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The purpose of this paper is to show how the basic theorems of local
class field theory can be deduced without recourse to the somewhat cumber-
some computations of indices of norm class groups. Basic facts employed will
be the properties of unramified (cyclic) extensions of complete fields assuming
that the residue class fields with respect to the given valuation have for each
positive integer exactly one extension of that degree1).

The classical inequalities are seen to be Chevalley’s famous Th\’eor\‘eme $0^{2)}$ ,

that is, existence of a cocycle in the second cohomology whose order equals the
degree of the normal extension in question, and a lemma, implicit in the work
of Kummer on explicit laws of reciprocity,3) which states that the second
cohomology group is trivial if the residue class field is algebraically closed.
Throughout the paper constant use is made of the properties of Hochschild’s
transfer mapping4). The theory of the norm residue is obtained as a simple
corollary to the isomorphism theorem for abelian extensions which is formu-
lated by means of the homomorphism first used successfully by Akizuki and
Nakayama. Thus, the approach presented here does not make any distinc-
tion between the $t$ ‘ characteristic unequal and equal cases ” as required hereto-
fore, if the theory of algebras as such is to be excluded.

Suppose that $K/F$ is a normal extension of degree $n$ with the Galois group
$JC=\{\sigma, \tau, \rho, \cdots \}$ . In the sequel the second cohomology group $H^{2}(c\chi, K^{*})^{6)}$ and
homomorphisms related to it will be of primary importance. This cohomology
group may be defined7) as the factor group of 2-cocycles (factor sets) $ f(\sigma, \tau)\in$

$K^{*}$ (which form a group $Z^{2}(cX,$ $K^{*})$) satisfying the $n^{3}$ relations
$*)$ This work was supported under a grant from the National Science Foundation.
1) As to the significance of this assumption as a necessary condition for the vali-

dity of local class field theory see [14], [17] and [19]. The numbers in $[$ ... $]$ refer to
the bibliography at the end of the paper.

2) See [3, p. 142]; and [9, p. 341].
3) See [8]; and [20, p. 508].
4) See [9].
5) See [2], [9] and [15].
6) $K^{*}$ denotes the multiplicative group of non-zero elements in $K$ See [9] for the

definitions of cocycle, coboundary and cohomology group.
7) For definitions and proofs of algebraic properties see [9].
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$f(\tau, \rho)^{\sigma}f(\sigma, \tau\rho)=f(\sigma\tau, \rho)f(\sigma, \tau)^{8)}$

modulo the group of coboundaries (transformation sets) $B^{2}(JC, K^{*})=$

$\{f(\tau)^{\sigma}f(\sigma)f(\sigma\tau)^{-1}\}^{9)}$

Immediate consequences of these defining relations and definitions $are^{10)}$ :
(i) $H^{2}(X, K^{*})$ is an abelian group of exponent $n$,

(ii) the element $\prod_{\tau\in J\zeta}f(\tau, \sigma)=g(\sigma)$ lies in $F^{11)}$ ;

(iii) the mapping $\sigma\rightarrow J_{c}(\sigma)=g(\sigma)N(K^{*})$ is a homomorphism of the Galois
group $\zeta\chi$ into the factor group $F^{*}/N(K^{*})$ . Here $g(\sigma)$ denotes the
product, according to (ii), for a representative $f(\tau, \sigma)$ of the cohomo-
logy class of $c\in H^{2}(X, K^{*}),$ $N$ denotes the norm taken from $K$ to $F$.

Suppose now that $\ovalbox{\tt\small REJECT}$ is a subgroup of $X$ having the field $S/F$ for its in-
variant field elements. Then12), given a couple $c=c(\sigma, \tau)$ of $H^{2}(cX, K^{*})$ , the
restriction of the arguments $\sigma,$ $\tau$ to elements of $\ovalbox{\tt\small REJECT}$ determines an element
$P_{\ovalbox{\tt\small REJECT}}[c(\sigma, \tau)]$ of $H^{2}(\ovalbox{\tt\small REJECT}, K^{*})$ . The resulting mapping $c(\sigma, \tau)\rightarrow Pff[c(\sigma, \tau)]$ is a homo-
morphism $P_{J\int}$ of $H^{2}(X, K^{*})$ into $H^{2}(\ovalbox{\tt\small REJECT}, K^{*})$ .

If ,41 is a normal subgroup of $K$, the kernel of $P_{Jt}$ can readily be deter-
mined, using the fact that the first cohomology group of $K/F$ is trivial13).

For this purpose a homomorphism $\Lambda_{S,K}$ from $H^{2}(X/\ovalbox{\tt\small REJECT}, S^{*})$ into $H^{2}(c\chi, K^{*})$ is
used. This mapping is determined by the equations $c(\sigma, \tau)=\Lambda_{S.K}[c(\sigma^{*}, \tau^{*})]$

where $\sigma^{*},$ $\tau^{*}$ are the images of $\sigma,$ $\tau$ in $c\chi$ in the Galois group $cX/\ovalbox{\tt\small REJECT}$ of $S/F$. It
turns out that $\Lambda_{S,K}$ actually is an isomorphism of $H^{2}(X/\ovalbox{\tt\small REJECT}, S^{*})$ into $H^{2}(JC, K^{*})$ .

Then the kernel of the homomorphism $P_{Jf},$ $\ovalbox{\tt\small REJECT}$ normal in $X$, is found to be
$\Lambda_{l}S,K[H^{2}(JC/\ovalbox{\tt\small REJECT}, S^{*})]$ .

