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On intermediate many-valued logics.
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There have been many reseaches on many-valued propositional logics.
Rosser and Turquette [1], Dienes [2] and Church [3] investigated many-
valued logical extensions of two-valued logic which have the analogous
properties to classical logic. Lukasiewicz and Tarski [4] and Kleene [5]

gave many-valued propositional logics which are not considered to be classical
logic. Furthermore, the truth-tables given in [4] and [5] do not contain all
formulas which are provable in intuitionistic propositional logic. In fact,
$(A\supset 7A)\supset 7A$ which is provable intuitionistically does not always take the
designated truth value in [4] and $A\supset A$ in [5] where $\supset$ and 7 denote im-
plication and negation respectively.

A treatment of many-valued propositional logics, in which every intui-
tionistically provable formula is true but not necessarily all classically
provable formulas, viz. of intermediate many-valued logics in our terminology,
was first achieved by Ja\’{s}kowski [6]. The purpose of this paper is to investi-
gate details of intermediate many-valued logics.

A sufficient condition for a many-valued propositional logic to contain
every intuitionistically provable propositional formula is given in \S 1. Let
$L_{1},\cdots,$ $L_{n}$ be arbitrary many-valued logics. We call $L_{1},\cdots,$ $L_{n}$ mutually inde-
pendent, if for every distinct $i$ and $j$ there is a formula which is true in
$L_{i}$ and not true in $L_{j}$ . In \S 2, it is proved that there are at least enumerably
infinite mutually independent many-valued propositional logics.

In \S 3 we construct a sequence of intermediate many-valued propositional
logics in which every member is a sublogic of the preceding ones. This
sequence is well-ordered and the ordinal number of the sequence is called
the length of the sequence. It is proved that there is a sequence of inter-
mediate many-valued propositional logics whose length is $\omega^{\omega^{\omega}}$ In \S 4, special
many-valued propositional logics $\mathfrak{R}_{n}$ and $\mathfrak{R}_{\omega}$ are discussed. The many-valued
logics which can be reduced to $\mathfrak{R}_{n}$ is studied. Every provable formula in
$LR_{n}$ and $LP_{2}$ , special intermediate propositional logics in axiomatic stipula-
tion (cf. Umezawa [8] and [9]), is true in $\mathfrak{R}_{n}$ and $\mathfrak{R}_{\omega}$ respectively.

In \S 5 we extend the results in \S 2 and \S 3 to predicate calculus. Quanti-
fiers $\forall$ and $\exists$ can be defined in the propositional logics which appear in the
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proof of Theorems 2 and 3 and hence these logics can be regarded as
predicate logics.

\S 1. A sufficient condition for a many-valued propositional logic to
contain all propositional formulas which are intuitionistically
provable.

Let $L$ be any many-valued propositional logic, the set $S$ of whose ele-
ments is non-empty. We denote the logical operations in $Li$ . $e$ . conjunction,
disjunction, implication and negation by $\wedge,$ $\vee,$ $\supset$ and 7 respectively. For
elements $a,$ $b$ of $S,$ $a\equiv b$ means that $a$ and $b$ are in a same subclass for a
classification of S. We make use of set-theoretic notations such as $\{$ $\}$ , $\{|\}$

and $\in$ .
The following is called (J)-condition.
(J)-condition. There is a classification of $S$ such that the following holds.

Let $a,$ $b,$ $c$ be elements of S.
1. If $a\equiv b$ and $b\equiv c$ , then $a\equiv c$ .
2. If $a\equiv b$ , then $a\Lambda c\equiv b\wedge c$ and $a\vee c\equiv b\vee c$ .
3. If $a\equiv b$ , then $a\wedge b\equiv a\vee b\equiv a$ .
4. $a\Lambda b\equiv b\Lambda a$ and $a\vee b\equiv b\vee a$ .
5. $a\wedge(b\wedge c)\equiv(a\wedge b)\wedge c$ and $a\vee(b\vee c)\equiv(a\vee b)\vee c$ .
6. $a\Lambda(a\vee b)\equiv a$ and $a\vee(a\Lambda b)\equiv a$ .
7. $a\Lambda(b\vee c)\equiv(a\wedge b)\vee(a\Lambda c)$ and $a\vee(b\wedge c)\equiv(a\vee b)\Lambda(ac)$ .
8. There are sets $T$ and $F$ defined thus:

$T=$ { $t|$ for all $x\in Sx\Lambda t\equiv x$ } and
$F=$ { $f|$ for all $x\in Sx\Lambda f\equiv f$ }

9. For $a$ and $b$ , there is a set which contains $a\supset b$ and whose element,
say $r$, satisfies the condition:
For all $x\in S,$ $(a\Lambda x)\Lambda b\equiv a\Lambda x$ is equivalent to $x\Lambda r\equiv x$.

10. For any $a\in S$, there is a set which contains $7a$ and whose element,
say $\gamma$ satisfies the condition:
For all $x\in S,$ $(a\Lambda x)\Lambda f\equiv a\Lambda x$ is equivalent to $x\Lambda r\equiv x$ where $f$ is an
element of $F$ in 8.

In virtue of 6, $T$ and $F$ can be also defined as follows:
$T=$ { $t|$ for all $x\in Sx\vee t\equiv t$ } and
$F=$ { $f|$ for all $x\in Sx\vee f\equiv x$ }.

LEMMA 1. For any elements $a,$ $b\in S,$ $a\supset b\in T$ is equivalent to $a\Lambda b\equiv a$ .
PROOF. Let $a\supset b\in T$. By 9, we see that for all $x_{-}^{\subset}S(a\Lambda x)\Lambda b\equiv a\Lambda x$ is

equivalent to $x\Lambda(a\supset b)\equiv x$ . From the assumption and 8, $x\wedge(a\supset b)\equiv x$ for all
$x\in S$. Then for all $x\in S(a\Lambda x)\Lambda b\equiv a\Lambda x$ follows. Hence $(a\Lambda a)\Lambda b\equiv a\Lambda a$ .
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Since $a\equiv a$ holds, we obtain $a\wedge b\equiv a$, using 1, 2 and 3. Conversely, assume
that $a\Lambda b\equiv a$ . By means of 1, 2, 4 and 5, we obtain $(a\wedge x)\wedge b\equiv a\Lambda x$. Con-
sequently, the set { $r|$ for all $x\in S(a\Lambda x)\Lambda b\equiv a\Lambda x$ is equivalent to $x\Lambda r\equiv x$ }
is equal to { $r|$ for all $x\in Sx\Lambda r\equiv x$ }, $i$ . $e$ . to $T$. Hence, $a\supset b\in T$.

