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Introduction. Let $\Omega$ be an abstract space. By an ” outer measure “
$m^{*}$

in $\Omega$ , is meant a non-ncgative, real valued, countably subadditive set function
defined on the class of all subsets of 9, that is, a sst function which satisfies
the following conditions:

(1) $m^{*}(E)\geqq 0$ for every subset $E$ of S2, $m^{*}(\theta)=0$ where $\theta$ denotes the
null-set.

(2) $E_{1}\subseteqq E_{2}$ implies $m^{*}(E_{1})<m^{*}(E_{\underline{\cap}})$ .

(3) $m^{*}(\bigcup_{n=1}^{\infty}E_{n}).\leqq\sum_{n-1}^{\infty}m^{*}(E_{n})$ .

A set $E$ is called to bc $m^{*}$ -measurable if, for every subsct $A$ of $\Omega$ ,
(4) $m^{*}(A)=m^{*}(\Lambda\cap E)\dashv- m^{*}(A\cap E^{c})$ , where $E^{c}$ denotes the complement of $E$.
It is well known that the class of all m’-measurable subsets of $\Omega$ is a

o-additive (countably additive) class and $m^{*}$ is a o-additive measure on that
class. For measurable subset $E$ we shall write habitually $m(E)$ instead of
$m^{*}(E)$ .

If a group l) of transformations of f) is given, then it is natural to con-
sider, as a $generalizati_{Q}n$ of Haar measure, an r)-invariant outer measure $m^{*}$ ,
that is, an outer measure $m^{*}$ such that

(5) $m^{*}(\sigma E)=m^{*}(E)$ for every subset $ E\subseteq\Omega$ and every $\sigma\in f$).

From this point of view, the Haar measure can be considered as follows:
(A) Let $\mathfrak{g}$ be a locally compact group. To each element $a\in \mathfrak{g}$ we make

correspond a transformation $\varphi_{a}$ of ($iJ$ such that $\varphi_{c\iota}(x)=ax$ for every $ x\in(\uparrow$ . And
we define $\varphi_{a}\varphi_{b}(x)=\varphi_{a}(\varphi_{b}(x))$ . Then clearly we have $\varphi_{a}\varphi_{b}=\varphi_{ab}$ . Hence the set
$\{\varphi_{a} : a\in \mathfrak{g}\}$ can be regarded as a transformation group of ($j$ by defining the
group opcration as above. We shall denotc this transformation group by $\mathfrak{g}_{1}$ .
Of course $0_{1}$ is isomorphic with $f!$ as an abstract group. If we set $f2=\mathfrak{g}$ and
$\mathfrak{h}=\mathfrak{g}_{\lrcorner}$ , then our $\mathfrak{h}$ -invariant outer measure in J2 is nothing but a left-invariant
Haar (outer) measure in $\mathfrak{g}$ .

Let $\mathfrak{g}$ be a locally compact and o-compact group and $m^{*}$ a left-invariant
Haar measure. Then we have the following:
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(i) Theorem of uniqueness. The left-invariant Haar measure is unque
up to a multiplicative constant.

(ii) Theorem of decomposition-equivalence. Let $\mathcal{A}$ and $B$ be two measur-
able subsets of $\zeta|$ having the same measure. Then there exist direct decom-

positions $A=j\psi-\vdash\sum_{n-1}^{\infty}A_{n},$ $B=N+\sum_{n\Leftarrow 1}^{\infty}B_{n}$ such that, $m(M)=m(N)=0$ and $B_{n}=g_{n}A_{n}$ ,

$ n=1,2,\cdots$ , where $g_{n}$ is an element of $\mathfrak{g}$ and every $A_{n}$ is $\mathscr{W}$ -measurable.
In the proofs of these theorems, the fact that the Haar measure is a

Weil measure (a measure $m^{*}$ such that the measurability of $f(x)$ with respect
to $m^{*}$ implies that of $f(y^{-1}x)$ with respect to $m^{*}xm^{*}$ ), plays an essential role.
In our case, we introduce an $\mathfrak{h}$ -invariant outer measure $m^{*}$ in $\Omega$ and a left-
invariant outer measure $\mu^{*}$ in $\mathfrak{h}$ . And by discussing the product measure
$m^{*}\times\mu^{*}$ in the product space $\Omega\times \mathfrak{h}$ , we get the similar consequences as in the
case of the Haar measure.

If $\Omega$ is a locally compact and $\sigma$-compact uniform space and $\mathfrak{h}$ satisfies
some conditions, then an $\mathfrak{h}$ -invariant outer measure is easily introduced in $\Omega$

and $\mathfrak{h}$ can be topologized in such a way that $\mathfrak{h}$ becomes a topological group.
In this case, it is expected that the group $\mathfrak{g}_{1}$ (see $(A)$) which is topologized
by our method is isomorphic with the original topological group $\mathfrak{g}$ . This is
proved in Theorem 3.8. In \S 3, we shall show that “ if the group $\mathfrak{h}$ which is
topologized by our method becomes a locally compact and $\sigma$-compact group,
then the corresponding theorems to the above assertions (i) and (ii) are also
valid for our $\mathfrak{h}$ -invariant measure $m^{*}$ ”. In \S 4, we shall examine properties
of the topological group $\mathfrak{h}$ and show that under some assumptions $\mathfrak{h}$ becomes
a locally compact and $\sigma$ -compact group. (See Theorems 4.6, 4.7 and 4.8.)

Incidentally we can prove a theorem (Theorem 4.9) which contains, as a
special case, the fact that the Lebesgue measure is invariant under any rota-
tion. This might be an interesting consequence.

Most of the results in the present paper was announced earlier in a note
[12]. However the publication of the details has been delayed owing to the
author’s health. Recently, Prof. K. Yosida communicated to the author that
the results are closely related to the “ Mesure dans les espaces homog\‘enes’’
in A. Weil’s book [6] (see [6], 42-45), to which the author had not access
when the note [12] was published. In fact, if the space $\Omega$ is compact, then
it will be proved without difficulty that our $\mathfrak{h}$ -invariant measure can be
introduced in $\Omega$ by making use of Weil’s results. But it seems to the author
that such deduction will not be possible for non-compact spaces. The present
paper was written following the advice of Prof. K. Yosida to whom I want
to express my hearty thanks.



On measures invariant under given homeomorphism of a uniform space. 407

\S 1. Topological lemmas.

DEFINITION 1.1. Let $\Omega$ be a Hausdorff space and $\mathfrak{B}$ the smallest countably
additive class which contains all open subsets of $\Omega$ . A subset $ B\subseteqq\Omega$ is called
a Borel set if $B\in \mathfrak{B}$ . A set $B_{0}$ is called a Baire set if its characteristic func-
tion $C_{B_{0}}(x)$ is a Baire function.

lt is easily seen that the class of all Baire sets of J2 is a countable
additive class. We shall denote this class by $\mathfrak{B}_{0}$ . Then it is clear that $\mathfrak{B}_{0}\subseteqq$

B. But the converse is not always true.
Notation $(N_{1})$ . $\ln$ the rest of this paper, by “

$\mathfrak{B}$ and “
$\mathfrak{B}_{0}$

” we shall
denote the class of all Borel sets and the class of all Baire sets respectively.

Notation $(N_{2})$ . Throughout this paper, for any subset $E$ of a topological
space $\Omega$ we shall denote the closure of $E$ by $E^{a}$ , the interior of $E$ by $E^{i}$ and
the complement of $E$ by $E^{c}$ . Consequently, $E^{ai}$ denotes the interior of the
closure of $E$ and $E^{ic}$ denotes the complement of the interior of $E$, etc.

DEFINITION 1.2. A subset $ E\subseteqq\Omega$ is catlled an elementary closed set of $I2$ if
$E$ is expressible in the form $E=\{x;f(x)\geqq\lambda\}$ , where $f(x)$ is a continuous func-
tion defined on $\Omega$ and $\lambda$ is a real number.

The following theorems 1.1-1.5 are easy to prove.
THEOREM 1.1. The smallest countably additive class which contains all ele-

mentary closed sets of $\Omega$ coincides $u$) $ith\mathfrak{B}_{0}$ (see $(N_{1})$).

THEOREM 1.2. If $f2$ is a metric space, then we have $\mathfrak{B}=\mathfrak{B}_{0}$ .
THEOREM 1.3. Let $f2$ be a Hausdorff space and $A$ a Baire set of $\Omega$ . If $\sigma$

is a homeomorphism of $f2$ , then the. set $\sigma A$ is also a Baire set.
THEOREM 1.4. Let $I2$ be a locally compact and $\sigma$ -compact Hausdorff space.

