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On a certain cup product.
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Introduction. Let $K$ be a complex of a form $S^{q}\cup e^{n}\cup e^{n+q},$ $i$ . $e$ . a complex
obtained from a q-sphere $S^{q}$ by attaching an n-cell $e^{n}$ and then an $(n+q)$-cell
$e^{n+q}$ where $n-2\geqq q\geqq 2$ . It is clear that the integral cohomology ring of $K$

is as follows:
$H^{0}(K)\approx H^{q}(K)\approx H^{n}(K)\approx H^{n+q}(K)\approx Z$ ,

$H^{i}(K)=0$ $i\neq 0,$ $q,$ $n,$ $n+q$ ,

where $Z$ denotes the ring of integers.
Let $x,$ $y,$ $z$ denote the cohomology classes carried by $e^{n},$ $S^{q},$ $e^{n+q}$ respectively.

Then there is an integer $m$ determined by $mz=x\cup y$. Let $\alpha\in\pi_{n-1}(S^{q})$ denote
the homotopy class of a map, $S^{n-1}\rightarrow S^{q}$, by which $e^{n}$ is attached to $S^{q}$ . I. M.
James [5] described then $K$ as a complex of type $(m, \alpha)$ and proved the
following theorem (Theorem (1.8) 1. $c.$).

J. Let $[\alpha, t_{q}]\in\pi_{n+q-2}(S^{q})$ denote the Whitehead product of $a$ and a generator
$J_{q}\in\pi_{q}(S^{q})$ . Then there exists a complex of type $(m, \alpha)$ , if and only if $m[\alpha, l_{q}]$ is
contained in the image of the homomorphism $\alpha_{*}:$ $\pi_{n+q-2}(S^{n-1})\rightarrow\pi_{n+q-2}(S^{q})$ which
is induced by $\alpha$ .

At the end of the introduction of [5], James remarks that it is possible
to discuss this topic in term of the cohomology invariant of mappings which
are defined in [10], although his discussion in [5] is based on different
methods. We shall show in this paper that $J$ can be indeed simply and
mechanically proved by the cohomology invariant of mappings.

Let $L$ be a complex of a form $S^{q}\cup e^{n}$ which is obtained by attaching
$e^{n}$ to $S^{q}$ . Since the homotopy type of $L$ depends only on the homotopy class
of the attaching map, we denote by $L(\alpha)$ the complex $L$ which has a map of
the class $\alpha\in\pi_{n-1}(S^{q})$ as the attaching map. Then all complexes of type $(m, \alpha)$

have $L(\alpha)$ as a subcomplex.
Now consider a relative functional cup product of a map $g:(E^{n+q-1}$ ,

$\dot{E}^{n+q-1})\rightarrow(L(\alpha), S^{q})$ , where $E^{n+q-1}$ denotes an $(n+q-1)$-cell and $\dot{E}^{n+q-1}$ its
boundary. If we denote by fi the generator of $H^{n}(L(a), S^{q})$ identified with
the cohomology class of $H^{n}(L(\alpha))$ which is carried by $e^{n}$ and denote by $\tilde{y}$ the
cohomology class of $H^{q}(L(\alpha))$ which is carried by $S^{q}$ , then we have $\tilde{x}\cup\tilde{y}=0$
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and $g^{*}(\tilde{x})=0$ , where $g^{*}$ is the homomorphism of the cohomology ring induced
by $g$.

From the definition, $\tilde{x}\cup\tilde{y}$ is an element of $H^{n+q-1}(E^{n+q-1},\dot{E}^{n+q-1})$ which is
$g$

isomorphic with $H^{n+q-2}(\dot{E}^{n+q-1})\approx Z$, because $H^{n-1}(E^{n+q-1},\dot{E}^{n+q-1})=H^{n+q-1}(L(a)$ ,
$S^{q})\approx 0$ (see \S 12 of [10]). Therefore, there is an integer $m$ such that

$\tilde{x}\bigcup_{g}\tilde{y}$
is

$m$ times a generator of $H^{n+q-1}(E^{n+q-1},\dot{E}^{n+q-1})$ . Since it is clear that $m$ is a
homotopy invariant of $g$, we obtain the correspondence $T:\pi_{n+q-1}(L(a), S^{q})\rightarrow Z$

with respect to a fixed generator of $H^{n+q-1}(E^{n+q-1},\dot{E}^{n+q-1})$ .
Then we have
LEMMA 1. The above correspondence $T$ is a homomorphism.
PROOF. Let $E_{1}^{n+q-1}\cup E_{2}^{n+q-1}$ denote the union of two copies of $E^{n+q-1}$ and