LEMMA 2. Let $f$ be an element of F. $7a\in T,$ $a\supset f\in T$ and $a\in F$ are equi-
valent one another.

PROOF. Let $7a\in T$. Then $x\Lambda 7a\equiv x$ for all $x\in S$. By 10, $(a\wedge x)\wedge f\equiv a\wedge x$

is equivalent to $x\wedge 7a\equiv x$ for all $x\in S$. Hence, $(a\wedge x)\wedge f\equiv a\wedge x$ for all $x\in S$.
Substituting $a$ for $x$ and using $a\wedge a\equiv a$ , we obtain $a\wedge f\equiv a$ . By Lemma 1,
this means $a\supset f\in T$. From $a\supset f\in T$, Lemma 1 and $a\wedge f\equiv f$, we obtain $a\equiv f$.
Hence, $a\in F$. Finally, let $a\in F$. By the definition of $F,$ $x\wedge a\equiv a$ for all $x\in S$

and hence $f\wedge a\equiv a$ . Consequently, for all $x\in S(a\wedge x)\wedge f\equiv(f\wedge a)\wedge x\equiv a\wedge x$.
In terms of the equivalence of $(a\Lambda x)\wedge f\equiv a\wedge x$ to $x\Lambda 7a\equiv x$, we obtain $x\wedge 7a$

$\equiv x$ for all $x\in S$. Hence $7a\in T$.
A formula is called true in $L$ or $L$ , lrue if the formula always takes the

designated element of $L$ no matter what set of elements of $L$ is assigned to
the variables of the formula.

THEOREM 1. Every intuitionistically provable propositional formula is true in
any $L$ which satisfies the (J)-condition and takes $T$ as the set of designated
elements.

PROOF. We make use of Gentzen’s LJ [7] to deduce all the intuitionis-
tically provable formulas. Since Gentzen adopts the sequent calculus, we
interprete a sequent as follows. A sequent $\Gamma\rightarrow\Delta$ with non-empty $\Gamma,$

$\Delta$ is
considered $\Gamma^{*}\supset\Delta^{*}$ where $\Gamma^{*}$ and $\Delta^{*}$ denote $A_{1}\wedge\cdots\wedge A_{m}$ and $B_{1}\vee\cdots\vee B_{n}$ if $\Gamma$

and $\Delta$ represent $A_{1},\cdots,$ $A_{m}$ and $B_{I},\cdots,$ $B_{n}$ respectively. $\Gamma\rightarrow\Delta$ with empty $\Gamma$ or
with empty $\Delta$ is considered $\Delta^{*}$ or $7\Gamma^{*}$ with the same meaning of *as the
above.

As for initial sequent $A\rightarrow A$ , the theorem holds by 3, because $a\supset a\in T$ is
equivalent to $a\Lambda a\equiv a$ by virtue of Lemma 1. Then we proceed inductively.

Thinning-in-antecedent. This inference has the shape $\frac{\Gamma\rightarrow H}{A,\Gamma\rightarrow H}$ because

of the intuitionistic limitation. Hence, it should be proved that if $\gamma\supset h\in T$,

then $(a\wedge\gamma)\supset h\in T$ where $\gamma$ is an element of $L$ representing the value of $\Gamma^{*}$ .
By assumption and Lemma 1, it follows that $\gamma\wedge h\equiv\gamma$ . Using 2 and 5, we
obtain $(a\wedge\gamma)\wedge h\equiv a\wedge\gamma$ and hence $(a\wedge\gamma)\supset h\in T$.

Thinning-in-succedent. It suffices to prove that if $7\gamma\in T$, then $\gamma\supset a\in T$

for any element $a$ of $L$ . Let $7\gamma\in T$. In virtue of Lemma 2, $\gamma\in F$ and hence
$\gamma\wedge a\equiv\gamma$ . By Lemma 1, we obtain $\gamma\supset a\in T$.

Cut. This inference has the shape $\underline{\Gamma\rightarrow}\Gamma,\frac{AA,\Delta}{\Delta\rightarrow}H^{\underline{\rightarrow H}}$ Hence, it should be

proved that if $\gamma\supset a\in T$ and $(a\Lambda\delta)\supset h\in T$, then $(\gamma\Lambda\delta)\supset h\in T$. By assumption
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and Lemma 1, we may assume that $\gamma\wedge a\equiv\gamma$ and $(a\Lambda\delta)\Lambda h\equiv a\wedge\delta$ . Then it
follows successively that $(\gamma\wedge\delta)\wedge h\equiv(\gamma\wedge a)\wedge\delta\wedge h\equiv\gamma\Lambda((a\wedge\delta)\Lambda h)\equiv\gamma\wedge(a\wedge\delta)$

$\equiv(\gamma\wedge a)\wedge\delta\equiv\gamma\wedge\delta$ . Hence, $(\gamma\wedge\delta)\supset h\in T$.
Since other rules of inference can be proved similarly, we omit the rest

of proof.

\S 2. Many-valued propositional logics which are mutually independent.

Let $L_{1},\cdots,$ $L_{n}$ be arbitrary many-valued propositional logics. $L_{1},\cdots,$ $L_{n}$ are
called mutually independent if for each $i$ and $j(i\neq j1\leqq i, j\leqq n)$ there is a
formula which is true in $L_{i}$ and not true in $L_{j}$ .

THEOREM 2. There are at least enumerably infinite many-valued propositional
logics which are mutually independent.

PROOF. Let $S_{i}$ be the set defined as
$S_{i}=$ { $(x,$ $y)|x=y=0$ or $(x=1,2,\cdots,$ $2^{n+1-i}(n+1)$ and $y=1,2,\cdots,$ $i)$ }

where $1<n$ and $2\leqq i\leqq n+1$ .
Let $S_{i}sa,$ $b$ and $a=(a_{1}, a_{2})$ and $b=(b_{1}, b_{2})$ . Logical operations are defined

thus:
$a\wedge b=({\rm Max}(a_{1}, b_{1}),$ ${\rm Max}(a_{2}, b_{2}))$ .
$a\vee b=({\rm Min}(a_{1}, b_{1}),$ ${\rm Min}(a_{2}, b_{2}))$ .

