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1. In this paper we shall consider the integral representation of bounded
harmonic functions by means of a regular Borel measure on the Feller boundary
$\ovalbox{\tt\small REJECT}(\mathfrak{S})$ (cf. Section 9). For this purpose we investigate mutual relations between
the family of bounded harmonic functions, a function lattice on the Martin
boundary and a function lattice on the Feller boundary, by use of the Martin
representation theorem of harmonic functions (cf. J. L. Doob [3] and T. Wata-
nabe [12], [13]). This subject is closely related to some results of D. G.
Kendall [9] which we shall prove here by a different method.

2. Let $X$ be a countable state space with the discrete topology. Let
$XU\{\rho\}$ be denoted by $\tilde{X}$ in which $\{\rho\}$ is added to $X$ as an isolated point.
Let $W$ be the totality of $\tilde{X}$-valued right-continuous functions $w$ on the inter-
val $T=[0, \infty]$ . The value of $w$ at time $t$ is denoted by $w(t)$ or $x_{c}(u’)$ . Let $M$

$=\{X, W, P_{x}, x\in\tilde{X}\}$ be a minimal Markov process1) where $X$ is the state space,
$W$ is the sample space and $P_{x}$ is the probability measure on the Borel field
$\mathscr{Z}(W)$ generated by the sets $\{w;x_{t}(w)\in A\}$ ($A$ : a Borel set on $\tilde{X}$). Define

$\sigma_{A}(w)=\inf\{t>0;x_{t}(w)\in A\}$ if $x_{t}(w)\in A$ for some $t>0$ ,

$=+\infty$ otherwise,

$\tau_{A}(w)=\inf\{t>0;x_{t}(w)\in EA\}$ if $x_{L}(w)\not\in A$ for some $t>0$ ,

$=+\infty$ otherwise.2)

For $x,y\in\tilde{X}$, we set $\Pi(x, y)=P_{x}\{w;x_{r_{x}}(w)=y, \tau_{x}<+\infty\}$ . Then $\Pi(x, \rho)=1-$

$\sum_{y\in X}\Pi(x, y)$ and $\Pi(\rho, \rho)=1$ .
In this paper, a finite real valued function $u(\cdot)$ over $X$ will be called $x_{t^{-}}$

harmonic if it satisfies $u(x)=\sum_{y\in X}\Pi(x, y)u(y)$ (in the sense of absolute conver-

gence) for any $x$ in $X$.

1) The term ‘ minimal process’ is $\dot{u}$ scd in thesense of W. Fellcr [6, pp. 535-537].
Also a precise definition of such process is seen in [13, Chapter 1].

2) We denote $\tau_{x}$ in case $A=\{x\}$ .
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Now, we shall define the following sequence of Markov times:3)

$\tau_{0}(x, w)\equiv 0,$ $\tau_{1}(x, w)=\tau_{x}(w),$ $\cdots,$ $\tau_{n}(x, w)=\tau_{1}(x_{\tau_{n-1}}(w), w_{\tau_{n-1}}^{+})+\tau_{n-1}(x, w)$ ,

where $w_{\tau}^{+}(t)=w(t+\tau)$ .
Then, $\tau_{n}$ is the time at which the n-th jump of a path $w(t)$ will occur.

Since $\tau_{n}(x, w)$ is a monotone increasing function of $n$ , we can define $\lim_{n\rightarrow\infty}\tau_{n}$

$((x, w)=\tau_{\omega}(x, w)\leqq+\infty$ .
We shall summarize here some results in the theory of Martin3.

boundaries associated with Markov chains, following J. L. Doob [3] and T.
Watanabe [12], [13].

We shall assume that there exists a center $c$ such that $p(c, x)=P_{c}(\sigma_{x}<$

$+\infty)>0$ holds for any $x\in X$ and that all states are transient.4) Then, the
Martin boundary $\partial X$ induced by $x_{t}$ is the set of all the limit functions of

the family of $x_{t}$-superharmonic functionss) $K(c, x,y)=\frac{p(x,y)}{p(c,y)}$ . An element of

$\partial X$ is denoted by $b$ and we define the value of $b$ at $x$ by $K(c, x, b)$ .
The Martin space $\hat{X}=XU\partial X$ is compact with the metric

$\rho(\xi, \eta)=\sum_{x\in X}|K(c, x, \xi)-K(c, x, \eta)|p(c, x)m(x)$

where, $\xi,$ $\eta\in\hat{X}$ and $m(x)$ is a strictly positive measure on $X$ such that $\sum_{x\in X}m(x)$