Suppose now that $L/F$ is another normal extension with Galois group $t$.
Denote by $M$ the union of $K$ and $L$ in an algebraic closure of $F$. Assume
that $L$ belongs to the subgroup ,41 of the Galois group of $M/F$. Then a co-
homology class $f$ in $H^{2}(JC, K^{*})$ is said to be split by $L/F$, provided the “ lift ”.
$\Lambda_{K,M}(f)$ lies in the kernel of $P_{j\prime^{14)}}$ . Here the symbol $f$ is simultaneously used
for a cocycle representing the given cohomology class. Thus, if $f$ is split by
$L/F$, then $\Lambda_{K1t}(f)=\Lambda_{L,M}(f^{\prime})$ for some cocycle $f^{\prime}$ for $L/F$. The cocycle $f^{\prime}$ shall

8) Exponentiation by $\sigma$ signifies taking the conjugate for the automorphism $\sigma\in J\mathcal{E}$.
9) See [9] for general coboundary operations.

10) Statements (i) to (iii) are obtained by multiplying the defining relations over
the arguments $\rho$ )

$\tau$ and $\sigma$ , each varying over all elements of $X$.
11) See [15, p. 85], Theorem 1. Also note that equivalent cocycles give rise to

products $g(\ldots)$ which belong to the same coset of $F^{*}$ modulo the norm group $N(K^{*})$ .
12) For the sequel, see, $e$ . $g.,$ $[9]$ .
13) Loc. cit. [9], “ Nocther’s equations.”
$l4)$ This is an apparent simplification of Hochschild $s$ definition, loc. cit, p. 336;

here the burden of proof is placed on the statement that all algebraic closures of $F$

are isomorphic over $F$.
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be called the ” transfer ”
$T_{K,L}(f)$ of $f$ to $L/F$. Passage to the cohomology

class of $f^{\prime}$ yields that $T_{K.L}$ actually is an isomorphism of the subgroup of
cohomology classes of $H^{2}(X, K^{*})$ which are split by $L$ , denoted by $H^{2}(X, K^{*})_{L}$ ,

into $H^{2}(X, L^{*})$ . As a matter of fact $T_{K,L}[H^{2}(J\zeta, K^{*})_{L}]=H^{2}(X, L^{*})_{K}$ ; thus $T_{L,K}$

is the inverse mapping of $T_{K,L}$ .
Suppose now that the field $F$ is complete with respect to a discrete valua-

tion $V^{16)}$ of rank one. Assume that the associated residue class field admits
for every positive integer $n$ exactly one cyclic extension of degree $n$ . Let $U_{i}$ ,
$i=1,2,$ $\cdots$ , be an arbitrary ordering of the unramified extensions of $F$. Then
the union $k=\bigcup_{i}U_{i}$ is a relatively complete field whose residue class field is

algebraically closed. The completion le of $k$ has the same value group as the
fields $F,$ $U_{i}$ , and $k$ .

THEOREM 1. If $K/k$ is a normal finite extension with the Galois group $\sigma X$,

then $H^{2}(JC, K^{*})=1$ .
For the proof first note that it suffices to establish that

(A) $H^{2}(\mathcal{Z}, Z^{*})=1$ for cyclic extensions $Z/H$

of prime degree over a finite extension $H$ of $k$ .
Note that abelian groups and p-groups .-sne (with corresponding field $M$)

contain normal subgroups $1\ovalbox{\tt\small REJECT}_{i},$ $1\subseteqq\ovalbox{\tt\small REJECT}_{1}\subseteqq\ldots\subseteqq\ovalbox{\tt\small REJECT}_{i}\subseteqq\ldots\subseteqq\ovalbox{\tt\small REJECT}$ such that $c\mathscr{Y}_{i+1}/\ovalbox{\tt\small REJECT}_{\dot{i}}$

has prime index $p_{i}$ in $\ovalbox{\tt\small REJECT}/\ovalbox{\tt\small REJECT}_{i}$ . Consider therefore the subfield $M_{1}/H$ which
corresponds to $\ovalbox{\tt\small REJECT}_{1}$ . The kernel of the restriction $P_{5t_{1}}$ of $H^{2}(\ovalbox{\tt\small REJECT}, M^{*})$ equals
$\Lambda_{M_{1},M}[H^{2}(\ovalbox{\tt\small REJECT}/\ovalbox{\tt\small REJECT}_{1}, M_{1}^{*})]$ . Furthermore, this restriction P.su. $[H^{2}(\ovalbox{\tt\small REJECT}, M^{*})]$ is a sub-
group of $H^{*}(\ovalbox{\tt\small REJECT}_{1}, M^{*})$ which is the identity if (A) is established. Consequently
$H^{2}(\ovalbox{\tt\small REJECT}, M^{*})$ coincides with $\Lambda_{M_{1},M}[H^{2}(\ovalbox{\tt\small REJECT}/\ovalbox{\tt\small REJECT}_{1}, M_{1}^{*})]$ . Hence, induction on the sub-
groups $\ovalbox{\tt\small REJECT}_{i}$ implies $H^{2}(\ovalbox{\tt\small REJECT} l, M^{*})=1$ .

This argument can be applied to a normal extension $K/k$ with the rami-
fication field $K_{0}/k$ . By the Hilbert theory16) the subgroup $K_{0}$ of $K$ belonging
to $K_{0}$ is a p-group ( $p$ being the common characteristic of the residue class
fields of $k,$ $U_{i}$ and $F$ ) with the cyclic factor group $K/K_{0}$ .

Then $H^{2}(JC/Cx_{0}, K_{0}^{*})=1$ and also $H^{2}(X_{0}, K^{*})=1$ . Reasoning as before, us-
ing the restriction mapping $P_{X_{0}}$ and (A), it follows that $H^{2}(X, K^{*})=1$ .

Now it remains to prove assumption (A). For this purpose observe that
the completion $\overline{Z}$ of a finite separable extension $Z/H$ has degree $[Z:H]$ over
the completion $\overline{H}^{17)}$ . The field $Z=H(z)$ is equal to the union $HH_{0}(z)$ where

15) For the elementary properties of complete and relatively complete fields see
[18].

