence we obtain

(11) 
$$C\left(\frac{\omega}{8}\right) = 4^n \cdot e^{\frac{\pi i}{4}S(\omega \alpha_1^2 \xi^2)} \cdot C(8\omega).$$

Herein  $\xi$  means a number which satisfies the condition  $S(\omega \alpha_1^2 \nu^2) \equiv S(\omega \alpha_1^2 \nu \xi)$  (mod 2) for any integer  $\nu$ .

Set  $\alpha_1 \xi = \tau_0$ , then  $\tau_0$  satisfies  $S(\omega \alpha^2) \equiv S(\omega \alpha \tau_0)$  (mod 2) for any  $\alpha$  in  $(\alpha_1)$ . Hence the number  $\tau$  in (7) satisfies especially  $S(\omega \alpha \tau) \equiv S(\omega \alpha \tau_0)$  (mod 2) for any  $\alpha$  in  $(\alpha_1)$ , whence  $(\omega)(\alpha_1)(\tau - \tau_0) \subset 2b^{-1}$ . Therefore  $\tau \equiv \tau_0 \pmod{\frac{2}{bc_1}}$  which gives us  $\tau \equiv \tau_0 \pmod{2a}$ . This shows that we can choose  $\tau_0$  as  $\tau$  in (7).

By (7), (11), we finally obtain  $G(\omega) = C(8\omega)$ .

Now we have in general

(12) 
$$C(\beta\omega) = \left(\frac{\beta}{\alpha}\right)C(\omega),$$

when  $(a, 2) = (a, \beta) = 1$ ,  $\beta \in \mathfrak{o}$  hold [2].

Hence we obtain

(13) 
$$G(\omega) = \left(\frac{8}{a}\right)C(\omega) = \left(\frac{2}{a}\right)C(\omega) = C(2\omega).$$

This is an interesting equality which explains us a relationship between Siegel's sum and the Gauss-Hecke sum under our assumption  $(\mathfrak{ab}, 2) = 1$ .

### § 3. Hasse's formula.

We shall show that the formula (6) of Hasse can be obtained from (2) by a slight modification of Siegel's proof in [3]. We assume that  $(\alpha, \beta) = 1$ ,  $\alpha \equiv \beta \equiv 1 \pmod{2}$ .

Following Siegel [3], we define numbers  $\gamma$ ,  $\delta$ ,  $\omega_i$  and an ideal c by

$$\begin{split} \mathfrak{d}(\gamma) &= \mathfrak{c} \;, \qquad (\mathfrak{c}, \, 2\alpha) = 1 \;, \\ \omega &= \omega_1 = \frac{\beta}{\alpha} \gamma \;, \qquad \omega_2 = \frac{1}{\alpha} \gamma \;, \qquad \omega_3 = \gamma \;, \qquad \omega_4 = \beta \gamma \;. \\ (\omega) \mathfrak{d} &= \frac{(\beta)}{(\alpha)} \mathfrak{c} \;. \qquad ((\alpha\beta)\mathfrak{c}, \, 2) = 1 \;. \end{split}$$

$$b(\delta) = g$$
,  $(g, 2(\beta)c) = 1$ ,  $g$  integral.

Furthermore we put  $\omega_i^* = -\frac{\delta^2}{\omega_i}$  (i=1,2,3,4). Then we have

$$\begin{split} &C(2\omega_1) = C(2\beta\omega_2) = \left(\frac{\beta}{\alpha}\right) C(2\omega_2) \,, \\ &C(2\omega_1) = \frac{\sqrt{N\alpha}}{4^n \sqrt{N\beta c}} \,\cdot\, e^{\frac{\pi i}{4} S^*(\operatorname{sgn}\omega_1)} \,\cdot\, C\left(\frac{-\delta^2}{8\omega_1}\right) \,, \\ &C(2\omega_2) = \frac{\sqrt{N\alpha}}{4^n \sqrt{Nc}} \,\cdot\, e^{\frac{\pi i}{4} S^*(\operatorname{sgn}\omega_2)} \,\cdot\, C\left(\frac{-\delta^2}{8\omega_2}\right) \,. \end{split}$$