Then there exists a sequence $F_{1},$ $F_{2},\cdots,$ $\Gamma_{n},\cdots$ of $co$mpact subsets of $\Omega$ , such that
(B) $F_{n}\subseteqq F_{n^{i}\dashv 1}$ (see $(N_{2})$), $ i=1,2,\cdots$ and $\bigcup_{n-1}^{\infty}F_{n}=\Omega$ .
$T_{HEOR\Gamma_{\vee}M}1.5$ . If $\Omega$ is a locally compact and $\sigma$ -compact Hausdorff space,

then $\Omega$ is a normal space.
THEOREM 1.6. In order that a locally compact and $\sigma$ -compact Hausdorff

space $\Omega$ be metrizable, it is necessary and $su$.fficient that there exists a sequence
$f_{1}(x),$ $ f_{2}(x),\cdots,f_{n}(x),\cdots$ of continuous functions which satisfies the follouing condi-
tion:

(C) For any different two points $p$ and $q$ in $f2$ , there exists a function
$f_{n}(x)$ such that $f_{n}(p)\neq f_{n}(q)$ .

$p_{ROOF}$ . If $\Omega$ is metrizable, then $I2$ is clearly separable. So there exists
an enumerable subset $\mathbb{J}/I=\{a1’ a_{9},\cdots, a_{n},\cdots\}$ which is dense in S2. If we define
$f_{n}(x)=d(x, a_{n}),$ $ n=1,2,\cdots$ , then it is evident that the condition (C) is satisfied.

Next suppose that a sequence $f_{1}(x),$ $ f_{2}(x),\cdots,f_{n}(x),\cdots$ of continuous functions
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satisfies the condition (C). By Theorem 1.4 there exists a sequence $F_{1},$ $ F_{2},\cdots$ ,
$ F_{n)}\cdots$ of compact subsets of $\Omega$ , which satisfies the condition (B). Let $g_{n}(x)$ be
a continuous function defined on 42, such that

(D) $0\leqq g_{n}(x)\leqq 1$ for every $x\in\Omega,g_{n}(x)=0$ for every $x\in F_{n}$ , and $g_{n}(x)=1$ for
every $x\in F_{n+1}^{ic}$ (see $(N_{2})$ ).

Define

$d(x, y)=\sum_{n=1}^{\infty}\frac{1}{2^{n}}\frac{1f_{n}(}{1+|f}\frac{x)-f_{n}(y)|}{n(x)-f_{n}(y)|}+\sum_{n=1}^{\infty}\frac{1}{2^{n}}|g_{n}(x)-g_{n}(y)|$ .

Then it is not difficult to show that this metric $d(x, y)$ gives the original
topology in 2.

THEOREM 1.7. Let $B$ be an open Baire set of a locally compact and $\sigma$ -com-
pact Hausdorff space 9. Then $B$ is the sum of enumerable compact Baire sets.

PROOF. Let $f(x)$ be the characteristic function of $B$. By using transfinite
induction, we can easily see that the Baire function $f(x)$ is constructible from
at most enumerable continuous functions $ f_{1}(x),f_{2}(x),\cdots,f_{n}(x),\cdots$ . On the other
hand there exists a sequence $F_{1},$ $F_{2},\cdots,$ $ F_{n},\cdots$ of compact subsets which satisfies
the condition (B). Let $g_{n}(x)$ be a continuous function which satisfies the
condition (D). Identifying $p$ and $q$ when $f_{n}(p)=f_{n}(q)$ and $g_{n}(p)=g_{n}(q)$ hold for
every $n$ , we get a decomposition-space $\tilde{\Omega}$ . It is easily seen that di is a locally
compact and o-compact Hausdorff space and $B$ an open Baire set of $\tilde{\Omega}$ . By
the preceding theorem $\tilde{\Omega}$ is a metric space. Hence $B$ is a $F_{\sigma}$ set in $\tilde{\Omega}$ . Since
$\tilde{\Omega}$ is $\sigma$ -compact, it is easily seen that $B$ is the sum of enumerable compact
Baire sets.

$C_{oROLLARY}$ . In order that a point $p$ in $f2$ be a Baire set, it is necessary
and $ suf\iota$ ( ient that $\Omega$ satisfes the first axiom of countability at $p$ .

THEORFM 1.8. Let $I2$ be a locally compact and $\sigma$ -compact Hausdorff space
and $\mathfrak{B}^{*}$ a countably addilive class which contains an open basis. Then we have
$\mathfrak{B}^{*}\supseteqq \mathfrak{B}_{t)}$ (see $(N_{1})$ ).

PROOF. In order to prove our theorem, it is sufficient to show that for
every continuous function $f(x)$ and every real number $\lambda$ the open set $G=\{x$ ;

$f(x)<\lambda\}$ is contained in $\mathfrak{B}^{*}$ . If we set $A_{n}=\{x;f(x)\leqq\lambda_{n}^{1}---\}$ then we have

$G=\bigcup_{n=I}^{\infty}A_{n}$ . Since $A_{n}$ is the sum of enumerable compact sets, we can select

from the class $\mathfrak{B}^{*}$ an enumerable system of open sets which cover the set
$A_{n}$ , such that the sum of these open sets is contained in $G$ . For every $A_{n}$

we select such an enumerable system of open sets. Then it is easily seen
that $G$ belongs to $\mathfrak{B}^{*}$ .

COROLLARY 1. Let $\Omega$ be a locally compact and $\sigma$-compact Hausdorff space.
The smallest countably additive class which contains open basis of 2 coincides
wilh $\mathfrak{B}_{0}$ .
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COROLLARY 2. Let $\Omega_{1}$ and $\Omega_{2}$ be two locally compacl, $\sigma$ -compact Hausdorff
space and $\mathfrak{B}_{0}^{1},$ $\mathfrak{B}_{0}^{2}$ the countably additive classes of the Baire sets of $42_{1}$ and $J2_{2}$

respectively. The smallest countably additive class which contains the sets of the
form $B_{1}\times B_{2}$ , where $B_{1}\in \mathfrak{B}_{0}^{I}$ and $B_{2}\in \mathfrak{B}_{0}^{2}$ , coincides with the class of all the Baire
sets of the product space $\Omega_{1}\times\Omega_{2}$ .

\S 2. Measure and topological outer measure.

$D_{F_{\vee}FINITION}2.1$ . Let $m^{*}$ be an outer measure in a Hausdorff space J2. $m^{*}$

is called a topological outer measure, if the following condition is satisfied:

(2.1) $ A^{a}\cap B^{a}=\theta$ implies $m^{*}(A+B)=m^{*}(A)+m^{*}(B)$ (see $(N_{2})$ in \S 1).

THEOREM 2.1. Let $m^{*}$ be a topological outer measure in a Hausdorff space
42. Then the class $\mathfrak{B}_{n}*of$ all $m^{*}$ -measurable subsets of 2 contains $\mathfrak{B}_{0}$ (see $(N_{1})$

in \S 1).
PROOF. It is sufficient to show that every elementary closed set is $m^{*}-$

measurable. But this can be proved quite similary as in the case of a metric
space (see [8], p. 52).

TIIEOREM 2.2. Let $\Omega$ be a locally compact, $\sigma$ -compact Hausdorff space and
$m^{*}$ an outer measure in $\Omega$ . In order that $m^{*}$ is a topological outer measure, $it$

is necessary and sufficient that every Baire set of $\Omega$ is $m^{*}$ -measurable.
PROOF. The necessity of the condition is proved in the preceding theorem.