$a\supset b=\left\{\begin{array}{l}(0,0) if a_{1}\geqq b_{1}\\(1,b_{2}) if a_{1}\geqq b_{1}\\(b_{1},1) if a_{J}<b_{1}\\b if a_{1}<b_{1}\end{array}\right.$ $andandandand$
$a_{2}^{2}<b_{2}^{2}a_{2}^{2}\geqq b_{2}a<b_{2}a\geqq b.$

’

$7a=a\supset(2^{n+1-i}(n+1), i)$ .
The many-valued logic whose truth values are elements of $S_{t}$ and whose

logical operations are the just defined ones is denoted by $L_{\dot{t}}$ where $(0,0)$ is
the designated element.

We prove that $L_{2},$ $L_{3},\cdots,$ $L_{n+1}$ are mutually independent. It suffices to
prove that for $2\leqq j<i\leqq n+1L_{i}$ and $L_{j}$ are mutually independent. Let us
consider a formula $y(A_{p}\supset A_{q})$ where V denotes the disjunction of $(A_{p}\supset A_{q})s$

with $p$ and $q$ which satisfy the condition $C:1\leqq p\leqq i,$ $1\leqq q\leqq i$ and $p\neq q$. This
formula is $L_{j}$-true, since, by the assumption $j<i$ , there are $p$ and $q$ such that
the truth value corresponding to $(A_{p}\supset A_{q})\vee(A_{q}\supset A_{p})$ is $(0,0)$ . However, this
is not $L_{i}$-true if the value of $A_{r}(1\leqq r\leqq n)$ is $(r, i+1-r)$ . Next we consider
$\vee D(A_{p}\supset A_{q})$ where $D$ is the condition: $p,$ $q\in S_{j}$ and $p\Lambda q\neq p$ . Since the number

of elements of $S_{j}$ is greater than that of elements of $S_{i}$ , there are $t$ and $s$ ,



120 T. UMEZAWA

distinct elements of $S_{j}$ , such that $A_{t}$ and $A_{s}$ take a same truth value in $S_{i}$ .
For any distinct $p,$ $q\in S_{j},$ $p\wedge q\neq p$ or $p\wedge q\neq q$ and hence the value of $A_{t}\supset A_{s}$ , a
fortiori, of $(A_{p}\supset A_{q})D$ is $(0,0)$ . However, this formula is not $L_{j}$-true, if the

truth value which $A_{r}$ takes is $r$. Since $n$ is an arbitrary positive integer, the
theorem follows.

\S 3. A sequence of intermediate many-valued logics.

First we introduce some definitions.
$\alpha=\omega^{\omega i_{t_{i}+\cdots+\omega c_{1}+t_{0}}}(t_{i},\cdots, t_{0}\geqq 0)$ and $u_{h}^{1}=\sum_{j=h}^{i}(j+1)t_{j}$

$(h\leqq i)$ where $\alpha$ naturally depends upon $t_{i},\cdots,$ $t_{0}$ and $w_{h}$ upon $t_{i},\cdots,$ $t_{h}$ .

$p(k)=\frac{2^{kw_{0}}-1}{2^{w_{0}}-1}$ where $w_{0}\neq 0$ .

We define $S(t_{i},\cdots, t_{0}, n)$ recursively. Let $A,$ $B,$ $A_{x}$ be arbitrary sets. $A\cup B$

denotes the sum set of $A$ and $B$ and V $A_{x}$ the sum set of $A_{x}’ s$ which satisfy

the condition $C$.
$S(n)=\{(k, k)|0\leqq k\leqq n\}$ .

$S(t_{i},\cdots, t_{0}, n)=\{(\alpha(2^{l}p(k)), \alpha(2^{m}p(k)))|0\leqq k\leqq n$ and $[l=0,1,\cdots,$ $w_{h}m=\sum_{j=h}^{i}(j-$

$h)t_{j}$ where $0<h\leqq i;l=0,1,\cdots,$ $w_{0}m=\sum_{j=h}^{i}t_{j},$ $w_{0}$]} $\cup\{(\alpha(2^{w_{0}}p(k))+x, \alpha(2^{w_{0}}p(k))+y)|0$

$\leqq k<n$ and $(x, y)\in\bigcup_{c}S(t_{i},\cdots, t_{j+1}, t_{j}-1, s_{j-1},\cdots, s_{0}, m)$ where $j$ is determined by

the condition $t_{0}=\cdots=t_{j-1}=0$ and $t_{j}>0$ and $C$ denotes that $ 0<s_{j-1}<\omega$ and
$0<m<\omega\}$ .

$S(O, t_{i},\cdots, t_{0}, n)=S(t_{i},\cdots, t_{0}, n)$ .
Example. $S(1, n)$ is the set, { $(\omega(2^{l}p(k)),$ $\omega(2^{m}p(k)))|0\leqq k\leqq n$ and $l,$ $m=0,1$ }

$\cup$ { $(\omega(2p(k))+x,$ $\omega(2p(k))+y)|0\leqq k<n$ and $(x,$
$y)\in\bigcup_{0<m<\omega}S(m)$ } where $p(k)=2^{k}-1$ .

We express the set of $t_{i},\cdots,$ $t_{0},$ $n$ occurring in the definition of $S(t_{i},\cdots,$ $t_{0},$ $ n\rangle$

by $(t_{i},\cdots, t_{0}, n)$ . Given $n,$ $m(n>0),$ $(t_{i},\cdots, t_{0}, n)\succ(s_{j},\cdots, s_{0}, m)((s_{j},\cdots, s_{0}, m)\prec(t_{i},\cdots,$ $t_{0}$ ,
$n))$ means that i) $i>j$ or ii) there is an $x$ such that $i=j,$ $t_{i}=s_{j},\cdots,$ $t_{x+1}=s_{x+1}$ ,
$t_{x}>s_{x}$ or iii) $i=j,$ $t_{t}=s_{j},\cdots,$ $t_{0}=s_{0},$ $n>m$ or iv) $m=0$ . $(t_{i},\cdots, t_{0}, n)=(s_{j},\cdots,$ $s_{0},$

$ m\rangle$

means that $i=j,$ $t_{i}=s_{j},\cdots,$ $t_{0}=s_{0},$ $n=m$ .
$S(t_{i},\cdots, t_{0}, n)$ contains $S(s_{j},\cdots, s_{0}, m)$ as a proper subset if $(t_{i},\cdots, t_{0}, n)\succ(s_{j},\cdots$ ,

$s_{0},$ $m$).

