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Introduction. Let £ be an abstract space. By an “outer measure” m*
in 2, is meant a non-negative, real valued, countably subadditive set function
defined on the class of all subsets of £, that is, a set function which satisfies
the following conditions:

Q) m*(E)Y=0 for every subset £ of £, m*0)=0 where 6 denotes the

null-set.

2) FE\SFE, implies m*(L)<m*(F,).

@) m* (U ENS S m*(E,).

n=1 v p=1

A set E is called to be m*-measurable if, for every subsct A of £,

4 m*(A)=m*(ANE)+m*(ANE*°), where E° denotes the complement of E.

It is well known that the class of all m*-measurable subsets of £ is a
o-additive (countably additive) class and m™* is a o-additive measure on that
class. For measurable subset £ we shall write habitually m(£) instead of
mr(E).

If a group § of transformations of £ is given, then it is natural to con-
sider, as a generalization of Haar measure, an f-invariant outer measure ¥,
that is, an outer measure m* such that

(5) m*(oE)=m*({7) for every subset £Z £ and every o<l
From this point of view, the Haar measure can be considered as follows:

(A) Let g be a locally compact group. To each element e<g we make
correspond a transformation ¢, of g such that ¢.(x)=ax for every x=g. And
we define ¢,0,(x)=¢,(¢yx)). Then clearly we have ¢,¢,=¢,,. Hence the set
{9.:asq} can be regarded as a transformation group of g by defining the
group operation as above. We shall denote this transformation group by g,.
Of course g, is isomorphic with ¢ as an abstract group. If we set £-—g and
H=g,, then our j-invariant outer measure in £ is nothing but a left-invariant
Haar (outer) measure in g.

Let g be a locally compact and g-compact group and m* a left-invariant
Haar measure. Then we have the following:
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(i) of uniqueness. The left-invariant Haar measure is unque
up to a multiplicative constant.

(i) [Theoreml of decomposition-equivalence. Let A and B be two measur-
able subsets of g having the same measure. Then therc exist direct decom-
positions A:M»[~§)1An, B:N*I*nian such that, m(M)=m(N)=0 and B,=g.An
n=1,2,---, where g, is an element of g and every A, is m*-measurable.

In the proofs of these theorems, the fact that the Haar measure is a
Weil measure (a measure m* such that the measurability of f(x) with respect
to m* implies that of f(y~'x) with respect to m*xm*), plays an essential role.
In our case, we introduce an Y-invariant outer measure m* in £ and a left-
invariant outer measure #* in §. And by discussing the product measure
m* X p* in the product space £xY, we get the similar consequences as in the
case of the Haar measure.

If 2 is a locally compact and o¢-compact uniform space and § satisfies
some conditions, then an f-invariant outer measure is easily introduced in 2
and § can be topologized in such a way that §) becomes a topological group.
In this case, it is expected that the group g, (see (A)) which is topologized
by our method is isomorphic with the original topological group ¢. This is
proved in In § 3, we shall show that “if the group § which is
topologized by our method becomes a locally compact and o-compact group,
then the corresponding theorems to the above assertions (i) and (ii) are also
valid for our Y-invariant measure m*”. In §4, we shall examine properties
of the topological group % and show that under some assumptions ) becomes
a locally compact and o-compact group. (See Theorems K7 and E3)
Incidentally we can prove a theorem which contains, as a
special case, the fact that the Lebesgue measure is invariant under any rota-
tion. This might be an interesting consequence.

Most of the results in the present paper was announced earlier in a note
[12]. However the publication of the details has been delayed owing to the
author’s health. Recently, Prof. K. Yosida communicated to the author that
the results are closely related to the “ Mesure dans les espaces homogénes”
in A. Weil’s book (see [6], 42-45), to which the author had not access
when the note was published. In fact, if the space £ is compact, then
it will be proved without difficulty that our Y-invariant measure can be
introduced in £ by making use of Weil’s results. But it seems to the author
that such deduction will not be possible for non-compact spaces. The present
paper was written following the advice of Prof. K. Yosida to whom I want
to express my hearty thanks.



On measures invariant under given homeomorphism of @ uniform space. 407

§1. Topelogical lemmas.

DerimviTion 1.1, Let £ be a Hausdorff space and B the smallest countably
additive class which contains all open subsets of £. A subset B& £ is called
a Borel set if Be®B. A set B, is called a Baire set if its characteristic func-
tion Cp,(x) is a Baire function.

It is easily seen that the class of all Baire sets of £ is a countable
additive class. We shall denote this class by B,. Then it is clear that 8,&
®B. But the converse is not always true.

Notation (N,). In the rest of this paper, by “®B” and “8B,” we shall
denote the class of all Borel sets and the class of all Baire sets respectively.

Notation (N,). Throughout this paper, for any subset £ of a topological
space £ we shall denote the closure of £ by E¢, the interior of E by E* and
the complement of E by FE°. Consequently, £* denotes the interior of the
closure of E and E* denotes the complement of the interior of E, etc.

DerintTion 1.2, A subset £S £ is cdlled an elementary closed set of £ if
E is expressible in the form E={x; f(x)=21}, where f(x) is a continuous func-
tion defined on £ and 2 is a real number.

The following theorems 1.1-1.5 are easy to prove.

Tarorem 1.1. The smallest countably additive class which contains all ele-
mentary closed sets of £ coincides with B, (see (N))).

TreoreMm 1.2. If £ is a metric space, then we have %7—\&%.

Turorem 1.3. Let £ be a Hausdovff space and A a Baire set of 2. If o
is a homeomorphism of £, then the.set cA is also a Buaire set.

Tueorem 1.4. Let £ be a locally compact and o-compact Hausdorff space.
Then there exists a sequence F\, Fo,-+, Fy,eo of compact subsets of 8, such that

(B) F,SFi,, (see (N), i=1,2,+ and \J F\,=2.
n=1

Tarorem 1.5. If 2 is a locally compact and o-compact Hausdorff space,
then £ is a normal space.

Tureorem 1.6. In order that a locally compact and o-compact Hausdorff
space £ be metrizable, it is necessavy and sufficient that there exists a sequence
J100), fo(X)y e, fu(x), o+ of continuous functions which satisfies the following condi-
tion:

(C) For any different two points p and ¢ in £, there exists a function
fa(®) such that f.(p)#fu(@)-

Proor. If £2 is metrizable, then £ is clearly separable. So there exists
an enumerable subset M={a,, @, -, @n,--} which is dense in 2. If we define
Ful)=d(x, a,), n=1, 2,---, then it is evident that the condition (C) is satisfied.

Next suppose that a sequence f,(x), fo(%), -, fu(x),-- of continuous functions
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satisfies the condition (C). By there exists a sequence F}, Fy, -+,
F,,--- of compact subsets of £, which satisfies the condition (B). Let g,(x) be
a continuous function defined on £, such that

(D) 0=g,(x)=1 for every x&2,g.(x)=0 for every x=F,, and g,(x)=1 for
every x< F%, (see (Ny)).

Define

— o 771< |fn_(x)'fn(y)| - } ) A i
WO D=2 o T -l T 2 8 =8

Then it is not difficult to show that this metric d(x,y) gives the original
topology in £.

Turorem 1.7. Let B be an open Baire set of a locally compact and o-com-
pact Hausdorff space 2. Then B is the sum of enumerable compact Baive sets.