$\prec+\infty$ . Then $\partial X$ is relatively compact and $X$ is a dense set in $\hat{X}$.
$\lim_{n\rightarrow\infty}x_{\tau_{n}}(w)$ exists for almost all the paths in $ W_{f}=\{w;\tau_{n}(w)<+\infty$ for all

$n<+\infty\}$ , and for all $w$ in $W_{f}^{c}$ and for any $n\geqq n_{0}(w),$ $ x_{\tau_{n}}(w)=+\infty$ holds.
Therefere, $y(w)=\lim x_{\tau_{n}}^{(x)}(w)^{6}$ ‘ constitutes a random variable on $\partial XU\{\rho\}$ for
almost all $w$ . Hence, $y(w)$ determines a measure on $\partial X$ by restricting it on
$\partial X$ which is the so-called harmonic measure $h(x, )$ .

If $u(x)$ is a bounded $x_{t}$-harmonic function on $X$, there exists a unique
bounded measurable function $f(\cdot)$ on $\partial X$ except for the set of $h(c, )$ -measure
zero such that $u(x)$ is expressed by

(3.1) $u(x)=\int_{\theta x}K(c, x, b)f(b)h(c, db)=\int_{\theta x}f(b)h(x, db)$

where we have put $f(\rho)=0$ .
Moreover, given the bounded Borel measurable function on $\partial X$, the right

hand side of (3.1) defines a bounded $x_{t}$-harmonic function on $X$.

3) For definitions of unexplained terminologies in this section, see K. Ito [8].

4) Namely, $\sum_{n=1}^{\infty}\Pi^{n}(x, x)<+\infty$ for any $x$ in $X$

5) For this concept, see T. Watanabe [13] or J. L. Doob [3].
6) Supersufix $(x)$ means starting point.
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4. Let $\mathfrak{H}$ be the set of all bounded harmonic functions $u$ on $X,$ $L^{\alpha}(\partial X$,
$h(c, ))$ be the set of all $h(c, )$ -essentially bounded Borel measurable functions
$f$ on $\partial X$, and $N(\partial X, h(c, ))$ be the set of all functions $f$ in $L^{\infty}(\partial X, h(c, \cdot))$ such
that $h(c, \{b;f(b)\neq 0\})=0$ .

Then, as it is well known, $L^{\infty}/N$ constitutes a $\sigma$ -complete Boolean lattice
with respect to

$(f\cap g)(\cdot)=\min(f(\cdot), g(\cdot))$ , $(fUg)(\cdot)=\max(f(\cdot), g(\cdot))$ .

Define the one-to-one mapping $\varphi$ : $\mathfrak{H}\rightarrow L^{\infty}/N$ by the formula (3.1). Then,
since $\varphi$ and $\varphi^{-1}$ are positivity-preserving, it follows that $\mathfrak{H}$ is a $\sigma$ -complete
Boolean lattice and that $\varphi$ is a lattice isomorphism. The union (intersection)
of $u_{1}$ and $u_{2}$ in $\mathfrak{H}$ will be denoted by $u_{1}\vee u_{2}(u_{1}\Lambda u_{2})$ .

Next, by (3.1)

$\Vert u(x)\Vert=\sup\{|u(x)|;x\in X\}\geqq\int_{\theta x}f(b)h(x, db)$ .
Therefore, by taking the fine limit along a path $x_{t}^{(c)}(w)$ , we have $\Vert u(x)\Vert\geqq$

$f(y(w))$ . Since $h(c, \{b;|f(b)|>k\})=0$ implies $P_{c}(w;|f(y(w))|>k)=0$ and vice
versa, we can easily show that

$ess$ . $\sup$ { $|f(b)|$ : $b\in\partial X$, with respect to $h(c,$ $)$ -measure}
$=ess$ . $\sup$ { $|f(y(u)))|$ ; with respect to $w\in W,$ $P_{c}$-measure}.