We denote by $n$ a finite sequence of $(t_{i},\cdots, t_{0}, n)s$ such that if $(s_{j},\cdots, s_{0}, m)$

is a preceding member of $(u_{k},\cdots, u_{0}, l)$ , then $(s_{j},\cdots, s_{0}, m)\succ(u_{k},\cdots, u_{0}, l)$ and $j\neq k$

or for some $xs_{x}\neq u_{x}$ . Let $n_{x}$ and $m_{x}$ be x-th members of $n$ and $m$ respec-
tively. $n\succ m(m\prec n)$ means that there is an $x$ such that $n_{1}=m_{1},\cdots,$ $n_{x-1}=m_{x-1}$ ,
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$n_{x}\succ m_{x}$ . The number of members of $n$ is denoted by $lh(n)$ .
Let $\beta(n_{x})=\alpha(2^{w_{0}}p(n))$ where $\alpha,$ $w_{0}$ and $p(n)$ are defined for $t_{i},\cdots,$ $t_{0},$ $n$ in $n_{x}$ .

$S(t_{i},\cdots, t_{0}, n)$ is also denoted by $S(n_{x})$ if $n_{x}$ is $(t_{i},\cdots, t_{0}, n)$ . Now we define $S_{1}(n_{r})$

and $T(n)$ .
$S_{1}(n_{r})=\{(\sum_{x=1}^{r-1}\beta(n_{x})+y,\sum_{x=1}^{r-1}\beta(n_{x})+z)|(y, z)\in S(n_{r})\}$

where $\sum_{x=1}^{r-1}\beta(n_{x})=\beta(n_{1})+\beta(n_{2})+\cdots+\beta(n_{r-1})$ .

$T(n)=\bigcup_{1\leqq r\leqq lh(n)}S_{1}(n_{r})$ .

Logical operations are defined in $T(n)$ in what follows. Let $a$ and $b$ are
elements of $T(n)$ and $a=(a_{1}, a_{2})$ and $b=(b_{1)}b_{2})$ .

$a\wedge b=({\rm Max}(a_{J}, b_{1}),$ ${\rm Max}(a_{2}, b_{2}))$ .
$a\vee b=({\rm Min}(a_{J}, b_{1}),$ ${\rm Min}(a_{2}, b_{2}))$ .

Let $c$ be the least ordinal number of $x’ s$ occurring in $(x, b_{2})\in T(n)$ and $d$

the least ordinal number of $y’ s$ occurring in $(b_{1}, y)\in T(n)$ .

$a\supset b=\left\{\begin{array}{l}(0,0) if\\(c,b_{2}) if\\(b_{1},d) if\\(b_{1},b_{2}) if\end{array}\right.$ $a_{1}^{1}\geqq b_{1}a_{1}^{1}<b_{1}^{1}a\geqq b_{1}a<b$
$andandandand$

$a_{2}^{2}\geqq b_{2}a_{2}<b_{2}a_{2}\geqq ba<b_{2}^{2}$

.
Let $\gamma$ be the greatest ordinal number of all $x’ s$ occurring in $(x, y)\in T(n)$ .

$7a=a\supset(\gamma, \gamma)$ .
$T(n)$ is closed with regard to $\Lambda,$ $\vee,$ $\supset,$ $7$

We denote by $L(n)$ the many-valued propositional logic as defined above
where the designated element is $(0,0)$ .

LEMMA 3. $L(n)$ is an intemediate many-valued propositional logic.
PROOF. In virtue of Theorem 1, it suffices to prove that $L(n)$ satisfies

(J)-condition. We take a trivial classification where every subclass consists of
only one element. Then $\equiv$ becomes $=$ between elements of $L(n)$ . 1 and 2
are evident. 3-7 can be easily proved. As to 8, $T$ and $F$ are taken to be
$\{(0,0)\}$ and $\{(\gamma, \gamma)\}$ where $\gamma$ is the greatest ordinal number of all $x’ s$ occurring
in $(x, y)\in L(n)$ .

Concerning 9 and 10, we take $\{a\supset b\}$ and $\{7a\}$ as sets required in 9 and
10 respectively. We prove that for all $x\in L(n),$ $(a\wedge x)\wedge b=a\wedge x$ is equivalent
to $x\wedge(a\supset b)=x$. Let $x=(x_{1}, x_{2}),$ $a=(a_{1}, a_{2})$ and $b=(b_{1}, b_{2})$ . In case both $a_{1}\geqq b_{\iota}$

and $a_{2}\geqq b_{2}$ , it is evident. Assume that $a_{1}\geqq b_{1}$ and $a_{2}<b_{2}$ . It suffices to show
that ${\rm Max}(b_{2}, x_{2})={\rm Max}(a_{2}, x_{2})$ is equivalent to both ${\rm Max}(x_{1}, c)=x$ and ${\rm Max}(x_{2}, b_{2})$
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$=x_{2}$ where $c$ denotes the least ordinal number of $x’ s$ occurring in $(x, b_{2})\in L(n)$ .
For $x_{2}<b_{2}$ , it clearly holds. For $x_{2}=b_{2}$ , it also holds, since if $x_{2}=b_{2}$ , then
$x_{1}\geqq c$ , and for $x_{2}>b_{2},$ $x_{I}\geqq c$ is also valid. Hence, what is to prove holds for
any $(x_{1}, x_{2})\in L(n)$ . Furthermore, it can be proved that $\{a\supset b\}$ is the only set
which satisfies 9. Other cases can be treated similarly.

We say that $L(n)$ is a sublogic of $L(m)$ , if every $L(n)$ -true formuIa is
$L(m)$-true and the converse is not the case.