16) See [18, p. 8].
17) See [18, p. 195 et sequ.] for arguments dealing with the approximation of

extensions of an infinite algebraic extension.
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$ff_{0}$ is a finite extension of $F$ in a chain of approximating fields $ F\subset H_{0}\subset\cdots\subset$

$H_{t}\subset\ldots\subset H$ with $\cup H_{i}=H$ Let $N,$ $T$, respectively, denote the norm and trace
for $H_{0}(z)/H_{0}$ then $ N(1+xk)=1+T(k)x+\cdots=1+y=\epsilon$, where $k\in H_{0}(z)$ has non-
zero trace and $x\in H_{0}$ has a solution for given $y$, according to the Lagrange
inversion formula18), provided $ V_{H_{0}}(y)\geqq\mu$ , for sufficiently large positive $\mu$ . This
means that every unit $\epsilon\equiv 1(P_{H_{0}}^{f\prime})$ , where $P_{H_{0}}$ denotes the prime ideal of $H_{0}$ , is
the norm of a unit in $H_{0}(z)$ . Note that the same value $\mu$ can be used for
$H_{i}(z)/H_{i}$ since the extension $H_{i}$ is unramified over $H_{0^{19)}}$ . Similarly the “ radius
of convergence “

$\mu$ can be used for $\overline{H}(z)/\overline{H}=\overline{Z}/\overline{H}$.
Finally, restrict $Z/H$ to be cyclic of prime degree $p$ . Then the completion

$\overline{Z}$ is cyclic of degree $p$ over $\overline{H}$. An $argument2$ ), originally due to Kummer,

implies that $H^{2}(z, Z^{*})=1$ , where $\mathcal{Z}$ denotes the common Galois group of $\overline{Z}/\overline{H}$

and $Z/H$ In order to prove $H^{2}(\mathcal{Z}, Z^{*})=1$ let $a\in H$ Then $a=N\overline{A},\overline{A}\in\overline{Z}^{21)}$ .
The element $A$ is the limit $\lim_{h\rightarrow\rightarrow}A_{h}$ of elements $A_{h}$ in the approximating

field $H(z)$ . Hence $h$ may be picked so large that $ N(\overline{A}/A_{h})\geqq\mu$ . Next observe
$a=N(A_{h})N(\overline{A}/A_{h})$ implies that $ N(\overline{A}/A_{h})=\epsilon$ lies in $H$ Since $H=\cup H_{i}$ , the

unit $\epsilon$ lies in a field $H_{i}\supseteqq H_{0}$ of finite degree over $F$. Therefore, by the above
remarks on the unramified prolongations of $V_{B_{0}}$ to the fields $H_{i},$ $\epsilon=NE$ with
$E\in H_{j}(z)$ , according to the preservation of the radius of convergence $\mu$ for
the Lagrange inversion formula. Thus, $a=N(A_{h})N(E)$ , and consequently
$H^{2}(Z, Z^{*})=1$ as asserted.

From now on, unless otherwise stated, $F$ shall denote a complete field
whose residue class field possesses for every integer $n$ exactly one cyclic ex-
tension of degree $n^{22)}$ .

THEOREM 2. If $K/F$ is a normal extension of degree $n$ , then its cohomology
group $H^{2}(c\chi, K^{*})$ is cycilc and its order divides $n$ .

Statement (i) asserts that the orders of the cohomology classes are divisors
of $n$ . Therefore it suffices to prove that for each prime $p$ dividing $n$ the
group $H^{2}(\epsilon X, K^{*})$ contains at most one cyclic subgroup of order $p$ . Suppose
then that the cohomology group contains a subgroup of type $(p,p)$ . Theorem
1 implies that this finite group is split by some unramified finite extension
$U_{m}/F$. Applying the transfer mapping $T_{K,Um}$ to the subgroup, there would
then exist a non-cyclic subgroup of order $p^{2}$ in the group $H^{2}(\subseteq U_{m}, U_{m}^{*})$ . How-
ever, the latter group being isomorphic23) to the norm class groups $F^{*}/N(U_{m}^{*})$ ,

18) See [22].
19) The fields in question have the same general trace and norm forms.
20) See [8].
21) See [20, p. 508, Lemma 2].
22) See [12], [13], [17] and [19] for the significance of this assumption.
23) For this normalization see [9, p. 339], and [23, p. 98].
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where $N(\cdots)$ denotes the norm taken from $U_{m}$ to $F$, is a cyclic group of order
$m^{24)}$ . Consequently $H^{2}(c\chi, K^{*})$ contains at most one cyclic subgroup of order $p$.

COROLLARY. If $K/F$ is a normal extension of degree $n$ , then the order of its
norm class group $[F^{*} : N(K^{*})]$ divides $n$ .

Since $K/F$ is solvable there will exist a chain of subfields $ F=K_{0}\subset K_{1}\subset$

$\subset K_{i-1}\subset K_{i}\subset\ldots\subset K_{r}=K$ such that $K_{i}$ is cyclic of prime degree over $K_{i-1}$ .
Denote by $N_{j,i}$ the norm taken from $K_{j}$ to $K_{i}>i>i$ . The Theorem 1 implies
that the corollary is correct for $r=1$ , since the cohomology group is isomor-
phic to the norm class group for a cyclic extension. As induction hypothesis
assume that $[K_{1^{*}} : N_{i+1,1}(K_{i^{*}+1})]|[K_{i+1} : K_{1}]$ for the normal extension $K_{i+1}/K_{1}$ .
Now define $A$ as the subgroup of $K_{1}^{*}$ which consists of all elements $a$ for
which $N_{1,0}(a)\in N_{i+1,0}(K_{i+1}^{*})$ . Then $A\subseteqq N_{i+1,1}(K_{i+1}^{*})$ , by the transitivity of the
norm, $N_{i+1,0}(\cdots)=N_{1.0}[N_{i+1,1}(\cdots )]$ . Consequently $[K_{1}^{*} : A]$ divides $[K_{1}^{*}:$ $N_{i+1,0}$