Proor. Let f(x) be the characteristic function of B. By using transfinite
induction, we can easily see that the Baire function f(x) is constructible from
at most enumerable continuous functions f,(x), fa(%), -, fa(x),--. On the other
hand there exists a sequence Fy, Iy, -+, F,,--- of compact subsets which satisfies
the condition (B). Let g,(x) be a* continuous function which satisfies the
condition (D). Identifying p and g when f,(p)=r.(q) and g.(p)=g.(¢) hold for
every n, we get a decomposition-space £. It is easily seen that £ is a locally
compact and o-compact Hausdorff space and B an open Baire set of 2. By
the preceding theorem £ is a metric space. Hence B is a F, set in . Since
0 is o-compact, it is easily seen that B is the sum of enumerable compact
Baire sets.

Cororrary. [n order that a point p in 2 be a Baire Sset, it is mecessary
and sufficient that 2 satisfies the first axiom of countability at p.

Turorem 1.8. Let £ be a locally compact and o-compact Hausdoyff space
and B* a countably additive class which contains an open basis. Then we have
B*2B, (see (N))).

Proor. In order to prove our theorem, it is sufficient to show that for
every continuous function f(x) and every real number A the open set G={x;

flx)<< A} is contained in B*. If we set An:{x;f(x)_é_/l—f—}zr—»} then we have

G=\UJ A,. Since A, is the sum of enumerable compact sets, we can select
n=1

from the class B* an enumerable system of open sets which cover the set
A,, such that the sum of these open sets is contained in G. For every A,
we select such an enumerable system of open sets. . Then it is easily seen
that G belongs to B*.

Cororrary 1. Let 2 be a locally compact and o-compact Hausdorff space.
The smallest countably additive class which contains open basis of £ coincides
with B,.
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Cororrary 2. Let 2, and £, be two locally compact, o-compact Hausdorff
space and B, B} the countably additive classes of the Baire sets of 2, and £,
respectively. The smallest countably additive class which contains the sets of the
Jorm DB, X B,, where B, &8} and B,=¥%, coincides with the class of all the Baire
sets of the product space 2,X2,.

82. Measure and topological outer measure.

Derinrrion 2.1, Let m* be an outer measure in a Hausdorff space 2. m*
is called a topological outer measure, if the following condition is satisfied:

2.1 AN B*=0 implies m*(A+B)=m*(A)+m*(B) (see (N,) in §1).

Tureorem 2.1.  Let m™* be a topological outer measure in a Hausdorff space
Q. Then the class By« of all m*-measurable subsets of L2 contains B, (see (N,)
in §1).

Proor. 1t is sufficient to show that every elementary closed set is wz*-
measurable. But this can be proved quite similary as in the case of a metric
space (see [8], p. 52).

Turorem 2.2. Let 2 be a locally compact, o-compact Hausdorff space and
m* an outev measuve in . In order that m¥ is a topological outer measure, it
is necessary and sufficient that every Baire set of £ is m*-measurable.

Proor. The necessity of the condition is proved in the preceding theorem.
We shall prove the sufficiency. Suppose that the condition is satisfied. Let A
and B be two subsets of 2 such that A“NB*=0. By Theorem 1.5 £ is a normal
space, so there exists a continuous function f(x), such that 0<f(x)=1 for
every x=8, flx)=1 for every x=cA* and f(x)=0 for every xc=B* The set

M:{x; f(x)i%«} is an elementary closed set and hence a Baire set. Con-

sequently M is an m*-measurable set such that ASM and BS M Hence we
have

m*(A-+B)y=m*(A+B)NM)+m*((A+ BN M)=m*(A)+m*(B) .

Dermvition 2.2. Let £ be a Hausdorff space, X a countably additive class
of subsets of £ and m a countably additive measure on X¥. The measure
space (£, X,m) is called to be normal if the following condition is satisfied:
(2.2) For every set A=X and every number ¢>0, there exists an open set
GeX such that ASG and m(G—A)<e.

Derintrion 2.3. Let £ be a Hausdorff space and m* an outer measure in
2. m* is called to be normal if and only if the measure space (2, B, m) is
normal, where %, is the class of all m*-measurable subsets of 2.

Derinrrion 24. Let £ be an abstract space, ¥ a countably additive class
of subsets of £ and m a countably additive measure on X¥. For any subset
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ACE we define
m*(A)=inf 3 m(X,), where AU X, and X,=¥, n=1,2,.
n=1 n=1

Then clearly m* is an outer measure in £, and every set A=X is m*-measur-
able and m*(A)=m(A). This outer measure m* is called the outer measure
in £ induced by the measure space (£, X, m).

Turorem 2.3. Let £ be a Hausdorff space and (£,%,m) a measure space.
If the measure space (2,%X,m) is normal and £ is the sum of enumerable sets
of finite measure, then the outer measure m* in 2 induced by the measure space
(2,%,m) is also normal.

The proof is simple and is omitted.

Turorem 2.4. Let £ be a locally compact and o-compact Hausdorff space
and (2, %, m) a measure space. If X contains the class B, (see (N,) in § 1), then
the outer measure m* in £ induced by the measuve space (£2,%,m) is a topo-
logical outer measure.

Proor. Let B,. be the class of all m*-measurable sets of £. Then it is
easily seen that B,,2%X2%,. Hence by we get our theorem.

Turorem 2.5. Let £ be a locally compact and o-compact Hausdorff space
and (2,%,m) a measure space. If the measure space (2, %, m) is normal and X
contains the class B, (see (N,) in §1), then the following condition is satisfied :
(2.3) For every set A=X of finite measure and any number >0, there
exists a compact set F=X such that FS A and m(A—F)<e.

Derinition 2.5. Let 2 be a locally compact and o-compact Hausdorff
space and % the family of all compact subsets of £. Suppose that to any Fef
there corresponds a finite positive number m(A) satisfying the following
conditions: _

1° F\SF, implies m(F)=m(F),).

2° m(Fy\UF)=m")4m(F,).

3° F\NF,=0 implies m(F,+Fy)=m(F)+m(F,).

Then m is called a content on .

Tueorem 2.6. Let £ be a locally compact and o-compact Hausdorff space
and F the family of all compact subsets of 2. And let m be a content on J.

Define

m(G)=sup{m(F); GRF=F}, for every open set G.
And we set
m*(A)=1inf{m(G) ; ASG(open)} for every subset AS Q.
Then m* is a topological outer measure in 2 and every Borel set of £ is m*-

measurable and morveover m* is normal (see Definitions 2.2 and 2.3).
The proof of this theorem is due to the following lemmas.
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Lemma 1. For any two open sets G, and G, we have, using locally compact-
ness of £,

m(G,UG)=m(G)+m(Gy) ,

Lemma 2. For any sequence Gy, G-+, Gy 0f open Sets we have

m(U G= 3 m(Ga).

Thus

1  0=m*(A) =00, m*(6)=0,

(i)  ASB implies m*(A)=m*(B),

(i) (U A)S 3 mH(Ay).

Lemma 3. For any two open sets G, and G, we have

iv)  m(G)zm(G N Gy)+m*(G N GS).

Proor. If m(G,)=o0, then the above inequality is trivial. Hence we may
assume that m(G,NG,)<<eo and m*(G,;(1G§<<e. Ior any positive number ¢,
there exists a compact set I, such that F,SG, G, and m(l7)+e=>m(G,NGy).
On the other hand G;NF¢ is an open set, so there exists a compact set F,
such that F,SG,NF§ and m(Fy)+e>m(G, N F¢). Hence we have

m(G ) Zm(E) +m(Fy) > m(Gy (1 Go) +m(G, (V F75) —2e

=m(G;NGy)+m*(G,NG§—2¢.
Thus we have (iv).