THEOREM 3. If $n\succ m$ , then $L(n)$ is a sublogic of $L(m)$ .
PROOF. It follows from the assumption $n\succ m$ that there is an $x$ such

that $n_{1}=m_{J},\cdots,$ $n_{x+1}=m_{x+1},$ $n_{x}\succ m_{x}$ . Let $\gamma$ be the $x$ as required. For every
$y$ such that $r\leqq y\leqq lh(m),$ $n_{r}\succ m_{y}$ and it is seen from the definition of $ S(t_{i},\cdots$ ,

$t_{0},$ $n$) that $(\sum_{x=r}^{y-1}\beta(m_{x})+z_{1},\sum_{x=r}^{y-1}\beta(m_{x})+z_{2})\in S(n_{r})$ where $(z_{1}, z_{2})\in S(m_{y})$ . Consequently,

$S_{1}(m_{y})(r\leqq y\leqq lh(m))$ is a $subs_{\vee}^{\circ}t$ of $S_{1}(n_{r})$ and hence $U$ $S_{1}(m_{y})\subset S_{1}(n_{r})$ .
$r\leqq y\leftarrow=lh(m)$

Therefore $T(m)$ is a subset of $T(n)$ and we obtain that if a formula is $L(n)-$

true, then it is $L(m)$ -true.
Then, for the proof, it suffices to show a formula which is $L(m)$ -true but

not $L(n)$ -true. Let us define
$S^{\prime}(n_{\gamma})=\{(\sum_{x=1}^{r-1}\beta(n_{x})+\alpha(2^{\prime}p(k)),\sum_{x=1}^{\gamma-1}\beta(n_{x})+\alpha(2^{m}p(k)))|0\leqq k\leqq n[l=0,\cdots,$ $w_{h}m=$

$\sum_{j=h}^{i}(i-h)t_{j}$ : $l=0,\cdots,$ $w_{0}m=\sum_{j=0}^{i}jt_{j},$ $w_{0}$] $\}$ where $n_{r}=(t_{i},\cdots, t_{0}, n)$ and $\alpha,$ $p(k),$ $w_{I\iota}$ are
defined for the $t_{i},\cdots,$ $t_{0}$ .

We consider a formula $F:_{c}(A_{x}\supset A_{y})$ where V denotes the disjunction of
$(A_{x}\supset A_{y})s$ with $x,$ $y$ which satisfy the condition $C:x,$

$y\in\bigcup_{1\leqq z\leqq 7}S^{\prime}(n_{z})$ and for

$x=(x_{1}, x_{2}),$ $y=(y_{1}, y_{2}),$ ${\rm Max}(x_{1}, y_{1})\neq x_{1}$ or ${\rm Max}(x_{2}, y_{2})\neq x_{2}$ . Since $S^{\prime}(n_{z})$ and $r$ are
finite, $F$ is a formula in propositional calculus. $F$ is not $L(n)$ -true, because if
the value of $A_{x}$ is $x$, every $A_{x}\supset A_{y}$ in $F$ does not take $(0,0)$ as its value, as
is seen from the definition of $\supset$ .

Next we consider $F$ in $L(m)$ . Any $A_{x}\supset A_{y}$ in $F$ where $x,y\in\bigcup_{1\leqq x<7}S^{\prime}(n_{x})$

can take a value different from $(0,0)$ in the same way as the above. Let $n_{r}$

be $(t_{i},\cdots, t_{0}, n)$ and $m_{r}(s_{j},\cdots, s_{0}, m)$ . Since $n_{r}\succ m_{r}$ , i) $i>j$ or ii) there is an $x$

such that $i=j,$ $t_{i}=s_{j},\cdots,$ $t_{x+1}=s_{x+1},$ $t_{x}>s_{x}$ or iii) $i=j,$ $t_{i}=s_{j},\cdots,$ $t_{0}=s_{0},$ $n>m$ or
iv) $m=0$ . Let $i>j$. $S^{\prime}(m_{y})(r\leqq y\leqq lh(m))$ does not contain $i+1$ elements such
that $a\supset b\neq(O,O)$ and $b\supset a\neq(O,O)$ . $A_{x}’ s$ in $F^{\prime}$ : V $(A_{x}\supset A_{y})$ in $F$ where $x,$ $y\in S^{\prime}(n_{r})$

must take values from U $S^{\prime}(m_{y})$ in order that the value of $F$ be not $(0,0)$ .
$\tau\leqq y\leq=lh(m)$

Since $F^{\prime}$ contains a subformula of form $x\neq yx,y=1\ldots.,i+1\vee(B_{x}\supset B_{y})$ , then $F$ ‘ takes
$(0,0)$ as its value in $L(m)$ . Hence $F$ is $L(m)$ -true. Also in other cases, not all
$A_{x}\supset A_{y}$ in $F^{\prime}$ can take values different from $(0,0)$

$in\bigcup_{r\leqq y\leqq lh(n*)}S^{\prime}(m_{y})$ . $F^{\prime}$ and
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hence $F$ take $(0,0)$ as their values. Therefore $F$ is $L(m)$ -true.
We consider a sequence of $L(n)s$ in which every member is a sublogic

of the preceding ones. This sequence is well-ordered. The ordinal number
of such a sequence of $L(n)$ is called the length of the sequence.

TEHOREM 4. There is a sequence of intermediate many-valued propositional
logics whose length is $\omega^{\omega^{\omega}}$

PROOF. For convenience, we write “ the length for $n$
“ instead of ” the

length of a sequence of all $L(m)s$ where $m\prec n$ and every mumber of the
sequence is a sublogic of preceding ones “.

We take $L(n)$ where $n$ consists of only $n_{1}=(1,1)$ . Since for any $m$ con-
sisting of only $(m),$ $m\prec n$ , the length for the $n$ is $\omega$ . Assume that the length
for $n$ consisting of only $n_{1}=(1,0,\cdots, 0,1)$ with $i$ zeros is $\omega^{\omega^{i}}$ . Then the length
for $n$ consisting of only $(1, 0,\cdots, 0,p)$ with $i$ zeros is $\omega^{\omega^{i}}p$ and hence the one
for $n$ consisting of only $n_{1}=(1,0,\cdots, 0,1,1)$ with $i-1$ zeros is $\omega^{\omega^{i}+1}$ . It can
be proved that the length for $nconS_{1}^{\wedge}sting$ of only $n_{1}=(1,0,\cdots, 0, t_{0},1)$ with
$i-1$ zeros is $\omega^{\omega^{i}+t_{0}}$ and hence for $n$ consisting of only $n_{1}=(1.0,\cdots, 0,1,0,1)$

with $i-1$ zeros it is $\omega^{\omega^{i}+\omega}$ . Similarly, it is proved that the length for $n$

consisting of only $n_{1}=(1,0,\cdots, 0,1)$ with $i+1$ zeros is $\omega^{\omega^{i_{+1}}}$ . Since we can
take any integer for $i$, the theorem follows.

\S 4. Special many-valued propositional logics.