We shall prove the sufficiency. Suppose that the condition is satisfied. Let $A$

and $B$ be two subsets of $\Omega$ such that $ A^{a}\cap B^{a}=\theta$ . By Theorem 1.5 $\Omega$ is a normal
space, so there exists a continuous function $f(x)_{j}$ such that $0\leqq f(x)\leqq 1$ for
every $x\in J2,$ $f(x)=1$ for every $x\in A^{a}$ and $f(x)=0$ for every $x\in B^{a}$ . The set
$M=\{x;f(x)\geqq\frac{1}{2}\}$ is an elementary closed set and hence a Baire set. Con-

sequently $1\psi$ is an $m^{*}$-measurable set such that $A\subseteqq\lrcorner\eta I$ and $B\subseteqq M^{c}$ . Hence we
have

$m^{*}(A-\vdash B)=m^{*}((A+B)\cap M)+m^{*}((A+B)\cap M^{c})=m^{*}(A)+m^{*}(B)$ .
$D_{EFINI’\Gamma ION}2.2$ . Let $\Omega$ be a Hausdorff space, ae a countably additive class

of subsets of $f2$ and $m$ a countably additive measure on $\mathfrak{X}$ . The measure
space $(\Omega, \mathfrak{X}, m)$ is called to be normal if the following condition is satisfied:
(2.2) For every set $A\in\vee t$ and every number $\epsilon>0$ , there exists an open set
$G\in k$ such that $A\subseteqq G$ and $ m(G-A)<\epsilon$ .

DEFINITION 2.3. Let $\Omega$ be a Hausdorff space and $m^{*}$ an outer measure in
$f2$ . $m^{*}$ is called to be normal if and only if the measure space $(\Omega,\sim \mathfrak{R}_{m*}, m)$ is
normal, where $\mathfrak{B}_{m}$. is the class of all $m^{*}$-measurable subsets of $I2$ .

DEFINITION 2.4. Let $E$ be an abstract space, $\mathfrak{X}$ a countably additive class
of subsets of $E$ and $m$ a countably additive measure on $\mathfrak{X}$ . For any subset
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$A\subseteqq E$ we define

$m^{*}(A)=\inf\sum_{n=1}^{\infty}m(X_{n})$ , where $A\subseteqq\bigcup_{n=1}^{\infty}X_{n}$ and $X_{n}\in \mathfrak{X},$ $ n=1,2,\cdots$ .

Then clearly $m^{*}$ is an outer measure in $E$, and every set $A\in X$ is $m^{*}$-measur-
able and $m^{*}(A)=m(A)$ . This outer measure $m^{*}$ is called the outer measure
in $E$ induced by the measure space $(E, X, m)$ .

THEOPEM 2.3. Let $\Omega$ be a Hausdorff space and $(\Omega, \mathfrak{X}, m)$ a measure space.
If the measure space $(\Omega, \mathfrak{X}, m)$ is normal and $\Omega$ is the sum of enumerable sets
of finite measure, then the outer measure $m^{*}$ in $\Omega$ induced by the measure space
$(\Omega, \mathfrak{X}, m)$ is also normal.

The proof is simple and is omitted.
THEOREM 2.4. Let $\Omega$ be a locally compact and $\sigma$-compact Hausdorff space

and $(\Omega, \mathfrak{X}, m)$ a measnre space. If ee contains the class $\mathfrak{B}_{0}$ (see $(N_{J})$ in \S 1), then
the outer measure $m^{*}$ in $\Omega$ induced by the measure space $(\Omega, \mathfrak{X}, m)$ is a topo-
logical ou $fer$ measure.

$P_{ROOF}$ . Let $\mathfrak{B}_{m}*be$ the class of all $m^{*}$-measurable sets of $\Omega$ . Then it is
easily seen that $\mathfrak{B}_{m}*\supseteqq \mathfrak{X}\supseteqq \mathfrak{B}_{0}$ . Hence by Theorem 2.2 we get our theorem.

THEOREM 2.5. Let $\Omega$ be a locally compact and $\sigma$ -compact Hausdorff space
and $(\Omega, X, m)$ a measure space. If the measure space $(\Omega, \mathfrak{X}, m)$ is normal and ee
contains The class $\mathfrak{B}_{0}$ (see $(N_{1})$ in \S 1), then the following condition is satisfied:
(2.3) For every set $A\in \mathfrak{X}$ of finite measure and any number $\epsilon>0$ , there
exists a compact set $F\in X$ such that $F\subseteqq A$ and $ m(A-F)<\epsilon$ .

DEFINITION 2.5. Let $\Omega$ be a locally compact and o-compact Hausdorff
space and $\mathfrak{F}$ the family of all compact subsets of $\Omega$ . Suppose that to any $F\in \mathfrak{F}$

there corresponds a finite positive number $m(A)$ satisfying the following
conditions:

1o $F_{1}\subseteqq F_{2}$ impl ies $m(F_{1})\leqq m(F_{2})$ .
$2^{o}$ $m(F_{1}\cup F_{2})\leqq J7l(l_{1}\prime^{\backslash })+m(F_{2})$ .
3 $ F_{1}\cap F_{2}=\theta$ implies $m(F_{1}+F_{-)})=m(F_{1})+m(F_{2})$ .

Then $m$ is called a content on $\mathfrak{F}$ .
THEOREM 2.6. Let $\Omega$ be a locally compact and $\sigma$-compact Hausdorff space

and $\mathfrak{F}$ the family of all compact subsets of $\Omega$ . And let $m$ be a content on $\mathfrak{F}$ .
Define

$m(G)=\sup\{m(F);G\supseteqq F\in \mathfrak{F}\}$ , for every open set $G$ .
And we set

$m^{*}(A)=\inf\{m(G);A\subseteqq G(open)\}$ for every subset $ A\subseteqq\Omega$ .
Then $m^{*}$ is a topological outer measure in $\Omega$ and every Borel set of $\Omega$ is $m^{*}-$

measurable and moreover $m^{*}$ is normal (see Definitions 2.2 and 2.3).

The proof of this theorem is due to the following lemmas.
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LEMMA 1. For any two open sets $G_{1}$ and $G_{2}$ we have, using locally compact-
ness of $\Omega$ ,

$m(G_{1}\cup G_{2})\leqq m(G_{1})+m(G_{2})$ ,

LEMMA 2. For any sequence $G_{1},$ $G_{2},\cdots,$ $ G_{n},\cdots$ of open sets we have

$m(\bigcup_{n=1}^{\infty}G_{n})\leqq\sum_{n=1}^{\infty}m(G_{n})$ .
Thus

(i) $0\leqq m^{*}(A)\leqq\infty,$ $\mathscr{W}(\theta)=0$ ,
(ii) $A\subseteqq B$ implies $m^{*}(A)\leqq m^{*}(B)$ ,

(iii) $m^{*}(\bigcup_{n=1}^{\infty}A_{n})\leqq\sum_{n=1}^{\infty}m^{*}(A_{n})$ .
LEMMA 3. For any two open sels $G_{1}$ and $G_{2}$ we have
(iv) $m(G_{1})\geqq m(G_{1}\cap G_{2})+m^{*}(G_{1}\cap G_{2}^{c})$ .
PROOF. If $ m(G_{1})=\infty$ , then the above inequality is trivial. Hence we may

assume that $ m(G_{1}\cap G_{2})<\infty$ and $ m^{*}(G_{1}\cap G_{2}^{c})<\infty$ . For any positive number $\epsilon$ ,
there exists a compact set $F_{1}$ such that $F_{1^{\underline{-}}}\subset G_{1}\cap G_{2}$ and $m(F_{1})+\epsilon>m(G_{1}\cap G_{2})$ .
On the other hand $G_{1}\cap F_{1}^{c}$ is an open set, so there exists a compact set $F_{2}$

such that $F_{2}\subseteqq G_{1}\cap F_{1}^{c}$ and $m(F_{2})+\epsilon>m(G_{1}\cap F_{1}^{c})$ . IIence we have
$ m(G_{1})\geqq m(F_{1})+m(F_{2})>m(G_{1}\cap G_{2})+m(G_{1}\cap F_{1}^{c})-2\epsilon$

$\geqq m(G_{1}\cap G_{2})+m^{*}(G_{1}\cap G_{2}^{c})-2\epsilon$ .
Thus we have (iv).

PROOF OF THEOREM 2.6. From Lemma 3 it is easily secn that any open
set is $m^{*}$-measurable and consequently every Borel set is $m^{*}$-measurable.
Hence by Theorem 2.2 $m^{*}\backslash $ is a topological outer $m_{\vee}\urcorner asnre$ . Since 42 is $\sigma-$

compact, it is evident that $m^{*}$ is normal from the definition of $m^{*}$ .
THEOREM 2.7. Under the same assumptions of the preceding theorem, for

any open Baire set $G$ we set
$m(G)=\sup\{m(F);G\supseteqq F\in \mathfrak{F}\}$ .

And for every subset $A$ of 42 we define
$ m^{*}(A)=\inf$ {$m(G);A\subseteqq G$ (open Baire set)}.