Proor or Turorem 2.6. From Lemma 3 it is easily seen that any open
set is m*-measurable and consequently every Borel set is m*-measurable.
Hence by Theorem 2.2 m* is a topological outer measure. Since £ is o-
compact, it is evident that m* is normal from the definition of #*.

Tarorem 2.7. Under the same assumptions of the preceding theovem, for
any open Baire set G we set

m(G)=sup{m(l");, G2 F<F} .
And for every subset A of £ we define
m*(A)=inf{m(G); ASG (open Baire set)} .

Then every DBaire set is m*-measurable and hence m* is a topological outer
measure in 2. Moreover, m* is normal, more precisely, for any m*-measurable
set A of £ and every numbeyr ¢>>0 there exists an open Baire set G such that
ASG and m(G—A)<e.

Derinrrion 2.6. The outer measure m* which is defined in Theorem 2.6
is called the outer measure of the first kind induced by the content s. On
the other hand the outer measure m* which is defined in Theorem 2.7 is
called the outer measure of the second kind induced by the content m.
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It is clear that these two outer measures are same on the class B, (see
(Ny) in §1). ;

Remark. Let §, be the family of all compact Baire sets of £ and m a
content on {,. Then we can define the outer measure m* of the first kind
or the second kind induced by a content # as in the above two theorems.

Tucorem 2.8. Let 2 be a locally compact and o-compact Hausdovff space
and m a content on the family T of all compact subsets of 2. If m is invariant
under a homeomorphism o of £, then the outer measure w* of the second kind
(the first kind) induced by a content m is also invarviant under o.

Tueorem 2.9. Let 2 be a locally compact and o-compact Hausdor(f space
and m a countably additive measure on B, (see N,) in §1). If m is finite on
any compact Baive set, then the measure space (2,By, m) is always normal.

Proor. The measure m can be regarded as a content on the family of
all compact Baire sets of £2. We introduce in £ the outer measure m* of
the second kind induced by a content s (see the Remark of Definition 2.6).
By Theorem 1.7 every open Baire set is the sum of enumerable compact
Baire sets. Hence m* coincides with 2 on every open Baire set and conse-
quently on B, (see (N,) in §1). Thus by Theorem 2.7 we have our theorem.

Turorem 2.10. Let 2 be a locally compact and o—compdoz‘ Hausdorff space
and m a countably additive measure on By. If m is finite on any compact Baire
set, then theve exists a countably additive measure i on B (see (N,)in §1) such
that m(A)=m(A) for every A<D, and the measure space (£,B, ) is normal.
Moveover such measure i is unique.

Proor. By the similar way as in the preceding theorem, we can introduce
in £ the outer measure m* of the first kind induced by a content m on ,.
If we define i(A)=m*(A) for every Borel set A of 2, then it is easily seen
that m satisfies the condition of the present theorem. The uniqueness is also
easily proved.

Trurorem 2.11 (Markoff). Let £ be a compact Hausdorff space and Cq the
Banach space of all veal valued continuous functions defined on 2. If L is a
positive linear functional defined on Co(L(f)=0 for every f(x)=0), then there
exists a countably additive measure m on the class B, (see (N,) in §1) such that

@4) LH={ fewdm).

And such measure m is unique.

Proor. Let I be a compact subset of 2. We define m(F)=inf{L(f); 0=
Jx)=1 for every x<=& and f(x)=1 for every < [F}. Then it is easily seen
that m is a content on the family % of all compact subsets of 2. We intro-
duce in £ the outer measure #* of the second kind induced by the content
m. 1f we define m(A)=m*(A) for every Baire set A, then it is not difficult



On measures invariant under given homeomorphism of a uniform space. 413

to show that the equality holds.

Tueorem 2.12 (Lusin). Let £ be a locally compact and o-compact Hausdorff
space and m*¥ a topological outer measuve in 2. Assume that wm* is normal and
finite on every compact set. If f(x) is a m¥-measurable function such that

jQI F(x) |dm(x)<<oo, them for any positive number ¢ theve exists a continuous

Sunction g(x) defined on 82 satisfying
| Jro—e@ldm@m<e.

The proof is easily deduced from the special case in which f(x) is the
characteristic function of an m*-measurable set A of finite measure. For this
special case there exists an open m*-measurable set G and a compact m*-
measurable set 7 such that FEAZG and m(G—F)<le, and g(x) is obtained
as a continuous function defined on £ such that 0=gx)<1 for every xc &,
glx)=1 for every x=F and g(x)=0 for every x=G".

§ 3. Invariant measure.

Let £ be a uniform space and let {V,, a=®} be its complete system of
symmetric uniform neighborhoods. Thus we have the conditions:
(3.1) For every acHd peV, (p) and f\@Vw(p):{j)}.
ac

(3.2) gV, (p) implies pe V, (q) (condition of symmetricity).

(3.3) For every a, e there exists a y €0 such that Vi(p) < Vu(p)N Vi(p).

(34) For every acO there exists a #€6 such that g& Vi(p), re V() imply
rE Vo(P)-

In the rest of this §, by “ £ we shall always mean a uniform space as
above, unless the contrary is explicitly stated.

Norarion 3.1. By “po(p, ¢9)<<a”, we shall mean that g V,(p). From the
condition (3.2) it is evident that o(p, @) <<a implies p(g, p)<<«.

Remarx. If o is a homeomorphism of £ such that oV, (p)=V,(op) for
every pef, then it is easily seen that o7 'V, (¢9)=V,(07'¢) holds for every
ge 2. Hence p(p,g)<<a implies p(op, 6g)<<a and conversely p(op, 0g) <<«
implies o(p, g)<<a. So we shall write o(p, ¢)=p(ap, aq).

Dermnrrion 3.1. «-Net and «-Chain. Let A be a subset of 2. A subset
B of A is called an a-Net of A if the following condition is satisfied:

(3.5) For every point péA there exists a point g B such that p(p, ¢)<<a
(see Notation 3.1).

And B is called a finite or o-finite «-Net, according as B is a finite or
countably infinite set.

Let pg, 1+, Dm be a finite system of points of £. The system (p,, 1, -, Pm)
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is called an «-Chain of order m if the following condition is satisfied:
(306) ‘O(pirpi~!-1)<aa ZZO: ]-y"'a m—1.

Derinrrion 3.2. A subset A of £ is called to be totally bounded if for
every a6 there exists a finite «-Net of A. And A is called to be o-bounded
if for every a6 there exists a o-finite a-Net of A.

Norarion 3.2. By “o(p, q)<<[m]a”, we shall mean that there exists an
a-Chain (p=p,, b1, Pw=q) of order m (see Definition 3.1).

Remark. If o(p, 9)<<[m]a and plg, ) <[nla, then we have obviously
o(p,v)<<[m-+nJa. So we shall express this fact by the following inequality :

0(p, N=p(p, O+ 0(q, ) <<[mIat-{nla=[m+nla.

Noration 3.3. Let A be a subset of £. By “ V,(A4)”, we shall mean the
set U Vw(p) And we define Vw%A):Vw( Va',(A)))"': Va,n(A):Vw( anNI(A))""

pEA
It is easily seen that V, ,"(A)=\U {q; o(p, q) <<[n]a}.
pc:d
Turorem 3.1. Let A be @ subset of 2. In order that A is compact it is
necessary and sufficient that A is complete and totally bounded.
Turorem 3.2. Suppose that 2 is connected. Then for every a0 and every

point p= 82 we have Q Vi, (p)=£.
The theorems 3.1 and 3.2 are well known, so we shall omit the proofs.