In this section we treat special many-valued logics. $L(n)$ with $n$ consist-
ing of only $n_{1}=(n)$ in the preceding section is denoted by $\backslash J_{1_{n}^{\iota}}$ . We represent
$R$ in terms of truth-tables. Let $0,1,2,\cdots,$ $n$ be truth values of $\mathfrak{R}_{n}$ and $0$ the
designated element. Logical operation $\wedge,$ $\vee,$ $\supset$ and 7 are defined in what
follows:

$\frac{\Lambda}{201}n\left|\begin{array}{lllll}\frac{012\cdot.\cdot.\cdot.n}{012n} & & & & \frac{\vee}{0}\\112 & \cdots & n & & 1\\222 & \cdots & n & & 2\\nn & n & \cdots & \cdots n & \cdots n\end{array}\right|$

$n_{n}\supset\overline{-1021}\left|\begin{array}{lll}\frac{0123\cdot.\cdot.\cdot.n}{0123n} & & \\0023 & \cdots & n\\0003 & \cdots & n\\\cdots & \cdots & \cdots\\ 0000 & \cdots & n\\0000 & \cdots & 0\end{array}\right|nnn$

In virtue of Theorem 3, it follows that if $n>m$ , then $\mathfrak{R}_{n}$ is a sublogic
of $\mathfrak{R}_{m}$ . $\mathfrak{R}_{0}$ is the contradictory logic and $\mathfrak{R}_{1}$ is the usual two-valued logic.

Two many-valued logics are called equivalent if the sets .of true formulas
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are the same. We now give two many-valued logics which are equivalent
to $\mathfrak{R}_{n}$ .

4.1. Let $S_{0},$ $S_{1},\cdots,$ $S_{n}$ be arbitrary non-empty sets, each two of which is
disjoint. The elements of $S_{0},$ $S_{1},\cdots,$ $S_{n}$ are taken as truth values of $L_{1}$ . Logical
operations are defined in the following.

Let $a_{i}\in S_{i}$ and $b_{j}\in S_{j}$ .
i) $a_{i}\Lambda b_{j}\in S_{\max(i,j)}$ .
ii) $a_{i}\vee b_{j}\in S_{\min(i,j)}$ .
iii) $a_{i}\supset b_{j}\in S_{0}$ if $i\geqq j$ and $a_{i}\supset b_{j}\in S_{j}$ if $i<j$ .
iv) $7a_{n}\in S_{0}$ and $7a_{i}\in S_{n}$ if $i<n$ .
The designated elements of $L_{1}$ are elements of $S_{0}$ . Then $L_{1}$ is equivalent

to $\mathfrak{R}_{n}$ , because if we classify elements of $L_{1}$ into $S_{0},$ $S_{1},\cdots,$ $S_{n}$ , then the result-
ing logic is isomorphic to $\mathfrak{R}_{n}$ .

4.2. Let $S$ be any non-empty set. $f_{i}(0\leqq i\leqq n)$ is defined to be a function
such that for all $x\in S,$ $f_{i}(x)=i$. Let $F$ be the set of all functions of one
variable $x$ with $S$ as the range of $x$ and with {0,1} as the domain. $f_{i}(1<i\leqq n)$

and elements of $F$ are truth values of $L_{2}$ . $f_{0}$ and $f_{1}$ are elements of $F$. Let
$f,$ $g\in L_{2}$ .

$f\Lambda g=h_{1}$ where $h_{1}(x)={\rm Max}(f(x), g(x))$ .
$f\vee g=h_{2}$ where $h_{2}(x)={\rm Min}(f(x), g(x))$ .
$f\supset g=h_{3}$ where $h_{3}(x)=0$ if $f(x)\geqq g(x)$ and $h_{3}(x)=g(x)$ if $f(x)<g(x)$ .
$7f=f\supset f_{n}$ .

$f_{0}$ is the only designated element of $L_{2}$ . Then we prove that $L_{2}$ is equi-
valent to $\mathfrak{R}_{n}$ .

$f_{0},$ $f_{1},\cdots,f_{n}$ form a subtable isomorphic to $\mathfrak{R}_{n}$ . Hence, if a formula is $L_{2}-$

true, then it is also $\mathfrak{R}_{n}$-true.
Let $S\ni a$ and $T_{a}=$ { $f|f(a)=0$ and $f\in F$ }. We denote the relative com-

plement of $T_{a}$ with regard to $F$ by $F-T_{a}$ . For $g,$ $h\in T_{a}$ and for $k,$ $l\in F-T_{a}$ ,
the following hold:

i) $g\wedge h\in T_{a}$ and $g\wedge k,$ $k\wedge g,$ $k\wedge l\in F-T_{a}$ . For $2\leqq i\leqq i\leqq n,$ $g\wedge f_{i}=f_{i}\wedge g=$

$Jt\wedge f_{i}=f_{i}\wedge k=f_{j}\Lambda f_{i}=f_{i}\wedge f_{j}=f_{i}$ .
ii) For $2\leqq i\leqq n,$ $gh,$ $g\vee k,$ $k\vee g,$ $g\vee f_{i},f_{i}\vee g\in T_{a}$ and $k\vee l,$ $k\vee f_{i},$ $ f_{i}\vee k\in$

$F-T_{a}$ . For $2\leqq j\leqq i\leqq n,$ $f_{j}\vee f_{i}=f_{l}\vee f_{j}=f_{j}$ .
iii) For $2\leqq j\leqq i\leqq n,$ $g\supset h,$ $k\supset g,$ $k\supset l,$ $f_{i}\supset g,$ $f_{i}\supset k,$ $f_{i}\supset f_{j}\in T_{a}$ and for $2\leqq j<$

$i\leqq n,$ $g\supset f_{i}=k\supset f_{i}=f_{j}\supset f_{i}=f_{i}$ .
iv) For $j<n,$ $7g=7k=7f_{i}=f_{n}$ and $7f_{n}\in T_{a}$ .
It is seen from $i$) $-iv$) that $T_{a},$ $F-T_{a},$ $f_{2},\cdots,f_{n}$ form a subtable isomorphic

to $\mathfrak{R}_{n}$ where $T_{a}$ corresponds to the designated element of $\mathfrak{R}_{n}$ . Therefore, if
a formula is $\mathfrak{R}_{n}$-true, then it takes an element of $T_{a}$ as its value. Since $a\in S$

is an arbitrary element, the value of $\mathfrak{R}_{n}$-true formula is $\bigcap_{a\in S}T_{a}=f_{0}$ and hence
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$L_{2}$-true.
4.3. We here show some relations between many-valued logics and logics

by axiomatic stipulation. Concerning our axiomatic stipulation, we refer to
Gentzen [7] and Umezawa [8], [9].