Therefore

$$\left(\frac{\beta}{\alpha}\right) = \frac{1}{\sqrt{N\beta}} \cdot e^{\frac{\pi_i}{4} \{S^*(\operatorname{sgn} \omega_1) - S^*(\operatorname{sgn} \omega_2)\}} \cdot \frac{C\left(\frac{-\delta^2}{8\omega_1}\right)}{C\left(\frac{-\delta^2}{8\omega_2}\right)}.$$

Take an integer  $\gamma'$  such that  $cc' = (\gamma'), (c', 2) = 1$ , then from (9) follow

$$C\left(\frac{-\delta^{2}}{8\omega_{1}}\right) = C\left(\frac{\omega_{1}^{*}}{8}\right) = C\left(-\frac{\alpha\delta^{2}}{8\beta\gamma}\beta^{2}\gamma^{\prime2}\right) \cdot C\left(-\frac{8^{2}\alpha\delta^{2}}{8\beta\gamma}\right),$$

$$C\left(\frac{-\delta^{2}}{8\omega_{2}}\right) = C\left(\frac{\omega_{2}^{*}}{8}\right) = C\left(-\frac{\alpha\delta^{2}}{8\gamma}\gamma^{\prime2}\right) \cdot C\left(-\frac{8^{2}\alpha\delta^{2}}{8\gamma}\right).$$

Since  $(\gamma'\gamma^{-1}\delta) = cc'c^{-1}g = c'g$ , we see that  $\gamma'\gamma^{-1}\delta$  is an integer. Hence we have

$$C\left(\frac{\omega_{1}^{*}}{8}\right) = C\left(-\frac{\alpha\beta\gamma}{8}\right) \cdot C\left(-8\frac{\alpha\delta^{2}}{\beta\gamma}\right)$$

$$= 4^{n} \cdot e^{\frac{\pi i}{4}S(-\alpha\beta\gamma\tau^{2})} \cdot \left(\frac{\alpha}{(\beta)c}\right) \cdot C\left(-\frac{2\delta^{2}}{\beta\gamma}\right),$$

$$C\left(\frac{\omega_{2}^{*}}{8}\right) = C\left(-\frac{\alpha\gamma}{8}\right) \cdot C\left(-8\frac{\alpha\delta^{2}}{\gamma}\right)$$

$$= 4^{n} \cdot e^{\frac{\pi i}{4}S(-\alpha\gamma\tau^{2})} \cdot \left(\frac{\alpha}{c}\right) \cdot C\left(-\frac{2\delta^{2}}{\gamma}\right).$$

Here the assumption  $\alpha \equiv \beta \equiv 1 \pmod{2}$  shows that  $\tau$  satisfies  $S(\gamma \kappa^2) \equiv S(\gamma \kappa \tau)$  (mod 2) for any integer  $\kappa$ . Therefore

$$\left(\frac{\beta}{\alpha}\right) = \frac{1}{\sqrt{N\beta}} e^{\frac{\pi i}{4} \left\{S^*(\operatorname{sgn} \omega_1) - S^*(\operatorname{sgn} \omega_2) - S(\alpha\beta\gamma\tau^2) + S(\alpha\gamma\tau^2)\right\}} \cdot \left(\frac{\alpha}{\beta}\right) \cdot \frac{C(2\omega_4^*)}{C(2\omega_3^*)}.$$

Now

$$C(2\omega_4^*) = \frac{\sqrt{N\beta c}}{4^n \sqrt{Ng^2}} \cdot e^{\frac{\pi i}{4} S^*(\operatorname{sgn} \omega_4^*)} \cdot C(\frac{-\delta^2}{8\omega_4^*}),$$

$$C(2\omega_3^*) = \frac{\sqrt{Nc}}{4^n \sqrt{Nc^2}} \cdot e^{\frac{\pi i}{4} S^*(\operatorname{sgn} \omega_3^*)} \cdot C(\frac{-\delta^2}{8\omega_3^*}).$$