LemMma 3.1, For every a <O and natural number n theve exists a <O
such that
3.7 plp, q)<<{nlf implies p(p,q)<<a (see Notation 3.1. and 3.2).

The proof is quite easy from condition (3.4).

Turorem 3.3. Suppose that V,(p) is totally bounded for every point pef.
Using the above lemma we select a f<0O such that

3.8 o(p, @) <<[2]8 implies o(p, )<<« .

Then for every totally bounded set A the set Vz(A) (see Notation 3.3) is also
totally bounded and consequently Vg*(A),--, V5"(A),- are all totally bounded.
Proor. Since A is totally bounded, there exists a finite #-Net {p,, po, ", Pu}
of A (see Definition 3.1). We shall show that C} Vai(p)2Vs(A). Let g be an
i=1

arbitrary element in Vg(A). Then there exists a point p= A such that o(p, ¢)
< f. On the other hand there exists a p; such that o(p;, p)<<B. Hence we
have o(p;, q)<<[2]4. But this implies, from (3.8), o(p;, )<<, that is, g& V, (po).
So we have &nj Vu(£:)2V(A) and consequently Vp(A) is totally bounded.
i=1
Turorem 3.4. Let 2 be a locally compact Hausdorff space whose topology
is introduced by a system {V, acO} of symmetvic uniform mneighborhoods.
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Suppose that ) is a group of homeomorphisms of £ satisfying the following
conditions :

(C) oV (p)=V, (op) for every c<Y) and p=S.

(Crr) For any two points p and q in 2, theve exists a homeomorphism o<
such that op=q.

Then we can intvoduce an outer measure m* in 2 which salisfies the fol-
lowing conditions :

G  m*(oA)=m*(A) for every oY) and every AS L.

(i)  Baiyve set is m*-measurable.

(iii) For any subset A of £ therve exists a Baive set B such that AS B and
m*(A)=m(B). (For measurable sel B we use m instead of m*.)

iv) m*(G)=>0 for every open set G; m¥*(A)<Cco for every totally bounded
set A.

Proor. We take a point p, in £. For every compact subset F and any

n
a0, we can select a finite system oy, 0y, 0,1 such that F&\U o; V,(po)-
t=1

Let /(F, «) be the minimum of such number #’s. Now we fix a compact set
[y such that Fj+#60 (see (Ny) in §1). For any compact set F there exists a

m
finite system o/, 0y, 0,/ €0) such that FE\U g,/F,. We select the smallest
i=1

such number m and denote it by {(F, I,). And we define A(F, a)=IF, «)/I(F,, &).
Then we have clearly I(F, ®)ZIUF, I)l(F,, «) and consequently 0=A(F, a)<
I(F, F). Hence {#(F,«), acO} can be considered as a bounded generalized
equence of real numbers. (Defining a=p if V,(p)2Va(p),© becomes a
directed set.)) Let m(F) be a generalized Banach limit of the generalized
sequence {A(F, ®), O}, Then it is easily seen that s is a content on the
family % of all compact subsets of £. Clearly m is invariant under ). We
introduce in £ the outer measure m* of the second kind induced by the
content m. Then it is easily proved that the outer measure m* satisfies the
conditions (i)-(iv) of the present theorem.

Cororrary 1. Let g be a locally compact grvoup, then a left (or right) in-
variant Haar measure can be introduced in q.

Remark. Let R" be the n-dimensional Euclidean space. Then there exists
an outer measure m* which is invariant under any isometric transformation
of R™ onto itself. Consequently m* is invariant under any orthogonal trans-
formation of R*. Let S be the surface of an n-dimensional cube @ with
center at origin. Then an outer measure which is invariant under every
rotations can be introduced in S.

Traeorem 3.5. In the preceding theorem, in ovder that m(9Q)<Coo it is neces-
sary and sufficient that £ is totally bounded.

Proor. The sufficiency is evident. If £ is not totally bounded, then
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there exists a a=@® and a sequence p,p, -, Pn-+ of points in £ such that
V)NV (p)=0, for i+j. It is easily seen that V,(p,) contains an open
Baire set U. On the other hand, from conditions (C;) and (Cy) there exists
a sequence di, gg,--0,,--- 0f elements of ) such that o,V (p,)=V.(p:), =1, 2,

Thus we have m(2)= X m(o;U)=oco. Hence the condition is necessary.
i=1

Turorem 3.6. Let £ be an abstract space and V) a group of transformations
of £. Suppose that
(1°) An Y-invariant o-finite™ outer measure m* is intvoduced in £ () There

exists a sequence {E,, n=1,2,--} of m*-measurable sets of £ such that L):i E,

n=1

and m(lr,)<<oo, n=1, 2,---.),

(2°) A left-imvariant, o-finite outer measure ©* is introduced in ),

3°) For any two points p and q in 2, there exists a transformation o))
such that op=gq,

4°) If fx) is an m*-measurable function defined on 2, then f(c™'x) is an
m* X pF-measurable function of two varviables x £ and o<l

Then for any two m*-measurable sets A and B of positive measures there
exists a o€l such that m(cANB)>0. Consequently if m(A)=m((B), then A is
decomposition-equivalent to B, that is, there exist direct decompositions A=M+
A +A+-4+ A+, BEN+B,+ Byt -+ B+ such that m(M)—=m(N)=0, ¢, A,
=B, 0,0, n=1,2,---.

Proor. Let C,(x) be the characteristic function of A and Cyz(x) the
characteristic function of B. If our theorem is not true, then we have

jc,,A(x)cE(x)dm(x):o for every ocl.
Hence we have, using C,,(x)=C4(c7'x),
39 0={ ([ CutiCatmram )dn(o)=[ (f CaonCata)dno))dmix).

We set H,—={o; 0 'xcA}. Then the set I7, is p*-measurable for almost all
xe8. For any element y in £, there exists a o,&} such that gx=y. We
can easily see that o /{,=H, and hence H, is u*-measurable for all x&£ and
U(H)=p(H,y). Setting A=u(H,), x= £, we have

J  catoaduto))am={ wctipdm@)=im(e).
2\
On the other hand,

{ , ( { DC,;(G”JC)CZ;&(U)) dm(x)= h ( | QCA(G‘lx)dm(x)> du(o)

:jbm(aA)dﬂ(a):m(A)ﬂ(f)) >0



On measures invariant undev given homeomorvphism of a uniform Space. 417

From the above two relations we see A>0. Hence we have
J (§ cratircu@am@)du)={ ([ Cao o Caxdnto))dm@= pHICatx)dm)
i 2 2 )] ke]
— j JCal@dm(x)=1m(B)=0.

This contradicts (3.9). So there exists a o) such that m(cANB)>0. The
last half of our theorem is easily proved.

Cororrary 1. In the above theovem, if A is a measurable set of positive
measure, lhen there exists a Sequence oy, Oy -0Opyr 0f elements of V) such that

(2 —\ ) 5, 4)=0.
i=1

Cororrary 2. Let wm* be a Weil measure in a group §. Then any two
measurable sets having the same measure ave mutually decomposition-equivalent.

Tueorem 3.7. Assume that all hypotheses of Theorem 3.4 are satisfied.
Then we can introduce a topology in Yy as follows. For any index =6 and any
compact subset F& 8, we set

(3.10) U,p=A0; for every peF, ops V (D)}.