$LR_{n}$ is defined in [8, \S 4] or in [9, \S 4] to be the intermediate logic re-
sulting from LJ’ (cf. [9, \S 1]) by adding the following as a new schema of
initial sequents

$R_{n}$ : $\rightarrow A_{1},$ $A_{1}\supset A_{2},$ $A_{2}\supset A_{3},\cdots,$ $A_{n-1}\supset A_{n},$ $7A_{n}$ .
For any sequent $Z$, the formula which we obtain from $Z$ in the same

way as in the proof of Theorem 1 is denoted by $Z^{*}$ .
$R_{n^{*}}$ is $\mathfrak{R}_{n}$-true, as is seen from the truth-tables of $\mathfrak{R}_{n}$ . Since Dl satisfies

the (J)-condition, we obtain that every $R_{n}$-provable propositional formula is
$\mathfrak{R}_{n}$-true. $R_{i^{*}}(i<n)$ is not $\mathfrak{R}_{n}$-true, since if the truth value of $A_{j}$ is $j$, then
$R_{i^{*}}$ takes 1 as its truth value.

$LP_{2}$ is defined in [8, \S 2] to be the logic resulting from LJ’ by adding
$P_{2}$ as a new schema of initial sequents

$P_{2}$ : $\rightarrow A_{1}\supset A_{2},$ $A_{2}\supset A_{1}$ .

We denote by $\mathfrak{R}_{\omega}$ the truth-tables similar to $\mathfrak{R}_{n}$ except we take $0,1,2,\cdots,$ $\omega$

as truth values instead of $0,1,\cdots,$ $n$ .
$P_{2^{*}}$ is $\mathfrak{R}_{\omega}$-true, because for any $a$ and $b$ of $\mathfrak{R}_{\omega},$ $a\geqq b$ or $b\geqq a$ . Since $\mathfrak{R}_{\omega}$

also satisfies the (J)-condition, it follows that every $P_{2}$-provable propositional
formula is $\mathfrak{R}_{\omega}$-true. However, any $R_{n^{*}}$ is not $\mathfrak{R}_{\omega}$-true, as is seen from the
truth-tables of $\mathfrak{R}_{\omega}$ . It remains open whether the converse holds or not.

\S 5. Extension of propositional to predicate calculus.

Now quantifiers $\forall$ and $\exists$ are adjoined to the set of logical operations in
propositional calculus. We consider quantifiers to be defined for any subset
of our basic set of truth values. Let $S$ be the basic set of truth values.
For any subset $M$ of $S,$ $\forall xMx$ and $\exists xMx$ take some elements of $S$ as their
values.

(J)-condition with the following is called the extended (J)-condition.

11. For any subset $M$ of $S$, there is a set which contains $\forall xMx$ and whose
element, say $r$, satisfies the condition:

For all $y\in S$, that for all $z\in My\wedge z\equiv y$ is equivalent to $y\wedge r\equiv y$.
12. For any subset $M$ of $S$, there is a set which contains $\exists xMx$ and

whose element, say $\gamma$, satisfies the condition:
For all $y\in S$, that for all $z\in My\wedge z\equiv z$ is equivalent to $yAr\equiv r$.
13. Let $M\Lambda b$ be the set, $\{x\wedge b|x\in M\}$ . For any subset $M$ of $S$ and for



126 T. UMEZAWA

any $b\in S,$ $\exists x(M\wedge b)x\equiv\exists xMx\wedge b$ .
A formula in predicate calculus is called true in $L$ or L-true if the for-

mula always takes the designated element of $L$ under the interpretation that
a predicate variable $A(x)$ represents an element $Mx$ of a subset $M$ of $S$ and
$\forall xA(x),$ $\exists xA(x)$ represent $\forall xMx,$ $\exists xMx$ respectively.

THEOREM 5. Every intuitionistically provable formula in predicate calculus
(of the first order) is true in any logic which satisfies the extended (J)-condition

and takes $T$ as the set of designated elements.
PROOF. We use the same method as in the proof of Theorem 1. In

virtue of Theorem 1, it suffices to treat the rules of inference for predicate
calculus.

$\forall$-in-antecedent has the shape: $\frac{A(a),\Gamma\rightarrow H}{\forall xA(x),\Gamma\rightarrow H}$ We prove that for any

subset $M$ of $S$, if $(j\psi a\wedge\gamma)\supset h\in T$, then $(\forall xMx\wedge\gamma)\supset h\in T$ where $Ma$ is an ele-
ment of $ j\psi$ and $\gamma$ and $h$ are elements of S. From 11, we obtain for all
$y\in S$, that for all $z\in My\wedge z\equiv y$ is equivalent to $y\wedge\forall xMx\equiv y$. Taking $\forall xMx$

as $y$ , it follows that for all $z\in M\forall xMx\Lambda z\equiv\forall xMx$. Hence $\forall xMx\Lambda Ma\equiv\forall xMx$.
In virtue of Lemma 1 and the assumption, $(Ma\wedge\gamma)\Lambda h\equiv Ma\wedge\gamma$ . Therefore,
$\forall xMx\wedge(Ma\wedge\gamma\wedge h)\equiv\forall xMx\Lambda(Ma\wedge\gamma)$ . By the above fact, we obtain ( $\forall xMx\wedge\gamma\rangle$

$\wedge h\equiv\forall xMx\wedge\gamma$ and hence, in virtue of Lemma 1, $(\forall xMx\Lambda\gamma)\supset h\in T$.
For $\exists$ -in-antecedent: $\frac{A(a),\Gamma\rightarrow H}{\exists xA(x),\Gamma\rightarrow H}$ with the restriction on variable that

$a$ shall not occur in the lower sequent, it suffices to prove that for any subset
$ j\psi$ of $S$, if $(Ma\wedge\gamma)\supset h\in T$ where $a$ is an arbitrary element of $M$, then $(\exists xMx\wedge\gamma)$

$\supset h\in T$. By Lemma 1 and the assumption, $(Ma\wedge\gamma)\Lambda h\equiv Ma\wedge r$ . Since $a$ is
an arbitrary element of $M$, it follows that for all $z\in M\Lambda\gamma z\wedge h\equiv z$ . Hence,
we obtain, using 12, that $h\wedge\exists x(M\wedge\gamma)x\equiv\exists x(M\wedge\gamma)x$. In virtue of 13, $(\exists xMx\wedge\gamma)$