$(K_{i^{*}+1})]$ , and the last index divides $[K_{i+1} : K_{1}]$ according to the induction hypo-
thesis. Next, considering $N_{1,0}$ as a homomorphism acting on $K_{1}^{*}$ , Herbrand’s
reduction principle for homomorphisms implies $[K_{1^{*}} : A]=[N_{1.0}(K_{1^{*}}):N_{i+1,0}$

$(K_{i^{*}+1})]$ . Consequently $[F^{*} : N_{i+1,0}(K_{i^{*}+1})]=[F^{*} : N_{1,0}(K_{i^{*}+1})][N_{1,0}(K_{1^{*}}):N_{i+1,0}(K_{i+1}^{*})]$ ;
therefore $[F^{*} : N_{i+1,0}(K_{i^{*}+1})]=[K_{1} : F][N_{1.0}(K_{1^{*}}):N_{i+1,0}(K_{i^{*}+1})]=[K_{1} : F][K_{1^{*}} : A]$

divides $[K_{1} : F][K_{i+1} : K_{1}]=[K_{i+1} : F]$ since $K_{1}$ is cyclic over $F^{25)}$ .
THEOREM 3. If $K/F$ is a normal extension of degree $n$ , then $H^{2}(X, K^{*})$ is a

cyclic group of order $n$ .
Recalling Theorem 2 it suffices to exhibit a cohomology class of order $n$

for $K/F$. For this purpose the transfer mapping $T_{Un,K,\vee}$ is used. First, $H^{2}(CU_{n}$,
$U_{n}^{*})$ is a cyclic group of order $n^{26)}$ ; second, every cohomology class of $U_{n}/F$

is split by $K^{27)}$ . Hence $T_{Un,K}$ is an isomorphism of $H^{2}(CU_{n}, U_{n}^{*})$ into $H^{2}(JC, K^{*})$ .
REMARK. For the sake of completeness an outline of the proof for Chev-

alley’s Th\’eor\‘eme $0$ , using cohomology theory, will now be sketched. Suppose
that $f$ is a cocycle in a cohomology class of order $n$ in $H^{2}(ClJ_{n}, U_{n}^{*})$ . Take
$\Lambda_{U_{n},Un^{K}}(f)$ . Then this cocycle will be equal to a cocycle $\Lambda_{K.U_{7}K}(g),$ $g$ a repre-
sentative of a unique class in $H^{2}(JC, K^{*})$ of $P_{Jt}[\Lambda_{Un,UnK}(f)]$ is a coboundary,
$i$ . $e.$ , if $K/F$ splits $f$. Next note that $U_{n}K/K$ is the unramified extension of
degree $n/(n, h)$ where $h$ denotes the residue class degree of $K/F$. Finally note
that the cocycle $f$ is equivalent to a normalized cyclic cocycle given as $a=$

24) See [5].
25) Note that the proof can be modified so as to yield $[H^{2}(_{c}n, K_{i^{*}}) : 1]$ $|[K_{i}:F]$

if the fields $K_{i}/F$ are assumed to be normal. One uses the connection between- the
restriction and lift mappings in order to set up the induction. Namely, $[H^{2}(_{c}\chi_{i+1}$ ,
$K_{i+1}^{*})$ : $1$ ] $=[Pff[H^{2}(JC_{i+1}, K_{i+1}^{*}) : 1]$ $[\Lambda_{K_{i},K_{.+1}}[H^{2}(X_{i}, K_{i}^{*})] : 1]$ where $\ovalbox{\tt\small REJECT}$ denotes the
Galois group of $K_{i+1}/K_{i}$ .

26) See [5].
27) See [3, p. 142], and [9, p. 341].
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( $\alpha_{\sigma^{i}}$ , $\sigma^{j)}=\pi^{rs}$ , with $s=[\frac{i+j}{n}]-[\frac{i}{n}]-[\frac{j}{n}]$ and $r$ relatively prime to $n$ for a
fixed, but arbitrary, choice of the generator $\sigma$ of the Galois group of $U_{n}/F^{-}$

and a prime element $\pi$ of $F$. Then $P_{JC}[\Lambda_{UnK,K}(a)]$ is equivalent to $\Pi^{e}$ , where
$\Pi$ denotes a prime element of $K$. All along Hasse’s result, loc. cit. [8], was
used that for unramified cyclic extensions the units of the base field are norms.
For this reason, the choice of $\pi$ and $\Pi$ is immaterial for the determination of
the normalized representatives of the cohomology classes in question. Since
$e$ , the ramification degree of $K/F$, equals $n/(n, h)=[U_{n}K:K]$ , Hasse’s Theorem
implies that $Pff[\Lambda_{U_{\eta}K,K}(a)]$ is a coboundary. Consequently the transfer map-
ping $T_{U_{n},K}$ is an isomorphism of $H^{2}(cU_{n}, U_{n}^{*})$ into $H^{2}(c\chi, K^{*})$ . Also note that
an element of order $m|n$ in $H^{2}(CU_{n}, U_{n}^{*})$ always has the form $\Lambda_{Um,Un}(k),$ $ k\in$

$H^{2}(\subset U_{m}, U_{m}^{*})$ since the groups in question are cyclic. Then $T_{U_{n},K}$ is an isomor-
phism on $\Lambda_{Um,U_{n}}[H^{2}(CU_{m}, U_{m}^{*})]$ which coincides with $\Lambda_{u_{mK,U_{n}K}}T_{U_{m},K}$ on $H^{2}(\subset U_{mr}$

$U_{n}^{*})$ .
REMARK. Immediate consequences of the above results are
(iv) If $t\mathscr{X}$ is a subgroup $JC$, then $H^{2}(\ovalbox{\tt\small REJECT}, K^{*})=P_{9\int}\backslash [H^{2}(X, K^{*})]$ ; and
(v) if $\ovalbox{\tt\small REJECT}$ is a normal subgroup of $X$ with corresponding field $S/F$, then

$\Lambda_{S,K}[H^{2}(X/\ovalbox{\tt\small REJECT}, S^{*})]=[H^{2}(c\chi, K^{*})]^{h},$ $h=[K:S]^{28)}$ .
It is now a relatively simple matter to establish the classical law of reci-

procity for abelian extensions $K/F$ and furthermore as a significant corollary
the theory of norm residues29).