Then every Baire set is $m^{*}$ -measurable and hence $ m^{i_{\backslash }^{\prime}}\langle$ is a topological outer
measure in $\Omega$ . Moreover, $m^{*}$ is normal, more precisely, for any $m^{*}$ -measurable
set $A$ of $\Omega$ and every number $\epsilon>0$ there exists an open Baire set $G$ such that
$A\subseteqq G$ and $m(G-A)<e$ .

DEFINITION 2.6. The outer measure $m^{*}$ which is defined in Theorem 2.6
is called the outer measure of the first kind induced by the content $m$ . On
the other hand the outer measure $m^{*}$ which is defined in Theorem 2.7 is
called the outer measure of the second kind induced by the content $m$ .
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It is clear that these two outer measures are same on the class $\mathfrak{B}_{0}$ (see

(N) in \S 1).
$R_{EMARK}$ . Let $\mathfrak{F}_{0}$ be the family of all compact Baire sets of $\Omega$ and $m$ a

content on $\mathfrak{F}_{0}$ . Then we can define the outer measure $\ell n^{*}$ of the first kind
or the second kind induced by a content $m$ as in the above two theorems.

THEOREM 2.8. Let $\Omega$ be a locally compact and $\sigma$ -compact Hausdorff space
and $m$ a content on the family $\mathfrak{F}$ of all compact subsets of $\Omega$ . If $m$ is invariant
under a homeomorphism $\sigma$ of $f2$ , then the outer measure $m^{*}$ of the second kind
(the first kind) induced by a content $m$ is also invariant under $0$ .

THEOREM 2.9. Let $I2$ be a locally compact and o-compact Hausdorff space
and $m$ a countably additive measure on $\mathfrak{B}_{0}$ (see $(N_{1})$ in \S 1). If $m$ is finite on
any compact Baire set, then the measure space $(42, \mathfrak{B}_{0}, m)$ is always normal.

PROOF. The measure $m$ can be regarded as a content on the family of
all compact Baire sets of $\Omega$ . We introduce in J2 the outer measure $m^{*}$ of
the second kind induced by a content $m$ (see the Remark of Definition 2.6).

By Theorem 1.7 every open Baire set is the sum of enumerable compact
Baire sets. Hence $m^{*}$ coincides with $m$ on every open Baire set and conse-
quently on $\mathfrak{B}_{0}$ (see $(N_{1})$ in \S 1). Thus by Theorem 2.7 we have our theorem.

THEOREM 2.10. $Lelf2$ be a locally compact and $0$-compact Hausdorff space
and $m$ a countably additive $n$measure on $\mathfrak{B}_{0}$ . If $m$ is fmite on any compact Baire
set, then there exists a counlably additive measure $\overline{m}$ on $\mathfrak{B}$ (see $(N_{1})$ in 5 $1^{\prime}$ ) such
that $\overline{\prime n}(A)=m(A)$ for every $A\in \mathfrak{B}_{0}$ and the measure space $(\Omega, \mathfrak{B},\overline{m})$ is normal.
Moreover such measure $\overline{m}$ is unique.

PROOF. By the similar way as in the preceding theorem, we can introduce
in S2 the outer measure $m^{\backslash _{\backslash }}$ of the first kind induced by a content $m$ on $\mathfrak{F}_{0}$ .
If we define $\overline{m}(A)=m^{*}(A)$ for every Borel set $A$ of 42, then it is easily seen
that $\overline{m}$ satisfies the condition of the present theorem. The uniqueness is also
easily proved.

$\prime r_{H1^{_{-}}OREM}2.11$ (Markoff). Let $I2$ be a compact Hausdorff space and $C_{\Omega}$ the
Banach space of all real valued continuous functions defined on $\Omega$ . If $L$ is a
positive linear functional defined on $C_{\Omega}$ ($L(f)\geqq 0$ for every $f(x)\geq 0$), then there
exists a countably additive measure $m$ on th $e$ class $\mathfrak{B}_{0}$ (see $(N_{1})$ in \S 1) sltch that

(2.4) $L(f)=\int_{\Omega}f(x)dm(x)$ .

And such measure $m$ is unique.
PROOF. Let $F$ be a compact subset of $\Omega$ . We define $ m(F)=i_{11}f\{L(f);0\leqq$

$f(x)\leqq 1$ for every $ x\in\Omega$ and $f(x)=1$ for every $x\in F$}. Then it is easily seen
that $m$ is a content on the family $\mathfrak{F}$ of all compact subsets of $f2$ . We intro-
duce in $\Omega$ the outer measure $m^{*}$ of the second kind induced by the content
$m$ . If we define $m(A)=\prime\prime\iota^{*}(A)$ for every Baire set $A$ , then it is not difficult
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to show that the equality (2.4) holds.
THEOREM 2.12 (Lusin). Let $I2$ be a locally compact and $\sigma$-compact Hausdorff

space and $m^{*}a$ topological outer measure in S2. Assume that $m^{*}$ is normal and
finite on every compact set. If $f(x)$ is a $m^{*}$ -measurable function such that

$\int_{\Omega}|f(x)|dm(x)<\infty$ , then for any positive number $\epsilon$ there exists a continuous

function $g(x)$ defined on $l2$ satisfying

$\int_{\Omega}|f(x)-g(x)|dm(x)<\epsilon$ .

The proof is easily deduced from the special case in which $f(x)$ is the
characteristic function of an $m^{*}$-measurable set $A$ of finite measure. Por this
special case there exists an open $m^{*}$-measurable set $G$ and a compact $m^{*}$ ’

measurable set $F$ such that $F\subseteqq A\subseteqq G$ and $m(G-F)<e$ , and $g(x)$ is obtained
as a continuous function defined on $\Omega$ such that $0\leqq g_{(}^{\prime}x$) $\leqq 1$ for every $ x\in\Omega$ ,
$g(x)=1$ for every $x\in F$ and $g(x)=0$ for every $x\in G^{c}$ .

\S 3. Invariant measure.

Let $l2$ be a uniform space and let $\{V_{\alpha}, \alpha\in\Theta\}$ be its complete system of
symmetric uniform neighborhoods. Thus we have the condition\’o:
(3.1) For every $\alpha\in\Theta p\in V_{\alpha}(p)$ and $\bigcap_{\alpha\in\Theta}V_{\alpha}(p)=\{p\}$ .
(3.2) $q\in V_{\alpha}(p)$ implies $p\in V_{\alpha}(q)$ (condition of symmetricity).
(3.3) For every $\alpha,$ $\beta\in\Theta$ there exists a $\gamma\in\Theta$ such that $V_{\gamma}(p)\subseteqq V_{o\rangle}(p)\cap V_{\beta}(p)$ .
(3.4) For every $\alpha\in\Theta$ there exists a $\beta\in\Theta$ such that $q\in V_{\beta}(p),$ $r\in V_{\beta}(q)$ imply

$r\in V_{a}(p)$ .
In the rest of this \S , by $I2$ we shall always mean a uniform space as

above, unless the contrary is explicitly stated.
NOTATION 3.1. By ”

$\rho(p, q)<\alpha$ , we shall mean that $q\in V_{\alpha}(p)$ . From the
condition (3.2) it is evident that $\rho(p, q)<\alpha$ implies $\rho(q,p)<\alpha$ .

REMARK. If $0$ is a homeomorphism of 2 such that $\sigma V_{\alpha}(p)=V_{a}(\sigma p)$ for
every $ p\in\Omega$ , then it is easily seen that $\sigma^{-1}V_{\alpha}(q)=V_{aj}(\sigma^{-1}q)$ holds for every
$ q\in\Omega$ . Hence $\rho(p, q)<\alpha$ implies $\rho(\sigma p, \sigma q)<\alpha$ and conversely $\rho(op, oq)<\alpha$

implies $\rho(p\rangle q)<\alpha$ . So we shall write $\rho(p, q)=\rho(\sigma p, oq)$ .
DEFINITION 3.1. $\alpha$ -Net and $\alpha$ -Chain. Let $A$ be a subset of 2. A subset

$B$ of $A$ is called an $\alpha$ -Net of $A$ if the following condition is satisfied:
(3.5) For every point $p\in A$ there exists a point $q\in B$ such that $\rho(p, q)<\alpha$

(see Notation 3.1).

And $B$ is called a finite or o-finite $\alpha$ -Net, according as $B$ is a finite or
countably infinite set.