$\wedge h\equiv\exists xMx\Lambda\gamma$ follows and hence $(\exists xMx\wedge\gamma)\supset h\in T$.
Proofs for V-in-succedent and for $\exists$ -in-succedent are similar.
In case the set of truth values is finite, 11, 12 and 13 are satisfied by

defining $\forall xMx$ by $M_{1}\wedge\cdots\wedge M_{n},$ $\exists xiVIx$ by $M_{1}\vee\cdots\vee M_{n}$ where $1\psi_{1}\cdots,$ $M_{n}$ are ele-
ments of ]$\psi$. This is proved as follows. The condition which the elements
of the requied set of 11 satisfy can be expressed thus: For all $y\in S$, that
for all $i(1\leqq i\leqq n)y\wedge M_{t}\equiv y$ is equivalent to $y\wedge r\equiv y$. Thence, we obtain
that $M_{1}\Lambda\cdots\wedge j\psi_{n}\wedge\gamma\equiv M_{1}\wedge\cdots\wedge M_{n}$ and for all $i(1\leqq i\leqq n)r\wedge M_{i}\equiv r$. Hence
$r\equiv M_{1}\Lambda\cdots\wedge M_{n}$ . Since $M_{1}\wedge\cdots\wedge M_{n}$ naturally exists for any $M,$ $11$ can be
written thus: $\forall xMx\in\{r\in S|r\equiv M_{1}\wedge\cdots\wedge M_{n}\}$ where $M=\{M_{i},\cdots, M_{n}\}$ . This is
clearly satisfied if $\exists xMx$ is defined as $M_{1}\wedge\cdots\wedge M_{n}$ . Similarly for 12. 13 is
obvious for this definition of $\exists xMx$.

Hence, if we define $\forall$ and $\exists$ for $S_{i}$ appeared in the proof of Theorem 2
in the above way, then $S_{i}$ is a predicate logic and the proof of Theorem 2 is
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valid. Then we obtain
THEOREM 6. There is a set of intermediate many-valued predicate logics

which are mutually independent with any desired number of elements.
Next we introduce $\forall$ and $\exists$ into $T(n)$ in \S 3 by defining them thus. Let

$M$ be a subset of $T(n)$ . $\forall xMx$ is the element $r$ of $T(n)$ such that for all
$y\in T(n)$ , that for all $z\in My\Lambda z=y$ is equivalent to $y\wedge r=y$ . $\exists xMx$ is the
element $\gamma$ of $T(n)$ such that for all $y\in T(n)$ , that for all $z\in My\Lambda z=z$ is
equivalent to $y\wedge a=a$. Uniqueness of such elements can be easily proved.

Existence of $\exists xMx$ for any subset $M$ is seen from the following: For any
subset $M$ of $T(n)$ there are $d_{1},\cdots,$ $d_{n}$ in $M$ such that for $i\neq jd_{i}\wedge d_{j}\neq d_{\iota}$ and
$d_{i}\wedge d_{j}\neq d_{j}$ and for every $x\in M$ there is a $d_{i}(1\leqq i\leqq n)$ which satisfies $x\wedge d_{i}=x$.
It can be proved that $\exists X1Vx=d_{1}\vee\cdots\vee d_{n}$ . Hence, the existence of $\exists xMx$ is
clear. Existence of $\forall xMx$ can be proved from the existence of $\exists xMx$.

Therefore 11 and 12 follow. We prove that 13 holds. Let $x\wedge b\in M\wedge b$ .
Since $x\in M$, there is a $d_{i}$ such that $x\wedge d_{i}=x$ and hence there is a $d_{\iota}\wedge b$ such
that $(x\wedge b)\wedge$ ( $d_{i}$ A $b$ ) $=x\wedge b$ . From 12, it is seen that for all $y\in T(n)$ , that for
all $z\in M\Lambda by\wedge z=z$ is equivalent to $y\wedge\exists x(M\Lambda b)x=\exists x(M\Lambda b)x$. Taking $(d_{1}\vee$

$...\vee d_{n})\Lambda b$ as $y$, it follows that $((d_{1}\vee\cdots\vee d_{n})\Lambda b)\wedge z=z$ for all $z\in M\Lambda b$ is equi-
valent to $((d_{1}\vee\cdots\vee d_{n})\wedge b)\wedge\exists x(1\psi\wedge b)x=\exists x(M\wedge b)x$. In virtue of the above fact,
for all $z\in M\wedge b$ where $z=x\wedge b$ for an $x\in M,$ $(d_{1}\vee\cdots\vee d_{n})\wedge b\Lambda z=(d_{1}\vee\cdots\vee d_{n})\wedge$

$b\Lambda(x\wedge b)=(d_{1}\wedge\cdots\vee d_{n})\Lambda b\Lambda(x\Lambda b)\Lambda(d_{i}\wedge b)=d_{i}\Lambda b\wedge x\Lambda b=x\wedge b=z$ . Hence $(d_{1}\vee$

$\vee d_{n})\wedge b\wedge\exists x(M\wedge b)x=\exists x(M\wedge b)x$. On the other hand, we obtain, by taking
$\exists x(M\wedge b)x$ as $y$, that for all $z\in M\wedge b\exists x(M\wedge b)x\wedge z=z$ . Therefore for all
$i(1\leqq i\leqq n)\exists x(M\wedge b)x\wedge d_{i}\Lambda b=d_{i}\wedge b$ and hence $\exists x(M\wedge b)x\wedge(d_{1}\vee\cdots\vee d_{n})\wedge b=$

$(d_{1}\vee\cdots\vee d_{n})\wedge b$ . Combining the above equations, we see that $\exists x(M\wedge b)x=(d_{1}\vee$

$\vee d_{n})\Lambda b$ . Since $\exists xMx=d_{1}\vee\cdots\vee d_{n}$ , thence 13 follows.
Hence, $L(n)$ in which $\forall$ and $\exists$ are defined in the above way is an inter-

mediate many-valued predicate logic. The proof of Theorem 3 goes validly.
Consequently, in virtue of Theorem 4, we obtain

THEOREM 7. There is a sequence of intermediate many-valued predicate
logics whose length is $\omega^{(v^{\alpha}}$.

Mathematical Institute,
Nagoya University.
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