For this purpose it is necessary to enlarge upon the previously used re-
sults concerning the lift mapping $\Lambda_{S,K}$ of a couple (cohomology class) of a
normal subfield $S/F$ belonging to a normal subgroup $H$ of the Galois group of
$K/F$. Suppose that $f(\sigma, \tau)$ is a cocycle of $K/F$ whose cohomology class is
$c(\sigma, \tau)=c$ . Let

$g_{\ovalbox{\tt\small REJECT}}(\sigma)=\prod_{\rho\in 9f}f_{\rho.0}$
. Then, denoting the order of $\ovalbox{\tt\small REJECT}$ by $h$ and by

$N_{K/S}$ the norm from $K$ to $S$,

$f(\sigma, \tau)^{h}=\Lambda_{S.K}[N_{K/S}(f(\overline{\sigma},\overline{\tau}))\frac{g_{\ovalbox{\tt\small REJECT}}(}{g_{R}(}\frac{\overline\sigma\tau)}{\sigma\overline\overline{\tau})}]$ $(mod B^{2}(c\mathcal{K}, K^{*}))$

where 5, 7 are fixed representatives of $\sigma,$ $\tau$ modulo $\mathscr{X}$, and $\overline{\sigma\tau}$ is the chosen
representative of $\overline{\sigma\tau}^{30)}$ . This formula implies31) that

$c^{h}$ equals the cohomology class of
$d(\sigma, \tau)g_{\ovalbox{\tt\small REJECT}}(\sigma)g_{\ovalbox{\tt\small REJECT}}(\tau)^{\sigma}g_{R}(\sigma\tau)^{-1}$

28) These relations are important for Nakayama’s proof of the limitation theorem
of local class field theory. See [ $lti$ , pp. 880-882]. Also [10].

29) See $[2a],$ $[3],$ $[4],$ $[7],$ $[12]$ and [13], $[19a]$ .
30) See the elegant proof of Witt [21] ; this is formula (18) of [2, p. 569]. See

also [9, pp. 333-334].
31) This is equation (12) of [2, p. 568].
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where

$d(\sigma, \tau)=\prod_{\rho\in Jf}\frac{f}{f}\frac{\rho\sigma}{\tau,\rho}(\tau()^{\underline{)}}$ .

This relation can be written in a simpler form if one observes that a
representing cocycle $k(\sigma, \tau)$ in $c$ may be chosen such that $k(\rho, \tau)=1$ for $\rho\in c’[$

and $\tau$ in a fixed set of representatives of $JC$ modulo $\ovalbox{\tt\small REJECT}^{32)}$ . Then, using the
associativity relations, one finds that the cohomology class of $c^{h}$ can be repre-

sented by the cocycle (vi) $\prod_{\rho\in J!}\frac{k(\tau\rho,\sigma)}{k(0,\sigma)^{r}}$. This is possible because the quantities

$g_{Jf}(\sigma)$ computed for $k(\sigma, \tau)$ turn out to be $1^{33)}$ .
As a special result a lemma of Chevalley34) is obtained if the representa-

tives of $\zeta X$ modulo Yl can be picked so as to form a subgroup $\Leftrightarrow C$ of $\epsilon\chi$, in parti-
cular, if JC is the direct product of $\ovalbox{\tt\small REJECT}$ and $X$.

Then
(vii) $c^{h}=\Lambda_{S.K}(N_{K/S}(f(\sigma^{*}, \tau^{*}))$ where $x=\{\sigma, \tau, \cdots\}^{36)}$

THEOREM 4. Suppose that $K/F$ is an abelian extension of degree $n$ with the
Galois group $x=\{\sigma, \tau, \cdots \}$ . Then each cohomology class $c$ of $H^{2}(X, K‘‘)$ deter-
mines an isomorphism $J_{c}$ of $K$ with the norm class group $F^{*}/N(K^{*})$ . This iso-
morphism is given by $\sigma\rightarrow J_{c}(\sigma)=\prod_{\tau\in X}f(\tau, \sigma)=g(\sigma)mod N(K^{*})^{36)}$ where $f(\tau, \sigma)$ is a
cocycle in $c$ .

For the proof suppose that $\sigma x=_{C}X_{i}\times\cdots\times\zeta X_{S}$ is representation of $K$ as a
direct product of cyclic groups (

$X_{i}=\{\sigma_{i}\}$ of respective orders $n_{i}$ . Correspond-
ing to the subgroups $JC_{i}\wedge$ , obtained from the direct product by replacing the
i-th component by 1, there are $s$ subfields $K_{\iota}/F$ which are cyclic of degree $n_{i}$

and whose Galois groups are isomorphic to $X_{i}=\{\sigma_{i}\}$ . These Galois groups
are the restrictions of $\sigma\chi$ to $K_{i}$ and may be identifield with (

$X_{i}$ in order to
avoid complicated notation. Furthermore, using the interpretation of $ H^{2}(c\chi$,
$K^{*})$ by means of group extensions of $K^{*}$ by $X^{37)}$ , it may be assumed that
each cohomology class of $H^{2}(JC, K^{*})$ is represented by a cocycle $f(\sigma, \tau)$ for

which $f(\sigma_{i}^{gr}, \sigma_{i}^{\nu})=a_{i}^{x_{i}}$ , with $x_{i}=[\frac{\mu+\nu}{n_{i}}]-[\frac{\mu}{n_{i}}]-[\frac{\nu}{n_{i}}]$ , and $a_{i}$ lying in $\check{K}_{i}=$

$K_{1}$ U... $UK_{i-1}\cup K_{i+1}U\cdots U$ K., $1\leqq i\leqq s^{38)}$ . This normalization implies $g(\sigma_{i})=$

32) See [2, p. 262]; and also [23, pp. 94-98].
33) See [2, p. 569].
34) [3, p. 147]; and [21].
35) The asterisk in $\sigma^{*}$ indicates the restriction of $\sigma$ to the subfield S. Further-

more, also note that the cohomology class is to be taken on the right side of the
equation.