Let $p_{0},p_{1},\cdots,$ $p_{m}$ be a finite system of points of $\Omega$ . The system $(p_{0},p_{1},\cdots,p_{m})$
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is called an $\alpha$-Chain of order $m$ if the following condition is satisfied:

(3.6) $\rho(p_{i},p_{i+1})<\alpha$ , $i=0,1,\cdots,$ $m-1$ .
$D_{EFINI^{\prime}\Gamma ION}3.2$ . A subset $A$ of $\Omega$ is called to be totally bounded if for

every $\alpha\in\Theta$ there exists a finite $\alpha$ -Net of $A$ . And $A$ is called to be $\sigma$-bounded
if for every $\alpha\in\Theta$ there exists a o-finite $\alpha$ -Net of $A$ .

NOTATION 3.2. By ” $\rho(p, q)<[m]\alpha$ ”, we shall mean that there exists an
$\alpha$-Chain $(p=p_{0},p_{1},\cdots,p_{m}=q)$ of order $m$ (see Definition 3.1).

$R_{EMARK}$ . If $\rho(p, q)<[m]\alpha$ and $\rho(q, r)<[n]\alpha$ , then we have obviously
$\rho(p, r)<[m+n]\alpha$ . So we shall express this fact by the following inequality:

$\rho(p, r)\leqq\rho(p, q)+\rho(q, r)<[m]\alpha+[n]\alpha=[m+n]\alpha$ .
NOTATION 3.3. Let $A$ be a subset of S2. By “

$V_{\alpha}(A)$ ”, we shall mean the
set $\bigcup_{p\in A}V_{\alpha}(p)$ . And we define $V_{a^{2}}(A)=V_{\alpha}(V_{\alpha}(A)),\cdots,$ $ V_{\sigma j}^{n}(A)=V_{\alpha}(V_{\alpha^{n-l}}(A)),\cdots$

It is easily seen that $V_{\alpha^{n}}(A)=\bigcup_{\wedge p\subset 1}\{q;\rho(p, q)<[n]\alpha\}$ .
THEOREM 3.1. Let $\Lambda$ be a subset of S2. In order that $A$ is compact it is

necessary and suffcient that $A$ is complete and totally bounded.
THEOREM 3.2. Suppose that J2 is connected. Then for every $\alpha\in\Theta$ and every

point $ p\in\Omega$ we have $\bigcup_{n=1}^{\infty}V_{a^{n}}(p)=\Omega$ .
The theorems 3.1 and 3.2 are well known, so we shall omit the proofs.
LEMMA 3.1. For every $\alpha\in\Theta$ and natural number $n$ there exists a $\beta\in\Theta$

such that
(3.7) $\rho(p, q)<[\gamma\iota]\beta$ implies $\rho(p, q)<\alpha$ (see Notalion 3.1. and 3.2).

The proof is quite easy from condition (3.4).

THEOREM 3.3. Suppose that $V_{\alpha}(p)$ is totally bounded for every point $ p\in\Omega$ .
Using the above lemma we select a $\beta\in\Theta$ such that

(3.8) $\rho(p, q)<[2]\beta$ implies $\rho(p, q)<\alpha$ .

Then for every totally bounded set A the set $V_{\beta}(A)$ (see Notation 3.3) is also
totally bounded and consequently $V_{\beta^{2}}(A),\cdots,$ $ V_{\beta^{n}}(A),\cdots$ are all totally bounded.

PROOF. Since $A$ is totally bounded, there exists a finite $\beta$ -Net $\{p_{1},p_{2},\cdots,p_{n}\}$

of $A$ (see Definition 3.1). We shall show that $\bigcup_{i\Leftarrow 1}^{n}V_{\alpha}(p_{i})\supseteqq V_{\beta}(A)$ . Let $q$ be an
arbitrary element in $V_{\beta}(A)$ . Then there exists a point $p\in A$ such that $\rho(p, q)$

$<\beta$ . On the other hand there exists a $p_{i}$ such that $\rho(p_{i},p)<\beta$ . Hence we
have $\rho(p_{i}, q)<[2]\beta$ . But this implies, from (3.8), $\rho(p_{i}, q)<\alpha$ , that is, $q\in V_{\alpha}(p_{i})$ .
So we have $\bigcup_{i=1}^{n}V_{\alpha}(p_{i})\supseteqq V_{\beta}(A)$ and consequently $V_{\beta}(A)$ is totally $bour_{A}$) $ded$ .

THEOREM 3.4. Let $\Omega$ be a locally compact Hausdorff space whose topology
is introduced by a system $\{V_{\alpha}, \alpha\in\Theta\}$ of symmetric uniform neighborhoods.
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Suppose that $\mathfrak{h}$ is a group of homeomorphisms of 2 satisfying the following
conditions:

$(C_{I})$ $oV_{\alpha}(p)=V_{\alpha}(op)$ for every $0\in \mathfrak{h}$ and $ p\in\Omega$ .
(CII) For any two points $p$ and $q$ in $\Omega$ , there exists a homeomorphism $0\in \mathfrak{h}$

such that $op=q$ .
Then we can introduce an outer measure $m^{*}$ in $\Omega$ which satisfies the fol-

lowing conditions:
(i) $m^{*}(\sigma A)=m^{*}(A)$ for every $\sigma\in \mathfrak{h}$ and every $ A\subseteqq\Omega$ .
(ii) Baire set is $m^{*}$ -measurable.
(iii) For any subset $A$ of $\Omega$ there exists a Baire set $B$ such that $A\subseteqq B$ and

$m^{*}(A)=m(B)$ . (For measurable set $B$ we use $m$ instead of $m^{*}.$ )

(iv) $m^{*}(G)>0$ for every open set $ G;m^{*}(A)<\infty$ for every totally bounded
set $A$ .

PROOF. We take a point $p_{0}$ in 42. For every compact subset $F$ and any
$\alpha\in\Theta$ , we can select a finite system $\sigma_{1},0_{2},\cdots,$

$0_{n}\in \mathfrak{h}$ such that $F\subseteqq\bigcup_{i=1}^{n}o_{i}V_{a}(p_{0})$ .
Let $1(F, \alpha)$ be thc minimum of such number $n’ s$ . Now we fix a compact set
$F_{0}$ such that $ I_{0}^{\backslash i}\neq\theta$ (see $(N_{0,\lrcorner})$ in \S 1). For any compact set $F$ there exists a

finite system $0_{1}^{\prime},$ $0_{2}^{\prime},\cdots,$ $\sigma_{m}^{\prime}\in \mathfrak{h}$ such that $F\subseteqq\bigcup_{i=1}^{m}o_{i}^{\prime}F_{0}$ . We select the smallest

such number $m$ and denote it by $l(F, f_{0}^{\urcorner})$ . And we de ne $h(F, \alpha)=l(F, \alpha)/l(F_{0}, \alpha)$ .
Then we have $clea_{\perp}^{-}\cdot 1yl(F, \alpha)\leqq l(F, \Gamma_{0}\forall)\cdot l(F_{0}, \alpha)$ and consequently $ 0\leqq h(F, \alpha)\leqq$

$l(F, F_{0})$ . Hence $\{h(F, \alpha), \alpha\in\Theta\}$ can be considered as a bounded generalized
sequence of real numbers. (Defining $\alpha\leqq\beta$ if $V_{\alpha}(p)\supseteqq V_{\beta}(p),$

$\Theta$ becomes a
directed set.) Let $m(F)$ be a generalized Banach limit of the generalized
sequence $\{h(F, \alpha), \alpha\in\Theta\}$ . Then it is easily seen that $m$ is a content on the
family $\mathfrak{F}$ of all compact subsets of $\Omega$ . Clearly $m$ is invariant under $\mathfrak{h}$ . We
introduce in 3? the outer measure $m^{*}$ of the second kind induced by the
content $m$ . Then it is easily proved that the outer measure $m^{*}$ satisfies the
conditions $(i)-(iv)$ of the present theorem.

COROLLARY 1. Let $\mathfrak{g}$ be a locally compact group, then a left (or right) in-
variant Haar measure can be introduced in $\mathfrak{g}$ .

REMARK. Let $R^{n}$ be the n-dimensional Euclidean space. Then there exists
an outer measure $m^{*}$ which is invariant under any isometric transformation
of $R^{n}$ onto itself. Consequently $m$

“ is invariant under any orthogonal trans-
formation of $R^{n}$ . Let $S$ be the surface of an n-dimensional cube $Q$ with
center at $ori_{c\backslash }\circ\cdot in$ . Then an outer measure which is invariant under every
rotations can be introduced in S.