By “ X7 we denote the totality of all such U,y (where & and F run over © and
the class of all compact subsets of £ respectively). If the system & is taken as
a complete system of neighborhoods of the identity of ), themn Y) becomes a topo-
logical group.

Proor. a) The intersection of all U,, of the system 2 is only the identity.
This is quite evident.

b) FYor any U,p, and Upp, there exists a Urp, such that Upp, < Uur, N Ugp,-
We select a y =6 such that V3(p)S V. (p)N Va(p), and define Fy=F,UF,. Then
clearly we have Urp,E Uur,N Upp,.

c) For any U,r there exists a Upp, such that Upp,+Uppt S Usp. By as-
sumptions, the system {V,, a =0} of uniform neighborhoods of £ is symmetric.
Using this, it is easily seen that Upzl=Upp,. Therefore in order to prove c)
it is sufficient to show that there exists a Ugp, such that Ug}, S U,r. Without
loss of generality we may assume that V, (p)* (see (N,) in §1) is compact for
all pe 2. We select a =6 such that
(3.11) o(p,q)<<[2]F implies p(p,q)<<a (see Theorem 3.3).

We chose a finite B-Net (see Definition 3.1) {p, psr, ot of F and define

E:C) Vau(p)* Then Fy is compact and F,2 V(F) (see Notation 3.3). Let o
=1

and ¢’ be arbitrary two elements of Upr,. Then for every point peF we
have ope Vy(p)S V(F)SF,. Consequently we have o’opc Vi(op). Hence we
have p(p, 0’op)<<[2]F and consequently o(p,o’op)<<a. This shows o’0& U,k



418 Y. MiBu

that is, Uk, & Uyp-

d) For every U,r and every o<l there exists a Ugp, such that ¢ 'Upp,0
SU,p We set Fi=oF and f—=a. Then it is easily seen that ¢7'Upp,0S Uyp.

From a), b), ¢) and d) we see that §j becomes a topological group.

Tueorem 3.8. Let g be a locally compact group. To any element a<g we
make correspond a transformation ¢, of § such that ¢.(x)=ax,x<q. And we
define Q. 0u(x)=0(ps(x)). Then clearly we have Q. Py—Pap So the set {Pq; a=a}
can be regarded as «a tramsformation group of §. We shall denote this trans-
Jormation group by g,. We set =g and Y=g,, and introduce a topology in ¢
by the method of the preceding theorem. Then the topological group g, is iso-
morphic with the oviginal group g.

The proof of this theorem is not difficult.

Turorem 3.9. Let w™ be an outer measure in 2 which is introduced in
Theorem 3.4. Suppose that ) is topologized by the method of Theorem 3.7. Then
m* is @ continuous measure, that is, for every measurable set A of finite measure
and every €0 there exists a neighborhood U of the identity of Y such that

m(cAOA)<e for every o= U,

where cAOA denotes the symmetvic difference of cA and A.

Proor. There exist an open set G and a compact set F such that FEA
CG and m(G—F)<<e/3. It is easily seen that there exists an a=® such that
%Vm(l))g(}, We set U=U,» (see (3.10)). Then we have, for every occU,
=

m(cACA)=m(cADcF)+m(c FOLF) + m(FOA) Em(A— I+ m(G—F) +~m(A—F) <
Im(G—F)<e.

Tueorem 3.10. To every point (x,0) of the product space £XY% we make
correspond an element o7'x in 2. Then we have a continuous mapping ¢(x, 0)=
o7 lx of £XY into Q.

Proor. Let V_ (o7'x) be a neighborhood of o¢7'x in £. We select a f=6
such that Vg®)* is compact and p(p,q)<<[2]F implies p(p,q)<<a. We set
F=Vgx)* and U=Upp (see (3.10)). Then for every reUs and every ye Vi(x),
we have

o(t7ly, o7 x)=p(y, T(0™'%) = p(y, X)+o(x, ro" W) =[2]f <.

(See Remarks in Notation 3.1 and 3.2.) This completes the proof.

CoroLrary. [If f(x) is a continuous (Baire) function defined on £, then
flo™x) is a continuous (Baive) function of two varviables x 82 and o<)).

Turorem 3.11. Let £ be a locally compact and o-compact uniform Sspace
and Y)Y a homeomorphism group of £ satisfying the conditions (Ci) and (Cu) of
Theorem 3.4. Let m* be an outer measure intvoduced in Theorem 34. We
assume that Yy becomes a locally compact and o-compact group, when we introduce
a topology in Y as in Theorem 3.7. Then we can introduce a left-invariant



On measures invariant undev given homeomorphism of a uniform space. 419

Haar measure p* in B If f(x) is an m*-measurable function defined on £,
then f(o7'x) is an m* X pu*-measurable function defined on the product space
82X,

Proor. In order to prove our theorem, it is sufficient to show that for
any m*-measurable set AS 2 the set {(x,0);0 v A} is m*X p*-measurable.
It is easily seen that every Baire set of £x§ is m*x g*-measurable. Thus if
A is a Baire set, then from the Corollary of the above theorem our assertion
is evident. Hence it is sufficient to show that for any set A of m*-measure
0 the set {(x,0); 0 'x= A} is a set of m*x u*-measure 0. There exists a Baire
set B such that ASB and m(B)=0. By using Fubini’s theorem, it is easily
seen that the set {(x, 0); 0" 'x& B} is a set of m* X y*-measure 0. Consequently
the set {(x,0); 0 'xc A} is clearly a set of m*X u¥-measure 0.

Tuarorem 3.12. Suppose that all hypotheses of the preceding theorem are
satisfied. Let O(A) be a o-additive set function defined on the class B, of all
Baire sets of 2. If B is a Baire set of m*-measure 0 in £, then we have
D(0B)=0 for almost all o<l

Proor. Without loss of generality we may assume that @®(A4) is non-
negative. Then ®(A) can bz regarded as a o¢-additive finite measure on B,.
We introduce two product measures m*x g* and @ x u* in the product space
2xYh. Let I'={(x,0);c"'xeB}. By using Fubini’s theorem it is easily seen
that the set I' is a set of m*X g*-measure 0. Hence the set H,={0; 0 'xc B}
is a set of g*-measure 0 for almost all xeR. As we have already remarked
in the proof of Theorem 3.6, the set H, is g¥*-measurable and has the same
p-measure for all xe£2. Hence H, is a set of g*measure 0 for all xc£.
This shows again that the set I' is also a set of @x g*-measure 0. From
Fubini’s theorem we see that the set oB={x;o 'x= B} is also a set of O-
measure 0 for almost all o). '

Cororrary. Let 7 be a measure defined on By [f 7 satisfies the condition
(1) of Theorem 3.4, then from the above theovem it is easily seen that m(A)=0
implies M(A)=0 for any Baire set A. Hence there exists an m*-measurable
Sfunction f(x) such that

(3.11) m(A):Lf(x)dm(x) for every Baire set A of 2.

Tuarorem 3.13. Suppose that £ and V) satisfy the hypotheses of Theorem 3.4.
Let m* be an outer measure in £ which is intrvoduced in Theorem 3.4. We
introduce a topology in § by the method of Theorem 3.7. We assume that ) is
locally compact and o-compact. In order that a c-additive set function O(A)
defined on the class B, of all Baire sets of £ is absolutely continuous with
respect to m, it is necessary and sufficient that one of the following conditions
is satisfied:
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1) lil’{)l D(cA)=D(A) for every tolally bounded Baire set A of m*-measure 0.
D‘——)

2) lir{)l D(eA)=DO(A) for every totally bounded Baire set A.
7 ad

3) lingx W(@°—@; F)=0 for every compact Baire set F of 8, wheve ®° de-
d—f

notes the set function such that O(A)=0(c'A) and W denotes the absolute
variation.