36) See [15] for a model in which algebras are used.
37) See [23, pp. 100-103].
38) See [23, pp. 102-3].
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$\prod_{\tau\in J(i}f(\sigma_{i}, \tau)=a_{i}$ . But then $g(\sigma_{i})=N_{\overline{K}_{l}/F}(a_{i})^{39)}$ . Next apply relation (vii) to the

cohomology class $c$ , letting $\hat{X}_{i}=\ovalbox{\tt\small REJECT},$ $JC_{i}=t$. then

$c^{m_{i}}=\Lambda_{K.,K}(N_{K/K_{i}}(f(\sigma_{i:}^{\mu}\sigma_{i}))$

$=\Lambda_{K_{i},K}(N_{K_{i}^{\vee}/F}(f(\sigma_{i}^{\beta}, \sigma_{i}^{\nu}))$ ,

where $0\leqq\mu,$ $\nu\leqq n_{i},$ $1\leqq i\leqq\backslash i^{40)}$ . Finally, the assumption that $c$ has order $n$ is
used. Noting Remark (v) it follows that $c^{m_{i}}$ has order $n_{i}$ if $c$ has order $n$ .
This implies that $N_{\overline{x}_{i/F}}(a_{i})=g(\sigma_{i})$ , computed for the normalized representative
$f(\sigma, \tau)$ , has the precise order $n_{i}$ modulo $N(K^{*})$ . The coset $g(\sigma_{\dot{t}})$ modulo $N(K^{*})$

does not depend on the normalized representative $f(\sigma, \tau)$ of the cohomology
class $c^{41)}$ . Consequently $g(\sigma_{i})^{t}\in N_{K_{t/p}}(K_{i}^{*})$ if and only if $t\equiv 0(mod n_{\dot{t}})$ . More-
over, note that the elements $N_{K_{v}/F}^{-}(a_{i})N(K_{i}^{*})$ lie in $N_{\check{K}_{\iota}/F}(\check{K}_{i}^{*})$ by the transitivity

property of the norm. Assume now that $g(\prod_{i=1}^{n}\sigma_{i^{l}}^{y})$ , computed for a class $c$ of

order $n$, lies in $N(K^{*})$ . Then $g(\sigma_{i})^{yi}$ lies in $N_{x_{i/F}}(K_{i}^{*}),$ $1\leqq i\leqq s,$ $becauseg(\sigma_{j})\in$

$N_{\check{K}j/F}^{\prime}K_{j}^{*})\subseteqq N_{x\iota/F}(K_{i})$ , for all $j$ distinct from a given fixed $i$ . This implies $y_{i}\equiv 0$

$(mod n_{i})$ , thus $\prod_{i=1}^{s}\sigma_{i}^{y_{8}}=1$ . Hence $g(\sigma)$ establishes an isomorphism of $JC$ into

the norm class group $F^{*}/N(K^{*})$ whose order is at most equal to $[K:F]$

according to the corollary of Theorem 2. This means that $g(\sigma)$ determines an
isomorphism $J_{c}$ as asserted.

THEOREM 5. If $K/F$ is a normal extension with finite Galois group $\sigma x=$

$\{\sigma, \cdots\}$ whose commutator group is $JC^{\prime},$ $K^{\prime}/F$ denoting the corresponding subfield,

then each cohomology class $c$ of order $[K:F]$ in $H^{2}(X, K^{*})$ determines by $\sigma\rightarrow J_{c}(\sigma)$

an isomorphism of $X/JC^{\prime}$ with the norm class group $F^{*}/N(K^{*})^{42)}$ .
As in the preceding proof details of argument are simplified if cohomology

classes are represented by suitably normalized cocycles. In this case the nor-
malization (see page 240) shall be used. Suppose therefore that the cohomology
class $c$ of order $n$ is represented by the cocycle $k(\sigma, \tau)$ loc. cit. Next, letting
$u=[X^{\prime}$ : 1 $]$ , $c^{u}=\Lambda_{K,K}(d^{\prime}(\sigma^{\prime}, \tau^{\prime}))(mod B^{2}(c\mathcal{X}, K^{*}))$ where $d^{\prime}(\sigma, \tau^{\prime})$ denotes the co-
cycle of $H^{2}(JC^{\prime}, K^{*})$ which is determined by (vi) since the latter depends on
the cosets of $JC$ modulo $JC^{\prime}$ . Consider now for the cocycle $d^{\prime}(\sigma^{\prime}, \tau^{\prime})$ in $Z^{2}(JC/X$ ,
$K^{\prime*})$ the corresponding function $g(\cdots )$ , that is $g^{\prime}(\sigma^{\prime})=\prod_{r^{\prime}}d^{\prime}(\tau^{\prime}, \sigma^{\prime})$ . Then the

mapping $\sigma^{\prime}\rightarrow g^{\prime}(\sigma^{\prime})N(K^{\prime*})^{43)}$ is by the preceding theorem an isomorphiscm of

39) See footnote 11).

40) Note that $N_{\check{x}_{i/F}}(f(\sigma_{i}^{u}, \sigma_{i}^{\nu})=h(\mu, 1’)$ is a normalized cocycle in $H^{2}(X_{i}, K_{i}^{*})$ , one
has $h(\mu, \nu)=N_{\check{K}_{i}/F}(h(\mu, \nu))=[N_{\check{K}_{i}/F}(a_{i})]^{x_{i}}$ . Above passage to cohomology classes is
tacitly assumed.