THEOREM 3.5. In the preceding theorem, in order that $ m(\Omega)<\infty$ it is neces-
sary and sufli cient that $\Omega$ is totally bounded.

PROOF. The sufficiency is evident. If 42 is not totally bounded, then
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there exists a $\alpha\in\Theta$ and a sequence $ p_{1},p_{2},\cdots,p_{n},\cdots$ of points in $\Omega$ such that
$ V_{\alpha}(p_{i})\cap V_{\alpha}(p_{j})=\theta$ , for $i\neq j$. It is easily seen that $V_{\alpha}(p_{1})$ contains an open
Baire set $U$. On the other hand, from conditions $(C_{I})$ and (CII) there exists
a sequence $0_{1},$ $\sigma_{2},\cdots 0_{n},\cdots$ of elements of $\mathfrak{h}$ such that $\sigma_{i}V_{\alpha}(p_{1})=V_{a}(p_{i}),$ $ i=1,2,\cdots$ .
Thus we have $ m(\Omega)\geqq\sum_{i=1}^{\infty}m(\sigma_{i}U)=\infty$ . Hence the condition is necessary.

THEOREM 3.6. Let $I2$ be an abstract space and $\mathfrak{h}$ a group of transformations
of $\Omega$ . Suppose that

(1) An $\mathfrak{h}$ -invariant $\sigma- finite^{(*)}\backslash $ outer measure $m^{*}$ is introdnced in 2 $((*)There$

exists a sequence $\{E_{n}, n=1,2,\cdots\}$ of $m^{*}$ -measurable sets of J2 such thal $f2=\sum_{n=1}^{\infty}E_{n}$

and $m(E_{n})<\infty,$ $n=1,2,\cdots.$),

(2) A left-invariant, $\sigma- finite$ outer measure $\mu^{*}$ is introduced in $\mathfrak{h}$ ,
(3’) For any two points $p$ and $q$ in $\Omega$ , there exists a transformation $0\in \mathfrak{h}$

such that $\sigma p=q$ ,
(4) If $f(x)$ is an $m^{*}$ -measurable function defined on $\Omega$ , then $f(\sigma^{-1}x)$ is an

$m^{*}\times\mu^{*}’ measurable$ function of two variables $ x\in\Omega$ and $\sigma\in \mathfrak{h}$ .
Then for any two $m^{*}$-measurable sels $A$ and $B$ of positive measures there

exists a $0\in \mathfrak{h}$ such that $m(oA\cap B)>0$ . Consequently if $m(A)=m(B)$ , then $A$ is
decomposition-equivalent to $B$, that is, there exisl direct decompositions $A=M+$
$A_{1}+A_{2}+\cdots+A_{n}+\cdots,$ $B=N+B_{1}+B_{\lrcorner}$) $+\cdots+B_{n}+\cdots$ such that $m(M)=m(N)=0,$ $\sigma_{n}A_{n}$

$=B_{n},$ $0_{n}\in \mathfrak{h},$ $ n=1,2,\cdots$ .
PROOF. Let $C_{A}(x)$ be the characteristic function of $A$ and $C_{B}(x)$ the

characteristic function of $B$. If our theorem is not true, then we have

$\int C_{\sigma A}(x)C_{B}(x)dm(x)=0$ for every $0\in \mathfrak{h}$ .

Hence we have, using $C_{\sigma A}(x)=C_{A}(\sigma^{-1}x)$ ,

(3.9) $0=\int_{\mathfrak{h}}(\int_{\Omega}C_{\sigma A}(x)C_{B}(x)dm(x))d\chi\ell(\sigma)=\int_{\Omega}(\int_{\iota)}C_{A}(o^{-1}x)C_{B}(x)d\mu(\sigma))dm(x)$ .

We set $H_{x}=\{\sigma;\sigma^{-1}x\in A\}$ . Then the set $H_{x}$ is $\mu^{*}$ -measurable for almost all
$ x\in\Omega$ . For any element $y$ in J2, there exists a $\sigma_{0}\in \mathfrak{h}$ such that $\sigma_{0}x=y$ . We
can easily see that $\sigma_{0}H_{x}=H_{y}$ and hence $H_{x}$ is $\mu^{*}$ -measurable for all $ x\in\Omega$ and
$\mu(H_{x})=\chi\ell(H_{y})$ . Setting $\lambda=/\ell(H_{x}),$ $ x\in\Omega$ , we have

$\int_{\Omega}(\int_{\mathfrak{h}}C_{A}(o^{-1}x)d\mu(\sigma))dm(x)=\int\mu(H_{x})dm(x)=\lambda m(\Omega)$ .
On the other hand,

$\int_{\Omega}(\int_{\mathfrak{y}}C_{A}(\sigma^{-1}x)d\mu(\sigma))dm(x)=\int_{I)}(\int_{\Omega}C_{A}(\sigma^{-1}x)dm(x))d\mu(\sigma)$

$=\int_{\mathfrak{y}}m(\sigma A)d\mu(0)=m(A)\mu(\mathfrak{h})>0$
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From the above two relations we see $\lambda>0$ . Hence we have

$\int_{\mathfrak{h}}(\int_{\Omega}C_{\sigma_{A}}(x)C_{B}(x)dm(x))d\mu(\sigma)=\int_{\Omega}(\int_{\iota)}C_{\Lambda}(o^{-I}x)C_{B}(x)d\mu(\sigma))dm(x)=\int_{J2}\mu(H_{x})C_{B}(x)dm(x)$

$=\int_{J?}\lambda C_{B}(x)dm(x)=\lambda m(B)>0$ .

This contradicts (3.9). So there exists a $0\in \mathfrak{h}$ such that $m(\sigma A\cap B)>0$ . The
last half of our theorem is easily proved.

COROLLARY 1. In the above theorem, if $A$ is a measurable set of positive
measure, then there exists a sequence $\sigma_{1},$ $\sigma_{2},\cdots\sigma_{n},\cdots$ of elemenls of $\mathfrak{h}$ such that

$m(\Omega-\bigcup_{=?1}^{\infty}\sigma_{i}A)=0$ .
COROLLARY 2. $Lctm^{*}$ be a Weil measure in a group $\mathfrak{g}$ . Then any two

measurable sets having the same measure are mutually decomposition-equivalent.
THEOREM 3.7. Assume that all hypotheses of Theorem 3.4 are satisfied.

Then we can introduce a topology in $\mathfrak{h}$ as follows. For any index $\alpha\in\Theta$ and any
compact subset $ F\subseteqq\Omega$ , we set

(3.10) $U_{o’ F}=$ { $0$ ; for every $p\in F,$ $op\in V_{\alpha}(p)$ }.

$By$ “ $\Sigma$ ” we denote the totality of all such $U_{\alpha F}$ (where $\alpha$ and $F$ run over $\Theta$ and
the class of all compact subsets of $\Omega$ respectively). If the system $\Sigma$ is taken as
a complete system of neighborhoods of the identity of $\mathfrak{h}$ , then $\mathfrak{h}$ becomes a topo-
logical group.

PROOF. a) The intersection of all $U_{\sigma P}$, of the system $\Sigma$ is only the identity.
This is quite evident.

b) For any $U_{\alpha F}$ , and $U_{\beta F_{2}}$ there exists a $U_{\gamma ff_{\delta}}$ such that $U_{rF_{\$}}\subseteqq U_{\alpha F_{1}}\cap U_{\beta Fz}$ .
We select a $\gamma\in\Theta$ such that $V_{\gamma}(p)\subseteq V_{\alpha}(p)\cap V_{\beta}(p)$ , and define $F_{3}=F_{1}\cup F_{2}$ . Then
clearly we have $U_{\gamma F\epsilon}\subseteqq U_{aF_{1}}\cap U_{\beta F_{2}}$ .

c) For any $U_{aF}$ there exists a $U_{\beta F_{1}}$ such that $U_{\beta F_{1}}\cdot U_{\beta F_{1}}^{-1}\subseteqq U_{aF}$ . By as-
sumptions, the system $\{V_{\alpha}, \alpha\in\Theta\}$ of uniform neighborhoods of $\Omega$ is symmetric.
Using this, it is easily seen that $U_{\rho_{F_{1}}^{-1}}=U_{\beta F_{1}}$ . Therefore in order to prove c)

it is sufficient to show that there exists a $U_{\beta F_{1}}$ such that $U_{\beta F}^{2}.\subseteqq U_{\alpha F}$ . Without
loss of generality we may assume that $V_{\alpha}(p)^{a}$ (see $(N_{2})$ in \S 1) is compact for
all $ p\in\Omega$ . We select a $\beta\in\Theta$ such that
(3.11) $\rho(p, q)<[2]\beta$ implies $\rho(p, q)<\alpha$ (see Theorem 3.3).