Proor. If @O(A), A=B, is an absolutely continuous c-additive set function
with respect to m, then there exists an m*-measurable function f(x) such that

D(A)= Lf(x)dm(x) for every A=®, It is easily seen that @7(A)=0(c~'A)=

f_ f(x)dm(x):Lf(o“lx)dm(x). Hence we have

W@ +0 )= | o™ ) —f) | dm(x).

For every ¢>0 there exists a continuous function g(x) defined on £, such

that U f(x)—g(x)|dm(x)<<e (see Theorem 2.12). Then we have

W@ —0; F)={ | fo™x) /(@) | dm(x)
= J.Flf (671%) —g (0™ 1x) | dm(x) +Ll glo™1x)—g(x) | dm(x) +L~I S()—1®)| dm(x)
<fF' 8(o7'x)—g(x) | dm(x)-+2¢ .

g(x) being continuous, we have lim W(@°—®; F)<2e. This shows that the
-0

condition 3) is satisfied. It is quite evident that 3) implies 2), and 2) implies
1). 1If the condition 1) is satisfied, then by the preceding theorem we have
O(A)=0 for every totally bounded Baire set A of m*-measure 0. Hence O is
absolutely continuous with respect to m.

Turorem 3.14. Under the assumptions of the preceding theorem, we have
the following:

(1) For any two m*-measurable sets A and B of positive measure there
exists a o€l such that m(cANB)>0. And consequently if m(A)=m(B), then A
is decomposition-equivalent to B wilh respect to m.

(2) Let m* be an outer measure in 2 which satisfies the conditions (1)-(iv)
of Theovem 34. Then there exists a number A such that w*(A)=2Im*(A), that
is, the Y-invariant outer measure is unique up to a multiplicative constant.

Proor. (1) is evident from Theorem 3.6 and Theorem 3.11. We shall
prove (2). By the Corollary of Theorem 3.12 we have

i(A) = j @dm()  for every Baire set A of £.
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Hence in order to prove (2) it is sufficent to show that f(#)=2 on £. Suppose
that f(x) is not constant. Then there exist two real numbers » and R (r<<R)
such that the sets A={x; f(x)> R}, B={x; f(x)<<r} have positive measures.
From (1) there exists a o) such that m(cANB)>0. We set M=ANo'B.
Then we have

j F)dm(x) =M= (o M) = j Fdm(x) .
M aM

On the other hand it is evident that M= A and oM< B. Hence the following
inequalities hold.

Without losing the generality we may assume that 0<m(M)<<oo. So we
have arrived at a contradiction.

Cororrary 1. The assumptions be the same as in Theorem 3.13. If t is a
homeomorphism of 2 such that to=ot Jor every o), then we have

m*(tA)=Ur)m*(A),
where [(t) is a constant depending on t.

Cororrary 2. Let m* be a left-invariant Haar measure in a locally compact
and o-compact group §. Then we have

m*(Aa)=La)ym*(A) for every AZg,

where l(a) is a constant depending on a.

Treorem 3.15. Let £ be a locally compact and o-compact uniform space
whose topology is introduced by a system {V,. acsO} of symmetric uniform
neighborhoods. Suppose that ) is a group of homeomorphisms of £ satisfying
the following conditions:

(Cr) oV (p)=V (op) for every ol and every p L.

(Cr)  For any two points p and q in 2 there exists a homeomorphism o<Y

such that op—q.
We introduce a topology in V) as in Theorem 3.7. We assume that %) is locally
compact and o-compact. Let O, be an abstract subgroup of Y. If Y, satisfies
the condition (Cy), then we have the following:

(1°) We can introduce an outer measure m,* in 2 which satisfies the fol-
lowing conditions:

1)  mFcA)y=m*(A) for every o=, and every subset AZ L.

(i) The Buaire set is m,*-measurable.

(ii) For any subset A of £ therve exists a Baire set B such that ASB and
m*(A)=m,(B). (For measurable set B we shall use m; instead of m,*.)

4v) mFM)>0 for every open set M+0; m*(A)<Too for every totally
bounded set A.
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(2°) The outer measure m* in 2 which satisfies the above conditions (i)-(iv)
is unique up to a multiplicative constant, and any two measurable sets A and
B of the same measure are mutually decomposition-equivalent with respect to m.*.

(3°) The outer measure m* is invarviant under Y.

Proor. (1°) is already proved in Theorem 3.4. We shall prove (2°). Let
5, be the closure of §,. Then 5, is a subgroup of the topological group .
Hence 0, is locally compact and o-compact. The proof of the assertion (2°) is
obtained by the following lemma:

Lemma. The outer measure m* is invariant under Y, that is, for every
subset A of £ and every o<V, we have m*(0A)=m,*(A).

Proor of the Lemma. Let A be a Baire set of finite m,-measure. From
conditions (ii) and (iii) we see that m,* is normal (see Theorem 2.9, Definitions
2.2 and 2.3). Hence for every >0 there exist a compact Baire set I’ and an
open Baire set G such that FEASG and m(G—F)<e. Let ¢ be any element
of §,. We wish to show that m,(cA)=m,(A). It is easily seen that we can
assume m,(6G—oF)<<e. (Hint: Select G; and F; such that FiS0ASG, and
m(G,—F)<<e. And set F,=FUo 'F,, G,=G¢7'G,. Use these F, and G,
instead of F and G.) Since Y, is dense in %,, we can chose a ¢,&¥, such that
o7loFSG (see Theorem 3.7). Then we have

m(cA)=m,(0G)<<m (o F)+e=m (070 F)-Fe=m(G)te=m,(A) 2.
This shows that m,(cA)=<m,(A). Similarly we have m, (67 (cA)=m,(cA), that
is, m,(A)<m,(cA), and thus m, (cA)=m,(A).

Now we shall prove (2°) by using the above Lemma. m,* is invariant
under Y,. On the other hand ¥, is locally compact and s-compact, so by
Theorem 3.14 the §,-invariant measure is unique and consequently the ¥§,-
invariant measure is unique (up to a multiplicative constant). Let A and B
be two m,*-measurable sets of positive measures. Then there exists a o),
such that m(cANB)>0. m, is a continuous measure, so0 it is easily seen
that there exists a ¢,€%, such that m,(c, AN B)>0.

Finally we shall prove (3°). Let m* be an §-invariant outer measure in
£ which is introduced in Theorem 3.4. Of course m* is invariant under Y,.
Hence from (2°) of the present theorem we have m(A)=2im,(A) for every
Baire set A of £. Thus we get obviously the assertion (3°).

§4. Topological properties of .

Assumption (A,). Throughout this §, by “2” we shall always mean a
locally compact and o-compact uniform space whose topology is defined by
a system {V,, a=6} of symmetric uniform neighborhoods, unless the contrary
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is explicitely stated.

Assumption (A,;). We assume that for any two points p and ¢ in £ there
exists a homeomorphism o of £ such that gp=¢g and satisfies the condition
(Cu) of

Tarorem 4.1. £ is a complete space.

The proof is easy and is omitted.

Turorem 4.2. Let Y be a group of homeomorphisms of £ satisfying the
conditions (Cr) and (Ciu) of Theorem 3.4. Then Y is topologized as in Theorem
3.7. Let W be an open subset of Y. In order that W is totally bounded it is
necessary and sufficient that for every compact set FEQ the set W(F)={op;
ceW, peF} is totally bounded.