Hence, we have
$\Vert u(x)\Vert\geqq\Vert f\Vert=ess$ . $\sup$ { $|f(b)|$ ; $b\in\partial X$, with respect to $h(c,$ $)$ -measure}.
We have also

$|u(x)|\leqq\Vert f\Vert h(x, \partial X)\leqq\Vert f\Vert$ .
Consequently, we obtain

1 $u(x)\Vert=\sup\{|u(x)| ; x\in X\}=ess$ . $\sup\{|f(b)|;b\in\partial X$,

with respect to $h(c, \cdot)- measure$ } $=\Vert f\Vert$ .
Thus, we $hav\triangleright$

THEOREM 1. The one-to-one mapping

$\varphi$ : $\mathfrak{H}\rightarrow L^{\infty}/N$

is an isometric $\sigma$ -complete lattice isomorphism.
5. By a sojourn solution we mean a bounded positive harmonic function

$s(x)$ on $X$ with $\Vert s\Vert=1$ which satisfies $s(x)\Lambda(h(x, \partial X)-s(x))=0$ . It follows
from Theorem 4.3 in [13] that $h(\cdot, \partial X)$ is nothing but the function $s_{E}$ of [5].

’Therefore, accordin $g$ to Theorem 9.1 in [5], our definition of a sojourn



192 H. WATANABE

solution coincides with Feller’s one.7) Therefore, by the above isomorphism
in Theorem 1, we have the following expression

$\varphi(s(x)\Lambda(h(x, \partial X)-s(x))=f_{s}\cap(1-f_{s})=0$ ,

where we put $\varphi(s)=f_{s}$ .
Hence, $f_{s}=1$ or $0$ on $\partial X$ except on the set of $h(c, )$ -measure zero. Since

$f_{s}$ is Borel measurable, $\{b;f_{s}(b)=1\}=A$ belongs to the family 4 $(\partial X)$ of all
Borel measurable subsets of $\partial X$. Conversely, for any given $A\in \mathscr{D}(\partial X),$ $h(x, A)$

is a sojourn solution.
Now, we shall set $\mathfrak{S}=$ { $s;s$ is a sojourn solution or $s\equiv 0$ }, and $\Re=\{A$ ;

$h(c, A)=0\}$ . Then, we have
THEOREM 2. The mapping

$\psi$ : $\mathfrak{S}\rightarrow 9(\partial X)/\mathfrak{R}$ (onto)

is $a$ o-complete lattice isomorphism, where $\mathscr{D}(\partial X)/X$ is a $0$-complete latlice in the
ordinary sense.

REMARK. From this Theorem 2 and Section 6 below, we can see that in
case the Feller boundary consists of finite points, the Martin boundary is not
smaller than the former.

In this section, we shall prove some results of D. G. Kendall [9] by6.
different approach.

We recall several definitions here. A set $\alpha$ of sojourn solutions is called
a lattice ideal in $\mathfrak{S}$ if $ u\in\alpha$ and $ v\in\alpha$ imply $ u\vee v\in\alpha$ and $w\leqq u,$ $ u\in\alpha$ and
$w\in \mathfrak{S}$ imply $ w\in\alpha$ . An ideal is called maximal if $\mathfrak{S}$ is the only ideal con-
taining $\alpha$ as a proper subset (cf. W. Feller [5]). We can define similarly an
ideal of $\mathscr{D}(\partial X)/yt$ .

Denote the space of maximal lattice ideals of $\mathfrak{S}$ and $9(\partial X)/3$? by .SU(S)

and $\ovalbox{\tt\small REJECT}(9(\partial X)/X)$ respectively. Following M. H. Stone [11], put $ J(A)=\{\alpha$ ; a
$\in\ovalbox{\tt\small REJECT}(9(\partial X)/X)(\ovalbox{\tt\small REJECT}(\mathfrak{S})),$ $\alpha\exists\ni A(h(x, A))$ } for $A\in 9(\partial X)/\mathfrak{R}$ and we take the set $\Sigma$

$=\{J(A);A\in 9(\partial X)/X\}$ as the basis of open sets, then the space $\ovalbox{\tt\small REJECT} i(9(\partial X)/X)$

$(\ovalbox{\tt\small REJECT}(\mathfrak{S}))$ is a totally disconnected compact Hausdorff space.
The mapping $ J;g(\partial X)/\Re\rightarrow\Sigma$ induces a lattice isomorphism and $\Sigma$ con-

tains every closed and open set (cf. M. H. Stone [11] or N. Dunford and J. T.
Schwarz, [4 pp. 41-43]).