We chose a finite $\beta$ -Net (see Definition 3.1) $\{p_{1},p_{2},\cdots,p_{n}\}$ of $F$ and define
$F_{1}=\bigcup_{i=1}^{n}V_{\alpha}(p_{l})^{a}$ . Then $F_{1}$ is compact and $F_{1}\supseteqq V_{\beta}(F)$ (see Notation 3.3). Let $0$

and $\sigma^{\prime}$ be arbitrary two elements of $U_{\beta\Gamma_{1}}$ . Tllen for every point $p\in F$ we
have $\sigma p\in V_{\beta}(p)\subseteqq V_{\beta}(F)\subseteqq F_{1}$ . Consequently we have $\sigma^{\prime}\sigma p\in V_{\beta}(\sigma p)$ . Hence we
have $\rho(p, 0^{\prime}\sigma p)<[2]\beta$ and consequently $\rho(p, \sigma^{\prime}\sigma p)<\alpha$ . This shows $o^{\prime}o\in U_{aFi}$
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that is, $U_{\beta F}^{2}.\subseteqq U_{\alpha F}$ .
d) For every $U_{\alpha F}$ and every $0\in \mathfrak{h}$ there exists a $U_{\beta F_{1}}$ such that $\sigma^{-1}U_{\beta F_{1}}\sigma$

$\subseteqq U_{\alpha F}$ . We set $F_{1}=\sigma F$ and $\beta=\alpha$ . Then it is easily seen that $o^{-1}U_{\beta F_{1}}\sigma\subseteqq U_{aF}$ .
From a), b), c) and d) we see that $\mathfrak{h}$ becomes a topological group.
THEOREM 3.8. Let $\mathfrak{g}$ be a locally compact group. To any element $a\in \mathfrak{g}$ we

make correspond a transformation $\varphi_{a}$ of $fi$ such that $\varphi_{a}(x)=ax,$ $x\in \mathfrak{g}$ . And we
define $\varphi_{a}\varphi_{b}(x)=\varphi_{a}(\varphi_{b}(x))$ . Then clearly we have $\varphi_{a}\varphi_{b}=\varphi_{ab}$ . So the set $\{\varphi_{a} ; a\in \mathfrak{g}\}$

can be regarded as a lransformation group of $\mathfrak{g}$ . We shall denote this trans-
formation group by $\mathfrak{g}_{1}$ . We set $I2=\mathfrak{g}$ and $\mathfrak{h}=\mathfrak{g}_{1}$ , and introduce a topology in $\mathfrak{g}_{1}$

by the method of the preceding theorem. Then the topological group $\mathfrak{g}_{1}$ is iso-
morphic with the original group $(i\cdot$

The proof of this theorem is not difficult.
THEOREM 3.9. Let $m^{*}$ be an outer measzs $re$ in $\Omega$ which is $i$,ltroduced in

Theorem 3.4. Suppose that $\mathfrak{h}$ is topologized by the method of Theorem 3.7. Then
$m^{*}$ is a continuous measure, that is, for every measurable set $A$ of finite measure
and every $\epsilon>0$ there exists a neighborhood $U$ of the identity of $\mathfrak{h}$ such that

$ m(\sigma A\ominus A)<\epsilon$ for every $0\in U$ ,

where $\sigma A\ominus A$ denotes the symmetric difference of $\sigma A$ and $A$ .
PROOF. There exist an open set $G$ and a compact set $F$ such that $F\subseteqq A$

$\subseteqq G$ and $m(G-F)<e/3$ . It is easily seen that there exists an $\alpha\in\Theta$ such that
$\bigcup_{p\in F}V_{\alpha}(p)\subseteqq G$ . We set $U=U_{aF}$ (see (3.10)). Then we have, for every $\sigma\in U$,

$ m(\sigma A\ominus A)\leqq m(\sigma A\ominus\sigma F)+m(\sigma F\ominus F)+m(F\ominus A)\leqq m(A-F)+m(G-F)+m(A-F)\leqq$

$ 3m(G-F)<\epsilon$ .
THEOREM 3.10. To every point $(x, \sigma)$ of the product space $\Omega\times \mathfrak{h}$ we make

correspond an element $o^{-1}x$ in $\Omega$ . Then we have a continuous mapping $\varphi(x, \sigma)=$

$\sigma^{-1}x$ of $\Omega\times \mathfrak{h}$ into $\Omega$ .
PROOF. Let $V_{\alpha}(\sigma^{-1}x)$ be a neighborhood of $\sigma^{-1}x$ in S2. We select a $\beta\in\Theta$

such that $V_{\beta}(x)^{a}$ is compact and $\rho(p, q)<[2]\beta$ implies $\rho(p, q)<\alpha$ . We set
$F=V_{\beta}(x)^{a}$ and $U=U_{\beta F}$ (see (3.10)). Then for every $\tau\in Uo$ and every $y\in V_{\beta}(x)$ ,
we have

$\rho(\tau^{-1}y, \sigma^{-1}x)=\rho(y, \tau(\sigma^{-1}x)\leqq\rho(y, x)+\rho(x, \tau o^{-1}x)\leqq[2]\beta<\alpha$ .
(See Remarks in Notation 3.1 and 3.2.) This completes the proof.
$CoROLLARY$ . If $f(x)$ is a continuous (Baire) function defined on $\Omega$ , then

$f(o^{-1}x)$ is a continuous (Baire) function of two variables $ x\in\Omega$ and $0\in \mathfrak{h}$ .
THEOREM 3.11. Let $\Omega$ be a locally compact and $\sigma$ -compact uniform space

and $\mathfrak{h}$ a homeomorphism group of $\Omega$ satisfying the conditions $(C_{I})$ and $(C_{I1})$ of
Theorem 3.4. Let $m^{*}$ be an outer measure introduced in Theorem 3.4. $We$

assume that $\mathfrak{h}$ becomes a locally compact and $\sigma$ -compact group, when we introduce
a topology in $\mathfrak{h}$ as in Theorem 3.7. Then we can introduce a lefl-invariant
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Haar measure $\mu^{*}$ in $\mathfrak{h}$ . If $f(x)$ is an $m^{*}$ -measurable function defined on $\Omega$ ,
then $f(o^{-1}x)$ is an $m^{*}X\mu^{*}\backslash $ -measurable function defined on the product space
$42\times \mathfrak{h}$ .

PROOF. In order to prove our theorem, it is sufficient to show that for
any $m^{*}$-measurable set $A\subseteqq J2$ the set $\{(x, \sigma);o^{-1}x\in A\}$ is $m^{*}\times\mu^{*}$ -measurable.
It is easily seen that every Baire set of $\Omega\times \mathfrak{h}$ is $m^{*}\times\mu^{*}$ -measurable. Thus if
$A$ is a Baire set, then from the Corollary of the above theorem our assertion
is evident. Hence it is sufficient to show that for any set $A$ of $m^{*}$-measure
$0$ the set $\{(x, 0);\sigma^{-1}x\in A\}$ is a set of $m^{*}\times\mu^{*}$ -measure $0$ . There exists a Baire
set $B$ such that $A\subseteqq B$ and $m(B)=0$ . By using Fubini’s theorem, it is easily
$s_{\vee}^{\circ}en$ that the set $\{(x, \sigma);o^{-1}x\in B\}$ is a set of $m^{k}\sim\times\mu^{*}$ -measure $0$ . Consequently
the set $\{(x, \sigma);o^{-1}x\in A\}$ is clearly a set of $m^{*}\times\mu^{*}$-measure $0$ .

THEOREM 3.12. Suppose that all $h_{3p_{0}t}heses$ of the preceding theorem are
salisfied. Let $\Phi(A)$ be a $\sigma$ -additive set function defined on the class $\mathfrak{B}_{0}$ of all
Baire sets of $\Omega$ . If $B$ is a Baire set of $m^{1\backslash }$’-measure $0$ in $\Omega$ , then we have
$\Phi(\sigma B)=0$ for almost all $\sigma\in \mathfrak{h}$ .