Proor. First we shall prove the necessity of the condition. Suppose that
W is a totally bounded open set of §) and F a compact set of £. We select
an =B and a <O such that
(4.1) Vup)* is compact for every pe&, and p(p, q)<<[2]8 implies p(p, ) <<a.
(See Theorem 3.3 and Notations 3.2 and 3.1.)

Let U be a neighborhood of the identity of §) such that U=Upp (see Theorem

3.7). Since W is totally bounded, there exist gy, 0,,--0,&Y such that Ln) o, U2W.
t=1

Hence we have W(F)gQaiUﬂp(F ). On the other hand from the definition of

Ugr (see Theorem 3.7) we see that Upp(F)< Vu(F) (see Notation 3.3). So we

have W(F')gknj 0, Vp(F). By Theorem 3.3 the set TV,(F) is totally bounded,
i=1

and therefore W(F) is also a totally bounded set.

We shall prove the sufficiency of the condition. Suppose that W([F)) is
always totally bounded for every compact subset I, S£82. Let U be a neigh-
borhood of the identity of § such that U=U,, (see Theorem 3.7). We select
a B<O such that

4.2) o(p,@<<[41p implies o(p.q)<<cx.

Since W(F) is totally bounded, there exists a f-Net (see Definition 3.1) {q,, ¢
oy qmy of W(F). Similarly there exists a A-Net {py, po,--,pn} of F. Let a
finite system {op,, 6p,,+*, 6pn} corresponds to c& W. Then for every op;, 1<i<n,
there exists a ¢; such that p(op;, g)<<B. So we set my;(0)=j,1=i=n. Thus we
have a finite system (m,(0), m.(0), -, m,(c)) of natural numbers corresponding
to (opy, 0ps,++, 0py). It is clear that 1<my(o)<=m,i=1, 2,---, n, and

<43) 10(017@', dm; (0‘))<ﬂs Z:—Iy 2)"': 7.

If for two clements o and = of W the equality (m,(0), m5(0), -+, m,(0)) =(m,(7),
my(t),- -+, my(7)) holds, then o and = are called to be equivalent and denoted by
o~7t. Thus W is divided into the classes of equivalent elements, and these
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classes are clearly finite. From each class we chose an element as a repre-
sentative of that class. Then we get a finite system {0, 0,,::+, 6,} of elements

of W. We shall show that ktjaiUgW. Let ¢ be an arbitrary element of
i=1
W. Then there exists a o, (1<s=<¢) such that
(m,(0), my(0), -+, Mu(0)) = (M (05), Ma(5),+++, Ma(05)) -

Hence by

(4.4) 0(0Di qni ) <Py 0(0:Dis Gmiap) <<B,  i=1,2,,m.
On the other hand m;(c)=m;(o,), i=1,2,~--, n and S0

(4.5) o(api, o) <<[2]8, i=1,2,,m.

Consequently we have

(4.6) oloslapy, ) <<[218, i=1,2,---,n (see the Remark in Notation 3.1).

Let » be an arbitrary point in £ Then there exists a p; such that o(p, p;)<<
B. Hence we have from (4.6)
o(p, 07 op) = p(p, p)+0(Bis 05 0pi)+-p(05 aps, 05'0p) <<Ap <.
(See the remark in Notation 3.2.) »

This shows that o;loe U,pz=U, that is, c=o,U. Hence W is totally bounded.

Tueorem 4.3. Under the assumptions of the preceding theorem, in order
that an open set W of Y is o-bounded (see Definition 3.2) it is necessary and
sufficient that jor every compact set F of £ the set W(I)={op,ccW, pF} is
ag-bounded.

Proor. This is proved quite similarly as in the preceding theorem.

Taeorem 4.4. Let §) be a group of homeomorphisms of £ satisfying the
conditions (C1) and (Cu) of Theorem 3.4. Y is topologized as in Theorem 3.7.
In ovder that Y) is totally bounded it is necessary and sufficient that 2 is compact.

Proor. If £ is compact, then H(F) is always totally bounded for every
compact subset F of £. From Theorem 4.2 we see that % is totally bounded.
Conversely, suppose that § is totally bounded. Then from Theorem 4.2 {(p)
= is totally bounded (see Assumption (A,)). Hence £ is compact (see
Theorem 4.1).

Treorem 4.5. Under the assumptions of the preceding theovem V) is always
o-bounded, that is, for amy open set U of §) there exists a sequence o, Ggy -0,
of elements of V) such that

U o.U=.

Proor. This is evident from Theorem 4.3, as £ is o-bounded.
Tusorem 4.6. Let § be a group of homeomorphisms of £ satisfying the
conditions (Cr) and (Cu) of Theorem 3.4. Yy is topologized as in Theorem 3.7.
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If 8 is comnected, then Yy is always locally totally bounded.
Proor. Since £ is locally compact, there exists an «=6 such that

4.7 Vp)* is compact for every peQ.
We select a <=6 such that
(4.8) o(p, @<<[2]p implies p(p,@)<<«.

We take an arbitrary point p, in £2. From [Lheorem 3.3 and 3.2 it is evident
that

(4.9) Vg™(py) is totally bounded for every » and \nJ V' (po)=2 .
n=1

Let U be a neighborhood of the identity of §) such that

(4.10) U={o; ap,€ V(Po)} -

We shall show that U is totally bounded. Let F be a compact subset of £.
From (4.9) there exists Vy"(p,) such that F&Ve™(p,) (notice that V™(py,) S
Ve i(py)?H). Hence for every point p&F there exists a f-Chain (see
3.1) {po Pirees po=p} of order n. Then for every o= U the system {p,, op,, op,,
-, 0pp,==0p} is clearly a fB-chain of order n--1. This shows that o(p,, p)<<
(#4114, that is, op= V™" '(py). So we have UF)E Vg™ (p). Hence U(F) is
totally bounded. From we see that U is totally bounded.

Tueorem 4.7. Let £ be a metric space whose bounded set is compact and
) a group of isometric transformations of £ satisfyving the condition (Cix) of
Theovem 3.4. We initvoduce a topology in Yy as in Theovem 3.7. Then V) is always
locally totally bounded.

Proor. For any >0 and any point p,c 2 we set U.,,={0; d(p,, op,)<e).
Then U,, is a neighborhood of the identity of ). We shall show that U,
is totally bounded. Let F be a compact subset of £. Then there exists a
number R>0 such that

(4.11) d(py, P)<<R for every pel.

For every oce=U,, and every pcF, we have d(py, 0p)=d(py, opy)+d(apy, op)<¢
+d(py, p)=e-+R. This shows that the set U,,,(F) is contained in the sphere of
center p, and radius e+R, and consequently is totally bounded. Hence by
Theorem 4.2 we get our theorem.

Turorem 4.8. Let 2 be a locally compact and o-compact uniform space
whose lopology is defined by a system { V., <O} of symmetric uniform neigh-
borhoods. We assume that for any two points p, and q, in 2 there exists a
homeomorphism o Such that op,=q, and

(Cr) oV (p)=TV,(ap) for every @ and every p= L.

Let 4% be a group of all the homeomorphisms o’s which satisfy the above
condition (Cy). §* is topologized as in Theorem 3.7. We assume that G* is
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locally totally bounded, then §* is complete if the following condition is satisfied :

(Cin) For any point q= V (p) there exists a FE6 (depending on q) Such
that re Va(p) and scVy(q) imply s& V(1).