41) See foot note 11).
42) See [15].
43) $N(K^{\prime*})$ denotes the group of norms of elements $olK^{f*}$ taken down to $F$.
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the factor commutator group $X/X^{\prime}$ with $F^{*}/N(K^{\prime*})$ , since $d^{\prime}(\sigma^{\prime}, \tau^{\prime})$ has crder
$\pi/u=[X^{\prime}$ : 1 $]$ according to (v). Using (vi) and the associativity relations one
finds $g^{\prime}(\sigma^{\prime})=\prod_{\tau^{*}}\prod_{\rho^{\underline{=}y}’}k(\rho\tau^{*}, \sigma)[N_{K/F\rho}(\prod_{\in J},k(\sigma, \rho))]^{-1}=g(\sigma)[N_{K^{\prime\prime p}}(\prod_{\in\rho X}k(\sigma, \rho))]^{-1}$

, where
$\tau^{*}$ varies over a set of representatives of $X$ modulo $X^{\prime}$ and where $\sigma^{\prime}$ is the
coset of $\sigma$ modulo $X^{\prime}$ . Consequently $g(\sigma)\not\equiv g(\tau)(mod N(K^{\prime*}))$ if $\sigma$ and $\tau$ do
not belong to the same coset modulo $X^{\prime}$ . But this implies a fortiori $g(\sigma)\not\equiv g(\tau)$

$(mod N(K^{*}))$ , for $N(K^{*})\subseteqq N(K^{\prime*})$ . Since passage to another representative of
a cohomology class $c$ implies a change modulo norms, it follows that the above
congruence statements are valid for arbitrary representatives of the class $c$ .
Finally (iv) and (v) imply by a strictly cohomological argument44) that $N(K^{*})=$

$N(K^{f*})$ . Hence $\sigma\rightarrow g(\sigma)$ determines indeed an isomorphism from $c\chi/\mathscr{K}$ to
$F^{*}/N(K^{*})$ .

It is now easy to develop the classical theory of the norm residue symbol.
For this purpose suppose that $Z/F$ is a cyclic extension of degree $n$ with the
Galois group %. According to Theorem 1 the elements of the cohomology
group $H^{2}(\mathcal{Z}, Z^{*})$ are split by the unramified extension $U_{n}/F$ of degree $n$ . More-
over, $T_{Un,Z}[H^{2}(CU_{n}, U_{n}^{*})]=H^{2}(\mathcal{Z}, Z^{*})^{4^{\ulcorner}}))$ Next suppose that $c_{n}$ is the (canonical)

cohomology class in $H^{2}(\subseteq U_{n}, U_{n}^{+})$ which is determined by the cocycle $p(\zeta^{\alpha}, \zeta^{b})=$

$\pi^{x},$ $x=[-\frac{a+b}{n}]-[\frac{a}{n}]-[\frac{b}{n}]$ where $\pi$ denotes a prime element of $F$ and $\zeta$

is the Frobenius automorphism of $U_{n}/F$ for which $V(a^{\zeta}-a)>0$ for all $a$ in
the valuation ring of $U_{n^{46)}}$ . The basic theorem of $Hasse^{4^{r})}$ implies that the
cohomology class $c_{n}$ does not depend on the choice of the prime element $\pi^{48)}$ .
Furthermore denote by $f\langle a\rangle,$ $a\in F^{*}$ , the normalized cocycle $f(\sigma^{a}, \sigma^{b})=a^{x},$ $x$

defined as before, $\sigma$ a generator of the Galois group $\mathcal{Z}$ .
The norm residue symbol $(Z/F, a)$ is defined as the automorphism $\sigma^{\alpha}$ where

$f\langle a\rangle=f\langle a\rangle B^{2}(\mathcal{Z}, Z^{*})=T_{U_{n},K}(c_{n})^{\alpha_{49}}$ ‘. This definition implies $immediately^{50)}$ :
44) See [16].
45) See for example [9, Theorem 5. 2, p. 341, and Theorem 2].
46) The automorphism $\zeta$ need not be the classical Frobenius automorphism, any

generator of the Galois group of the algebraic completion of the residue class field $F$

may be used for its definition. See [18, p. 163].
47) See [8].
48) Note that for a divisor $m$ of $n,$ $c_{n}^{m}=\Lambda_{U_{k}.U_{n}}(c_{k}),$ $k=n/m,$ $c_{k}$ the canonical class

for $U_{k}/F$. Furthermore, $P_{\ovalbox{\tt\small REJECT}}[p(\zeta^{a}, \zeta^{b})],$ $\ovalbox{\tt\small REJECT}$ the subgroup of order $m$ in $U_{n}$ , determines
the canonical class of $H^{2}(\ovalbox{\tt\small REJECT}, U_{n}^{*}),$ $U_{n}/U_{k}$ .

49) The automorphism $\sigma^{\alpha}$ is uniquely defined by $a$ as an element of Z. Note
that the independence of the particular generating element $\sigma$ may be proved as fol-
lows: Using $a$ and $\sigma$ , set $ f<a>=f<a>\sigma$ and denote by $c(a, \sigma)$ the corresponding
cohomology class. Next denote by $\tau=\sigma^{y}$ another generator of Z. Define similarly $c(a$,
$\tau)$ . Then, by a simple computation, $c(a, \sigma)=c(a, \tau)^{y}$ . Using the transfer mapping,
suppose that $T_{Z.U_{n}}[c(a, \tau)]=c_{n}^{\theta},$

$c_{n}$ the canonical class for $U_{n}/F$, therefore $c_{n}^{\theta}=c_{n}^{\alpha y}$ . Con-
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(viii) $(Z/F, ab)=(Z/F, a)(Z/F, b)$ , for $T_{Un^{K}}$. is an isomorphism, and all ele-
ments of $H^{2}(Z, Z^{*})$ are representable isomorphically by cosets of
$F^{*}$ modulo $N_{z/F}(Z^{*})$ ;

(ix) $(Z/F, a)=1$ if and only if $a\in N_{Z/F}(Z^{*})$ .
This follows from Theorem 3 and the connection between the non-zero

elements of $F$ and the normalized representatives of the cohomology classes
relative to some generator of the Galois group; and

(x) the restriction of $(Z/F, a)$ to a subfield $Z^{\prime}/F$ is equal to $(Z^{\prime}/F, a)$ if
the restriction of $\sigma$ to $Z^{\prime}/F$ is used to define $f\langle a\rangle B^{2}(\mathcal{Z}/Z^{\prime}, Z^{f*})$ ,
$Z^{\prime}$ the Galois group of $Z/Z^{\prime}$ .