W. Feller [5] topologized $XU\ovalbox{\tt\small REJECT}(\mathfrak{S})$ . It follows from definition that
Feller’s relative topology on $\ovalbox{\tt\small REJECT}(\mathfrak{S})$ coincides with the above Stone topology.
Therefore, we can say that the Feller boundary is the space $m(\mathfrak{S})$ or $\ovalbox{\tt\small REJECT}(\mathscr{D}$

$(\partial X)/\mathfrak{R})$ with Stone topology.
Let $\{J(B_{a}), \alpha\in\Gamma\}$ be any system of disjoint subsets of $\Sigma$ . Since $h(c, )$ is

7) See W. Feller [5, p. 33].
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a totally finite measure, we see that $J(B.)$ is non-empty for countably many
$\alpha’ s$ .

We have also

$\bigcup_{a=1}^{\leftrightarrow}](A_{a})=J_{a=}(b_{1}^{I}A_{a})\infty$ .

For, if it were not so, there exists a $C\in 9(\partial X)/\mathfrak{R}$ such that $J(\bigcup_{a=1}^{\infty}A_{a})\supseteqq\bigcup_{\alpha=1}^{\infty}I(A_{\alpha})$

$UJ(C),$ $ A_{a}\cap C=\phi$ for all $\alpha,$ $ C\neq\phi$ , and $\alpha^{1}=/_{1}A_{a}\infty\supseteqq C$ which is impossible.

Now let $G$ be any open subset of %d(D(oX)/sn) : $G=\bigcup_{\beta\in\Lambda}I(A_{\beta})$
, where $\Lambda$ is

an arbitrary index set. Then we can select a maximal sequence $\{J(B_{\gamma}),$ $r=$

$1,2,$ $\cdots$ } such that $G\supseteqq\bigcup_{\gamma=1}^{\infty}J(B_{\gamma})$ and $B_{r}(r=1,2, \cdots)$ are pairwise disjoint. By Zorn’s

lemma, such a sequence always exists. Since $\overline{\bigcup_{r=1}^{\infty}I(B_{\gamma})}=J(\bigcup_{\gamma=1}^{\infty}B)$ and $\{J(B_{\gamma})\}$ is a

maximal sequence, we have

(6.1) $\bigcup_{r=1}^{\infty}J(B_{r})\subseteqq G\subseteqq\overline{G}=\overline{\bigcup_{r=1}^{\infty}I(B_{\gamma})}=J(\bigcup_{r=\rfloor}^{\infty}B_{\gamma})$ .

Hence, any open set in $\ovalbox{\tt\small REJECT} l(9(\partial X)/\Re)$ has a closed and open closure. Thus,
$\ovalbox{\tt\small REJECT}(9(\partial X)/\mathfrak{R})$ is a so-colled Stonian space.

Now we shall define a measure on $\ovalbox{\tt\small REJECT} l(9(\partial X)/X)$ by means of harmonic
measure $h(x, \cdot)$ . At first, we define a measure $\overline{h}_{0}$ on the ring $\Sigma$ by putting
$\overline{h}_{0}(x,J(A))=h(x, A)$ for $A\in 9(\partial X)/\Re)$ .

Let $S_{0}$ be the $\sigma$-ring generated by $\Sigma$ . Then, $S_{0}$ coincides with the class
of Baire8) sets. Since $\overline{h}_{0}$ is countably additive on the ring $\Sigma,\overline{h}_{0}$ has a unique
extention over $S_{0}$ . Furthermore, there exists a unique Borel measure $\overline{h}$ such
that $h(A)=\overline{h}_{0}(A)$ for every $A$ in $S_{\gamma}($

Then, we have for any disjoint sequence $\{](B_{r}), r=1,2, \cdots\}$

$h(\chi\bigcup_{\gamma=1}^{\infty}J(B_{\tau})))=\sum_{\gamma=1}^{\infty}h(x, B_{7})$

$=h(x,\bigcup_{r-1}^{\infty}B_{r})=\overline{h}_{0}(x,J(\bigcup_{r=1}^{\infty}B_{\gamma}))$

$=\overline{h}(x,J(\bigcup_{r=1}^{\infty}B_{\gamma}))$ .

Therefore, by (6.1), we have
$\overline{h}(G)=\overline{h}(\overline{G})$ .