Hence we have

$$\frac{C(2\omega_4^*)}{C(2\omega_3^*)} = e^{\frac{\pi i}{4} \{S^*(\operatorname{sgn} \omega_4^*) - S^*(\operatorname{sgn} \omega_3^*)\}} \sqrt{N\beta} \frac{C(\frac{\beta \gamma}{8})}{C(\frac{\gamma}{8})}.$$

Therefore

$$\left(\frac{\beta}{\alpha}\right) \left(\frac{\alpha}{\beta}\right) = e^{\frac{\pi i}{4} \{S^*(\operatorname{sgn} \alpha\beta\gamma) - S^*(\operatorname{sgn} \alpha\gamma) - S^*(\operatorname{sgn} \beta\gamma) + S^*(\operatorname{sgn} \gamma)\}}$$

$$\times e^{\frac{\pi i}{4} \{-S(\alpha\beta\gamma\tau^2) + S(\alpha\gamma\tau^2) + S(\beta\gamma\tau^2) - S(\gamma\tau^2)\}}.$$

By making use of that  $\gamma \tau^2 \equiv 1 \pmod{\frac{2}{\mathfrak{d}}}$ , we see

$$\frac{1}{4} \{ S^*(\operatorname{sgn} \alpha \beta \gamma) - S^*(\operatorname{sgn} \alpha \gamma) - S^*(\operatorname{sgn} \beta \gamma) + S^*(\operatorname{sgn} \gamma) \} \equiv g(\alpha, \beta) \pmod{2},$$

$$\frac{1}{4} \{ -S(\alpha \beta \gamma \tau^2) + S(\alpha \gamma \tau^2) + S(\beta \gamma \tau^2) - S(\gamma \tau^2) \} \equiv S\left(\frac{1-\alpha}{2}, \frac{1-\beta}{2}, \frac{1-\beta}$$

This completes the proof of (6).

### § 4. Complementary law.

The formula  $\left(\frac{-1}{\alpha}\right) = (-1)^{s\left(\frac{1-\alpha}{2}\right)}$ , where  $\alpha$  is a totally positive number and  $\alpha \equiv 1 \pmod{2}$ , follows from (6). Our concern is to obtain the formula for  $\left(\frac{2}{\alpha}\right)$ .

Suppose that  $\alpha \equiv 1 \pmod{2}$ , then we have

$$\left(\frac{2}{\alpha}\right) = \frac{C\left(\frac{-\alpha\omega'}{8}\right)C\left(\frac{-\omega'}{4}\right)}{C\left(\frac{-\omega'}{8}\right)C\left(\frac{-\alpha\omega'}{4}\right)},$$

where  $\omega'$  means a number determined by  $(\omega')b = b$ , (b, 2) = 1. This formula follows easily from (2) by Hecke's method as in the previous section.

Hence in the case where  $\alpha \equiv 1 \pmod{4}$  from (8) follows

$$\left(\frac{2}{\alpha}\right) = e^{\frac{\pi i}{4}S((1-\alpha)\omega'\tau^2)}.$$

By making use of that  $\omega' \tau^2 \equiv 1 \pmod{\frac{2}{5}}$ , we obtain

$$\left(\frac{2}{\alpha}\right) = (-1)^{s\left(\frac{1-\alpha}{4}\right)}$$
.

This is also a well-known formula of Hasse [1].

General Education Department, Kyushu University

### References

- [1] H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, Berlin, Teil I, Ia, II. 1927, 1930.
- [2] E. Hecke, Vorlesungen über die Theorie der algebraischen Zahlen, Leipzig, 1923.
- [3] C.L. Siegel, Über das quadratische Reziprozitätsgesetz in algebraischen Zahlkörpern, Göttingen Nachrichten, II. Nr. I, 1960.