The last statement holds because $f\langle a\rangle^{m}=\Lambda_{Z^{\prime},Z}[f\langle a\rangle]^{51)}$ where $ f^{\prime}\langle a\rangle$ is
the normalized cocycle for $Z/Z^{\prime}$ which is determined by $a\in F^{*}$ . Further-
more, $f\langle a\rangle^{m}=[T_{Un^{Z}},(c_{n})]^{am}$ , but then $f\langle a\rangle^{m}=[T_{UnZ}(\Lambda_{U_{k},U_{m}}(c_{k}))]^{\alpha_{62)}}$ .

Now suppose that $K/F$ is an abelian extension which is the union of $s$

cyclic subfields $K_{i}/F$ with respective Galois groups $X_{i}=\{\sigma_{i}\}^{63)}$ .
Then $(K/F, a)$ is defined as $\prod_{i=1}^{s}(K_{i}/F, a)$ .

THEOREM 6. Suppose that $K/F$ is an abelian extension with the Galois group
$x=\{\sigma, \cdots \}$ . Then the mapping $ a\rightarrow(K/F, a)=\sigma$ is an isomorphism of the norm
class group $F^{*}/N(K^{*})$ on X. Furthermore, $(K/F, g(\sigma))=\sigma$ if $g(\sigma)$ is computed

for a cocycle in the canonical cohomology class $T_{Un,K}(c_{n})=c_{K}$ of $H^{2}(X, K^{*})$ .
The proof can be achieved by a slight extension of the arguments leading

to Theorem 4. Now normalize $c=c_{K}\in H^{2}(X, K^{*})$ to be the principal cohomo-
logy class $T_{U_{\mathcal{R}},K}(c_{n})$ which is to be represented by the normalized couple $f=$

$f(\sigma, \tau)^{5\text{\’{o}})}$ . Then $f^{m_{i}}=\Lambda_{\check{K}_{i},K}(N_{\grave{K}_{i}^{\prime}/F}(f(\sigma_{i}^{\mu}, \sigma_{i}^{\nu}))$ $(mod B^{2}(X, K^{*}))$ .
Furthermore, by definition of the norm residue symbol and the fact that the
cohomology class of $f^{m_{i}}$ is the lift $\Lambda_{K_{i},K}(c_{K_{i}})$ of the principal class $c_{x_{i}}$ of $K_{i}/F$,

it follows that $(K_{i}/F, g(\sigma_{i}))=\sigma_{i}$ . Furthermore, according to the normalization
of the cocycle $f$, the norm $N_{\check{K}_{i}/F}(a_{i})=g(\sigma_{i})$ lies in the norm group $N_{\check{K}_{i}/F}(\check{K}_{i}^{*})$ .
But this implies that $(\check{K}_{i}/F, g(\sigma_{i}))=1$ since $N_{\check{K}_{i}/F}(\check{K}_{i}^{*})\subseteqq N_{x_{1/F}}(K_{1}^{*}/\cap\cdots\cap N_{K_{i=1}}$

$(K_{i-1}^{*})\cap N_{K_{i+1}/F}(K_{i+1}^{*})\cap\cdots\cap N_{Ks/F}(K_{S}^{*})=H_{1}\cap\cdots\cap H_{i-1}\cap H_{i+1}\cap\cdots\cap H_{s}$ accord-

sequently $\alpha\equiv\beta y(mod n)$ , i. e., $\sigma^{\alpha_{=}}\tau\beta$ . This is a cohomological version of [3, p. 145].
50) This rule simply expresses the fact that cohomology classes form a group

and that the transfer mapping is an isomorphism.
51) See for example [9, p. 334]. The bar denotes passage to the cohomology class.
52) See footnote 48).
53) See the proof of Theorem 4 for notation and identification of the groups $K_{i}$ .
54) This is the classical law of reprocity of local class field theory. See, for ex-

ample, [5] and [7].
55) See the notation in the proof of Theorem .4 The coc cle $\Gamma(ol_{t^{l}} \sigma_{i}^{\nu})$ is deter-

mined by the element $g(\sigma_{i})=N_{\check{K}_{i}/F}(\sigma_{i})$ as before.
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ing to the special result (ix) for cyclic extensions. Therefore, according to the
definition of the norm refidue symbol for abelian extensions $(K/F, g(\sigma_{i}))=\sigma_{i}$ .
Consequently (iii) implies $(K/F, a_{\sigma})=\sigma$ for every $a_{\sigma}$ lying in the coset of $g(\sigma)$

modulo $N(K^{*})$ . This means that the kernel $H$ of the norm residue mapping

of $K/F$ equals $\bigcap_{i=1}^{s}$ H., for each element of the Galois group .Ic is the image of

an element of $F^{*}$ . Therefore $[F^{*} : H]=[X;1]=[K:F]$ . Finally, $ N(K^{*})\subseteqq$

$\bigcap_{i=1}^{l}N_{K_{i}/F}(K_{i}^{*})=\bigcap_{i\Rightarrow 1}^{s}$ $H.=H$ and hence $N(K^{*})=H$ since $[F^{*} : N(K^{*})]=[K:F]$ ac-
cording to Theorem 4 and the initial choice of the principal cocycle56).
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