Proor. Let {os E=D} be a generalized Cauchy sequence of §*, that is, a
sequence such that for any neighborhood U of the identity of §* there exists
a &0 such that £,=7 and &,=( imply o, ‘o, U. Then it is easily seen
that for every point p=£ the sequence {o:.p,é=®} is also a generalized
Cauchy sequence in 2. Since £ is complete (see Theorem 4.1), the generalized
Cauchy sequence {o:p, =@} converges to a limit ¢(p). From the condition
(Cir1) we can easily see that

(4.12) o(p, @) <<a implies p(e(p), ¢(@) <.

We shall show that the generalized sequence {o.™}, £ =®} is also a generalized
Cauchy sequence of 0*.

To prove this it is sufficient to show that for every neighborhood U=U,p
(see Theorem 3.7) of the identity of §* there exists a £,&® such that £,=7
and &,<( imply o,0,7'€U. Let U,=U,™! be a totally bounded neighborhood
of the identity of §*. Then there exists a £,&® such that &,=7n and £,=¢
imply o, 'o,€ U, Hence we have

(4.13) o,=0:,U, for every n=§&,.
Define
(4.14) Fo=(Uy, Yo 1 F))*

Since ¢.7'F' is compact and U, '(=U,) is totally bounded, U, !(c. 'F) is totally
bounded (see Theorem 4.2) and consequently F, is compact. Let U* be a
neighborhood of the identity of %* such that

(4.15) U*=U,p, (see Theorem 3.7).

Then there exists a £*=® such that £¥<y and &*=<{ imply o, 'o,cU*. We
chose a &,&® such that £,=<&, and £¥*<&,. Then for every peF, =&, and
(=&, we have
(00,7 'p, p)=p(0,7'p, 0.7 ) =p(0y" P, 00,7'p), where o= U*
(using (4.13)),
=p(0,"'og7'p, 00y 07p), where o, U,

(using (4.14) and (4.15)),

This shows that o.0,'€ U=U,p. Hence the generalized sequence {o.7},
E=®} is a Cauchy sequence of )*. So the generalized sequence {o:7'p, Ec D}
of £ converges to a limit ¥(p). Then we have similarly

(4.16) o(p,9<<a implies p(V(p), V(gh<<«a.
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On the other hand it is easily seen that Y (¢(p)=p and ¢(y(g)=q. This
shows that ¢ is a one-to-one mapping of £ onto itself. Moreover from
we have

(4.17) o(e(P), p(@)<<a implies oY (p(P), Y (Pp(@)N=0p <.

From [412) and [417) we see that ¢ satisfies the condition (C;). Hence ¢
belongs to §*. It is easily seen that ¢ is the generalized limit of {o. E€®}.
So H* is complete.

From §3 and the above discussions in this §, we have the following
theorem.

Tueorem. Let 82 be a locally compact and o-compact uniform space whose
topology is defined by a system {V,, a8} of symmetric uniform neighborhoods.
Let Y) be a group of homeomorphisms of £ satisfying the following conditions :

(Cr) oV (p)=Vu(0op) for every oY) and every point pe L.

(Cn) For any two points p and q in 2, there exists a oY) such that op=q.

(1) Then we can introduce an outer measure m* in 2, such that

i) m*(cA)=m*(A) for every oY) and every subset A of £,
(ii) Baire sets are m*-measurable,
(iii) For every subset A of £ there exists a Baire set B such that A<
B and m*(A)=m(B),
(iv) m*(A)<<oo for every totally bounded set AS R,
(v) m(G)>0 for every open Baire set G+#0.
(2) We can introduce a topology in Yy as follows:
For every a=O and every compact subset FS R we define

U.rp=A{0; for every pF op=V, (P)}.

Then the system {U,r; a0, compact set F} can be taken as a complete system
of neighborhoods of the identity of Y. V) is always o-bounded (see Definition 3.2).
In order that Y is totally bounded it is necessary and sufficient that £ is com-
pact.

(3) The outer measure m* is continuwous with respect to V), that is, for any
e>0 and any measurable set A of finite measurve there exists a neighborhood U
of V), such that

m(cACA)<e for every o= U,

where cASOA denotes the symmetric difference of cA and A.

(4) If Y is locally compact and o-compact, then the outer measure m* which
satisfies the conditions (1)-(v) of the assertion (1) is unique (up to a multiplica-
tive constant), and any two measurable sets A and B of the same measure
are decomposition-equivalent to each other with respect to .

(B) Suppose that V) is locally compact and o-compact. If Yy, is an abstract
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subgroup of Y satisfying the following condition:

(Cw') For any two points p and q in £ there exists a oY, such that cp—q.

Then any Y-invariant measuve m* is a constant multiple of the measure
m* which is introduced in (1), and consequently amny Y,-invariant measure is
invaviant under . Any two measurable sets A and B of the same measure
are decomposition-equivalent to each other with vespect to Y.

(6) Here we assume the further condition (Cur) of Theorem 4.8. Let §* be
a group of all the homeomorphisms o’s which satisfy the condition (Cy). (Of
course W=NW* holds.) We introduce @ topology in V¢ as in (2). If )* is locally
totally bounded, them V¢ is complete and hence locally compact. §* is locally
compact and o-compact in the following cases:

() 8 is compact. (In this case \* is also compact.)

(B) 8 is locally compact, o-compact and connected.

(r) £ is a metric space whose bounded set is compact.
Hence in these cases, regavded as Y)=0%, the assertions (4) and (5) are satisfied.

Tuarorem 4.9. Let 2 be a locally compact, o-compact and connected Hausdorff
space and §) a group of homeomorphisms of £ satisfying the condition (Ciu) of
the preceding theovem. Suppose that m* is an outer measuve in 2 satisfying the
conditions (1)-(v) of the above theovem. If we can define a system {Vy, a=6}
of symmetric uniform neighborhiwods of 2 which satisfies the conditions

(0)  the condition (Cm) of Theovem 4.8 is satisfied,

(1) the topology of £ which is intvoduced by the system {V,, a =0} coincides
with the oviginal topology of £,

@) oV (p)=V.(ap) for every oY) and every pe L2,
then any Y-invariant measure coincides with m*, and the outer measure m* is
invariant under any homeomorphism o which satisfies the above condition (2)
(even though o does not belong to ).

Proor. We have our theorem from (4), (5) and (6) of the preceding
theorem.

Cororrary. Let £ be the n-dimensional Euclidean space and ) the group of
all the transiations of £. Lel f(x,, %y %) be a continuous function of n-
variables satisfying the fellowing conditions :

1° f(xg, xay o5 %) =0, flxy, X9y, ) =022, =%,=---=x,=0.

2% Sy Xy ) =S (=2 — Xy eey —X)

3% Sy, Xoyees %) FS (W1 Yoy ooy Y) Z S (H 91 XabYay o5 Xnt-Pa)-

4°  f(x), Xgyeoey %) — 0 implies (x24x,2 - 4%, — 0.
We define

A, V)=f(X =Y K=Y, Xn—0) SOr any two points x=(x;, X9+, Xn)

and Y=(3, VYo, V) 0 L.

This metric d(x,y) is invariant under §) and obviously intvoduce the original
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topology in 2. The Lebesgue measure is invariant under any d-isometric lrans-

formation o. In particular, setting f(x,, Xs -, %) =N X2 4%2+ - +x,2, the Le-
besgue measure is invarviant under any volation.
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