$\{g\}$ denote the homotopy class of $g$. If $\{g\},$ $\{h\}\in\pi_{n+q-1}(L(\alpha), S^{q})$ , then we can
easily construct a map $F$ with the following properties

(I) $F:(E^{n+q-1},\dot{E}^{n+q-1})\rightarrow(E_{1}^{n-q-1}\cup E_{2}^{n+q-1},\dot{E}_{1}^{n+q-1}\cup\dot{E}_{2}^{n+q-1})$ ,

(II) $F^{*}\circ p_{i^{*}}:$ $H^{n+q-1}(E_{i}^{n+q-1},\dot{E}: +q-\iota)\rightarrow H^{n+q-1}(E^{n+q-l},\dot{E}^{n+q-1})$

is an isomorphism and orientation preserving.
(III) If we define $\phi$ as follows:

$\phi(p)=g(p)$ $p\in E_{1}^{n+q-1}$

$=h(p)$ $p\in E_{2}^{n+q-1}$ ,
then

$\{\phi\circ F\}=\{g\}+\{h\}$ .
Therefore we have $\tilde{x}\bigcup_{\phi_{0}F}\tilde{y}=F^{*}(\tilde{x}\bigcup_{\phi}\tilde{y})$

by the invariance of the functional cup

product under transformations [10]. Hence $\tilde{x}\bigcup_{\{g\}}\tilde{y}+\tilde{x}\bigcup_{\{h\}}\tilde{y}=\tilde{x}\bigcup_{\{g\}+\{h\}}\tilde{y}$ by (II)

and (III).

Let $[, ]_{r}$ denote the relative Whitehead product and $\overline{a}$ denote the map:
$(E^{n},\dot{E}^{n})\rightarrow(L(\alpha), S^{q})$ such that Ct maps homeomorphically the interior of $E^{n}$

onto $e^{n}$ and $\{\overline{a}|\dot{E}^{n}\}=\alpha$ . Then James has proved in [1] that $\pi_{n+q-1}(L(\alpha), S^{q})$

is isomorphic to the direct sum of the infinite cyclic group generated by
$[\overline{\alpha}, l_{q}]_{r}$ with $\overline{\alpha}\circ\pi_{n+q-1}(E^{n},\dot{E}^{n})$ . Therefore, for any $\{g\}\in\pi_{n+q-1}(L(\alpha), S^{q})$ , there
exist an integer $m$ , and an element $\rho\in\pi_{n+q-J}(E^{n},\dot{E}^{n})$ such that $\{g\}=m[\alpha, l_{q}]_{r}$

$+\overline{a}\circ\rho$ . Then we have
LEMMA 2. $T(\{g\})=\pm m$ , where the sign depends only on the choice of

orientations.
PROOF. We have only to show that $T([\alpha, l_{q}])=1$ or $-1$ and $T(\overline{\alpha}\circ\rho)=0$ .

Then our Lemma 2 will follow from Lemma 1. We have

$\tilde{x}\bigcup_{\overline{a}\circ\rho}\tilde{y}=\overline{a}^{*}(\tilde{x})\bigcup_{\rho}\overline{a}^{*}(\tilde{y})=\overline{a}^{*}(\tilde{x})\bigcup_{\rho}0=0$
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by the invariance of the functional cut product under transformations. Define
a map $\psi:(E^{n}\cup\dot{E}^{q+1},\dot{E}^{n}\cup\dot{E}^{q+1})\rightarrow(L(\alpha), S^{q})$ as follows:

$\psi(p)=\overline{\alpha}(p)$ $p\in E^{n}$

$=$ $(p)$ $p\in E^{q+1}$ .

On the other hand, we can easily construct a map $\varphi$ with the following
properties:

(I) $\varphi:(E^{n+q-1},\dot{E}^{n+q-1})\rightarrow(E^{n}\cup\dot{E}^{q+1},\dot{E}^{n}\cup\dot{E}^{q+1})$ ,

(II) $[\overline{\alpha}, l_{q}]_{r}=\{\psi\circ\varphi\}$ ,

(III) $[\alpha, l_{q}]=\{\psi\circ\varphi|\dot{E}^{n+q-1}\}$ .