From this formula we can easily prove that for any closed set $F$ in $\ovalbox{\tt\small REJECT}(\mathscr{D}$

8) For the terminology of this section, see P. R. Halmos [7].
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$(\partial X)/\mathfrak{R})$

(6.2) $\overline{h}(F)=\overline{h}(F_{0})$ ,

where $F_{0}$ is the interior of $F$.
Then, it can be observed that the regular Borel measure $\overline{h}$ is normal. $ 9\rangle$

For, assuming $F$ to be any closed set with empty interior, we have by (6.2)

$\overline{h}(F)=\overline{h}(F_{0})=h(x, \phi)=0$ .
Hence, if $A$ is any Borel set with closure $\overline{A}$ and interior $A_{0}$ , we have

$\overline{h}(A_{0})=\overline{h}(A)=\overline{h}(\overline{A})$ .
Let $N_{0}$ be the class of all Borel sets of the first category. Then, $N\ni A$

if and only if $\overline{h}(A)=0$ .
Since $\ovalbox{\tt\small REJECT}(\mathscr{D}(\partial X)/\mathfrak{R})$ is a Baire space we see that the support of $h$ is a

dense subset of $\ovalbox{\tt\small REJECT}$ (cf. N. Bourbaki [1, p. 76, Theorem 1]).

Accordingly we have the following
THEOREM 3 (D. G. Kendall). The Stonian space $\ovalbox{\tt\small REJECT}(\mathscr{D}(\partial X)/X)(\ovalbox{\tt\small REJECT}(\mathfrak{S}))$ is

hyperstonian.
We shall prove that the space $L^{\infty}/N$ is isometrically isomorphic to7.

the space $C(\ovalbox{\tt\small REJECT}(\mathscr{D}(\partial X)/X))$ of all continuous functions on $\theta l(\mathscr{D}(\partial X)/\mathfrak{R})$ . For
this purpose, we map $a\cdot\chi_{A}(\cdot)\in L^{\infty}/N$ to $a\cdot\chi_{J(A)}(\cdot)\in C(\ovalbox{\tt\small REJECT}(9(\partial X)/\mathfrak{R}))$ , where $A$

$\in \mathscr{D}(\partial X)/\mathfrak{R},$ $\chi_{A}(\cdot)$ is its indicator function and $a$ is a real number.
But, the uniform closure of the family $A$ of functions of the form

$\sum_{i=1}^{\infty}a_{i}\cdot\chi_{A_{i}}(\cdot)$ is $L^{\infty}/N$. ( $a_{i}$ real, $A_{i}\in \mathscr{D}(\partial X)/\mathfrak{R}$ and $A_{i\cap}A_{j}=\phi,$ $i\neq j$).

On the other hand, the family of continuous functions..$\leftarrow c=\{\sum_{i=1}^{n}a_{i}\cdot\chi_{J(At)}(\cdot)$ ,

$J(A_{i})\in\Sigma,$ $a_{i}$ real} separates any two points of $\ovalbox{\tt\small REJECT}(\mathscr{D}(\partial X)/\mathfrak{R})$ . For, for any
points $\alpha,$ $\beta\in\ovalbox{\tt\small REJECT}(\mathscr{D}(\partial X)/\Re),$ $\alpha\neq\beta$ , there exists at least an $A\in \mathscr{D}(\partial X)/\mathfrak{R}$ such
that $\alpha\not\equiv A$ and $\beta\ni A$ . Therefore, we can see that $ J(A)\ni\alpha$ and $ J(A)*\beta$ .
Thus the function $\chi_{J(A)}(\cdot)$ separates $\alpha$ and $\beta$ . Hence, by Stone-Weierstrass’
theorem, the uniform closure of 1: coincides with $C(\ovalbox{\tt\small REJECT}(\mathscr{D}(\partial X)/\mathfrak{R}))$ .

We can see easily that the mapping from $cA$ to $x$ :

$\xi(\sum_{i=1}^{n}a_{i}\cdot\chi_{A_{i}}(\cdot))=\sum_{i=1}^{n}a_{i}\cdot\chi_{J(Ai)}(\cdot)$ ,

where $A_{i}$ are pairwise disjoint, is linear, and bounded. Since

$\Vert\sum_{i=\downarrow}^{n}a_{i}\cdot\chi_{A_{v}}(\cdot)\Vert=\max_{1\leqq i\leqq n}|a_{i}|=\Vert\sum_{i=1}^{n}a_{i}\cdot\chi_{J(A_{i})}(\cdot)\Vert$ ,

the mapping $\xi$ is bounded, linear and isometric. Therefore, we can see that

9) A positive totally finite regular Borel measure \‘A on a Stonian space is called
normal if each rare set can be covered by a Borel set of R-measure zero.
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there exists an isometric isomorphism $\xi$ from $L^{\infty}/N$ to $C(\ovalbox{\tt\small REJECT}(9(\partial X)/y))$ as
Banach algebras.