Then we have $\tilde{x}\bigcup_{\psi\circ\varphi}\tilde{y}=\psi^{*}(\tilde{x})\bigcup_{\varphi}\psi^{*}(\tilde{y})$
by the invariance of the functional cup

product under transformations. Let $\delta_{1}$ denote the coboundary homomorphism:
$H^{n+q-2}(\dot{E}^{n+q-1})\rightarrow H^{n+q-1}(E^{n+q-1},\dot{E}^{n+q-1})$ and $\delta_{2}$ the coboundary homomorphism:
$H^{n-1}(\dot{E}^{n}\cup\dot{E}^{q+1})\rightarrow H^{n}(E^{n}\cup\dot{E}^{q+1},\dot{E}^{n}\cup\dot{E}^{q+1})$ . Then there exists an element $x^{\prime}$

of $H^{n-1}(\dot{E}^{n}\cup\dot{E}^{q+1})$ such that $\delta_{2}(x^{\prime})=\psi^{*}(\tilde{x})$ . Hence, by (13.2) of [10] we have

$\delta_{1}(x^{\prime}\bigcup_{\varphi^{|B^{n+q-1}}}\psi^{*}(\tilde{y}))=-\{\delta_{2}(x^{\prime})\bigcup_{\varphi}\psi^{*}(\tilde{y})\}=-\{\psi^{*}(\tilde{x})\bigcup_{\varphi}\psi^{*}(\tilde{y})\}$
.

It is clear that $\psi$ “, $\delta_{1},$ $\delta_{2}$ are isomorphisms and $x^{\prime},$ $\psi^{*}(\tilde{y})$ are generators of
$H^{n-1}(\dot{E}^{n}\cup\dot{E}^{q+1})$ and $H^{q}(\dot{E}^{n}\cup\dot{E}^{q+1})$ respectively. Therefore, from (19.1) of
[10],

$x^{\prime}\bigcup_{\varphi^{|B^{n+q-1}}}\psi^{*}(\tilde{y})$
is a generator of $H^{n+q-2}(\dot{E}^{n+q-1})$ . This completes the

proof of the Lemma 2.
Now let $j^{*}$ be the inclusion homomorphism, and $\eta$ be the map: $ E^{n+q-1}\rightarrow$

$S^{n+q-1}$ , which carries $\dot{E}^{n+q-1}$ to point $s_{0}$ and the interior of $E^{n+q-1}$ homeomor-
phically onto $S^{n+q-1}-s_{0}$ . Then, by the invariance of the functional cup product
we have

LEMMA 3. Let $f$ be a map $(S^{n+q-1}, s_{0})\rightarrow(L(\alpha), f(s_{0}))$ and $j$ be a map $(L(\alpha)$ ,
$f(s_{0}))\rightarrow(L(\alpha), S^{q})$ , then

$\tilde{x}\bigcup_{j\circ f\circ\eta}\tilde{y}=\eta^{*}(j^{*}(\tilde{x})\bigcup_{f}\tilde{y})$ .

We notice that $\eta^{*}$ is an isomorphism and orientation preserving. Now suppose
that $K$ is a complex which is obtained by attaching $e^{n+q}$ to $L(\alpha)$ and $f$ is its
attaching map. From the definition, we have $j^{*}(\tilde{x})\bigcup_{f}\tilde{y}\in H^{n+q-1}(S^{n+q-1}, s_{0})\approx Z$.
Therefore we can identify

$j^{*}(\tilde{x})\bigcup_{f}\tilde{y}$ with an integer.

LEMMA 4. $x\cup y=(j^{*}(\tilde{x})\bigcup_{f}\tilde{y})z$

PROOF. We can identify $K$ with the space which is obtained from the
mapping cylinder $L_{f}$ of $f:S^{n+q-1}\rightarrow L(\alpha)$ by shrinking $S^{n+q-1}$ to a point $K_{0}$ .
Let $\psi$ be the identification map. Consider the following commutative diagram.
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$\cup\tilde{y}$

$H^{n}(L_{f})-H^{n}(L_{f}, S^{n+q-1})\rightarrow H^{n+q}(L_{f}, S^{n+q-1})$

$\uparrow\psi*j^{*}$ $\uparrow\psi*$ $1^{\psi*}$

$H^{n}(K)H^{n}(K, K_{0})$
$j^{*}$

$\rightarrow H^{n+q}(K, K_{0})\cup\tilde{y}$

Then we have Lemma 4 by the naturality of cup product and the definition
of the functional cup product.

Now we can easily obtain the following theorem from the Lemmas 2, 3
and 4.

THEOREM 1. Let $K$ be a complex of type $(m, a)$ as above, then
$ j^{*}(\{f\})=\pm m[\overline{\alpha}, l_{q}]_{r}+\overline{\alpha}\circ\rho$

for some $\rho\in\pi_{n+q-1}(E^{n},\dot{E}^{n})$ .
Now, theorem $J$ is an easy consequence of Theorem 1.

University of Tokyo.
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