$L^{\infty}/N$ is a completetly symmetric ring in the sense of M. A. Naimark8.
[10] and $\Vert f^{2}\Vert=\Vert f\Vert^{2}$ for $f\in L^{\infty}/N$. Let $M(L^{\infty}/N)$ be the space of all maximal
ideals of the ring $L^{\infty}/N$ and let its topology be defined by weak topology.
Then this representation is onto, isometric and isomorphic (M. A. Naimark
[10, p. 218, Corollary 2]). We note that the space $1\psi(L^{\infty}/N)$ is hyperstonian
(see J. Dixmier [2]).

Combining with the results in section 7 we see that $C(M(L^{\infty}/N))$ is iso-
metric and isomorphic to $C(\ovalbox{\tt\small REJECT}(9(\partial X)/\mathfrak{R}))$ as a Banach algebra. Hence, by a
well-known theorem (see N. Dunford and J. T. Schwarz [4, p. 279]), $M(L^{\infty}/N)$

and $\ovalbox{\tt\small REJECT}(9(\partial X)/\mathfrak{R})$ are homeomorphic. Thus, we have
THEOREM 4. The Feller boundary is homeomorphic to $M(L^{\infty}/N)$ .

By summarizing the results of the preceding sections we can deduce9.
the following conclusion.

THEOREM 5. The Boolean lattices $\mathfrak{H},$ $C(\ovalbox{\tt\small REJECT}(9(\partial X)/y_{\iota}))),$ $L^{\infty}(\partial X, h(c, ))/Nan(I$

$C(M(L^{\infty}/N))$ are isometrically isomorphic to one another.
Let $l$ be the isometric isomorphism from $C(\ovalbox{\tt\small REJECT}(9(\partial X)/\Re))$ to $\mathfrak{H}$ Then, !

is positive linear, isometric, and hence bounded.
Accordingly, we have the representation of $u=l(\overline{f})\in \mathfrak{H}(\overline{f}\in C(\ovalbox{\tt\small REJECT}(\mathscr{D}(\partial X)/X)))$ .

by a theorem of Riesz:

$u(x)=\int_{\ovalbox{\tt\small REJECT}(g(\partial x)/\mathfrak{N})}fd\mu_{x}$ ,

where, $\mu_{x}$ is a regular Borel measure on $\ovalbox{\tt\small REJECT}(9(\partial X)/X)$ .
However, if $\overline{f}=\chi_{J(A)}(\cdot),$ $u(x)=h(x, A)=\mu_{x}(J(A))$ holds. Hence, for every

element in $\Sigma$ , we have $\mu_{x}(J(A))=\overline{h}(x,J(A))$ . Thus, by the uniqueness of the
extension of Borel measure, we can see $\overline{h}=\mu_{x}$ for every Borel set in $\ovalbox{\tt\small REJECT}(B$

$(\partial X)/\mathfrak{R})$ . Consequently, we have

$u(x)=\int_{\partial X}f(b)h(x, db)=\int ffi(9(\partial x)/\Re)f(\overline{b})\overline{h}(x, d\overline{b})$ .

Accordingly, we have proved the following conclusion for the P. W. B.
problem on Feller boundaries.

THEOREM 6. If $u(x)$ is a bounded $x_{t}$-harmonic function on $X$, there exists a
bounded measurable function $\overline{f}(\cdot)$ on .SYt(S) and a Borel measure $\overline{h}(x, \cdot)$ on .SU(S),
such that $u(x)$ is expressed by

(9.1) $u(x)=\int_{\ovalbox{\tt\small REJECT}(\mathfrak{S})}\overline{f}(\overline{b})h(x, d\overline{b})$ .

Conversely, for any given bounded measurable function $\overline{f}(\cdot)$ on $ffl(\mathfrak{S})$ the right
hand side of (9.1) defines a bounded $x_{t}$-harmonic function on $X$
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REMARK. A bounded measurable function $f(\cdot)$ on $\ovalbox{\tt\small REJECT}(\mathfrak{S})$ coincides with a
continuous function on $\ovalbox{\tt\small REJECT}(\mathfrak{S})$ except on the set of $\overline{h}(c, )$ -measure zero.
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