PROOF. Without loss of generality we may assume that $\Phi(A)$ is non-
negative. Then $\Phi(A)$ can $b\circ.re_{\Leftrightarrow}^{y}$

} $ardcd$ as a $\sigma$ -additivc finite measure on $\mathfrak{B}_{0}$ .
We introduce two product measures $m^{^{\prime}}|\times/\ell^{*}$ and $\Phi\times\mu^{*}$ in the product space
S2 $\times \mathfrak{h}$ . Let $\Gamma=\{(x, \sigma);o^{-1}x\in B\}$ . By using Fubini’s theorem it is easily seen
that the set $\Gamma$ is a set of $m^{*}\times\mu^{*}$ -measure $0$ . Hence the set $H_{x}=\{\sigma;\sigma^{-1}x\in B\}$

is a set of $\mu^{*}$-measure $0$ for almost all $x\in 42$ . As we have already remarked
in the proof of Theorem 3.6, the set $H_{x}$ is $\mu^{*}$ -measurable and has the same
$\mu$-measure for all $ x\in\Omega$ . Hence $H_{x}$ is a sct of $\mu^{*}$ -measure $0$ for all $ x\in\Omega$ .
This shows again that the set $\Gamma$ is also a set of $\Phi\times\mu^{s^{\prime}}<$ -measure $0$ . From
Fubini’s theorem we see that the set $oB=\{x;\sigma^{-1}x\in B\}$ is also a sct of $\Phi-$

measure $0$ for almost all $\sigma\in \mathfrak{h}$ .
$C_{oROLLARY}$ . Let $7\overline{Jl}$ be a measure defined on $\mathfrak{B}_{0}$ . If $\overline{m}$ satisfies the condition

(i) of Theorem 3.4, then from the above theorem il is easily seen that $m(A)=0$

implies $\overline{m}(A)=0$ for any Baire set A. Hence there exists an $m^{*}$ -measurable
function $f(x)$ such that

(3.11) $\overline{m}(A)=\int_{A}f(x)dm(x)$ for every Baire set $A$ of $\Omega$ .

THEOREM 3.13. Suppose that $\Omega$ and $\mathfrak{h}$ satisfy the hypotheses of Theorem 3.4.
Let $m^{*}$ be an outer measure in $\Omega$ which is introduced in Theorem 3.4. $We$

introduce a topology in $\mathfrak{h}$ by. the method of Theorem 3.7. We assume that $\mathfrak{h}$ is
locally compact and $\sigma$-compact. In order that a $\sigma$ -additive set function $\Phi(A)$

defined on the class $\mathfrak{B}_{0}$ of all Baire sets of $\Omega$ is absolutely continuous with
respect to $m$, it is necessary and $suff_{l}cient$ that one of the following conditions
is satisfied;
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1) $\lim_{\mathcal{O}\rightarrow 0}\Phi(\sigma A)=\Phi(A)$ for every toially bounded Baire set $A$ of m’-measure $0$ .
2) $\lim_{\sigma\rightarrow 0}\Phi(\sigma A)=\Phi(\Lambda)$ for every totally bounded Baire set $A$ .
3) $\lim_{\sigma\rightarrow 0}W(\Phi^{\sigma}-\Phi;F)=0$ for every compact Baire set $F$ of $\Omega$ , where $\Phi^{\sigma}$ de-

notes the set function such that $\Phi^{\sigma}(A)=\Phi(\sigma^{-1}A)$ and $W$ denotes the absolute
variation.

PROOF. If $\Phi(A),$ $A\in \mathfrak{B}_{0}$ is an absolutely continuous $\sigma$-additive set function
with respect to $m$ , then there exists an $m^{*}$-measurable function $f(x)$ such that

$\Phi(A)=\int_{A}f(x)dm(x)$ for every $A\in \mathfrak{B}_{0}$ . It is easily seen that $\Phi^{\sigma}(A)=\Phi(\sigma^{-1}A)=$

$\int_{\sigma^{-}}f(x)dm(x)=\int_{A}f(\sigma^{-1}x)dm(x)$ . Hence we have

$W(\Phi^{\sigma}+\Phi;\sim F)=\int_{F}|f(\sigma^{-1}x)-f(x)|dm(x)$ .

For every $\epsilon>0$ there exists a continuous function $g(x)$ defined on $I2$ , such

that $\int_{\Omega}|f(x)-g(x)|dm(x)<\epsilon$ (see Theorem 2.12). Then we have

$W(\Phi^{\sigma}-\Phi;F)=\int_{\Gamma}|f(o^{-1}x)-f(x)|dm(x)$

$\leqq\int_{\Gamma\prime}|f(\sigma^{-1}x)-g(\sigma^{-1}x)|dm(x)+\int_{F}|g(\sigma^{-}x)-g(x)|dm(x)+\int_{F}|g(x)-f(x)|dm(x)$

$<\int_{F}|g(o^{-1}x)-g(x)|dm(x)+2\epsilon$ .

$g(x)$ being continuous, we have $\lim_{\sigma\rightarrow 0}W(\Phi^{\sigma}-\Phi;F)\underline{<}2\epsilon$ . This shows that the

condition 3) is satisfied. It is quite evident that 3) implies 2), and 2) implies
1). If the condition 1) is satisfied, then by the preceding theorem we have
$\Phi(A)=0$ for every totally bounded Baire set $A$ of $m^{*}$ -measure $0$ . Hence $\Phi$ is
absolutely continuous with respect to $m$ .

THEOREM 3.14. Under the assumptions of the preceding theorem, we have
the following:

(1) For any two $m^{*}$-measurable sets $A$ and $B$ of positive measure there
exists a $\sigma\in \mathfrak{h}$ such that $m(\sigma A\cap B)>0$ . And consequently if $m(A)=m(B)$ , then $A$

is decomposition-equivalent to $B$ with respect to $m$ .
(2) Let $\overline{m}^{*}$ be an outer measure in $\Omega$ uhich satisfies the conditions $(i)-(iv)$

of Theorem 3.4. Then there exists a number $\lambda$ such that $\overline{m}^{*}(A)=\lambda m^{*}(A)$ , that
$is$ , the $\mathfrak{h}$ -invariant outer measure is unique up to a multiplicative constant.

PROOF. (1) is evident from Theorem 3.6 and Theorem 3.11. We shall
prove (2). By the Corollary of Theorem 3.12 we have

$\overline{m}(A)=\int_{A}f(x)dm(x)$ for every Baire set $A$ of J2.
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Hence in order to prove (2) it is sufficent to show that $ f(x)\equiv\lambda$ on 2. Suppose
that $f(x)$ is not constant. Then there exist two real numbers $r$ and $R(r<R)$

such that the sets $A=\{x;f(x)>R\},$ $B=\{x;f(x)<r\}$ have positive measures.
From (1) there exists a $0\in \mathfrak{h}$ such that $m(\sigma A\cap B)>0$ . We set $M=A\cap o^{-1}B$.
Then we have

$\int_{M}f(x)dm(x)=\overline{m}(M)=\overline{m}(oM)=\int_{\sigma M}f(x)dm(x)$ .

On the other hand it is evident that $M\subseteqq A$ and $oM\subseteqq B$ . Hence the following
inequalities hold.

$\int_{1I}f(x)dm(x)\geqq Rm(M)$ , $\int_{\sigma M}f(x)dm(x)\leqq rm(\sigma M)=rm(M)$ .

Without losing the generality we may assume that $ 0<m(M)<\infty$ . So we
have arrived at a contradiction.

COROLLARY 1. The assumptions be the same as in Theorem 3.13. If $\tau$ is a
homeomorphism of $f2$ such that $\tau\sigma=0\tau$ for every $\sigma\in \mathfrak{h}$ , then we have

$m^{*}(\tau A)=l(\tau)m^{*}(A)$ ,

where $l(\tau)$ is a constant depending on $\tau$ .
COROLLARY 2. Let $m^{*}$ be a $le|^{C}t$-invariant Haar measure in a locally compact

and o-compact group $ti$ . Then we have
$m^{\star}(\Lambda a)=l(a)m^{*}(A)$ for every $A\subseteqq \mathfrak{g}$ ,

where $l(a)$ is a constant depending on $a$ .
THEOREM 3.15. Let $\Omega$ be a locally compact and $\sigma$ -compact unifo $m$ space

whose topology is introduced by a system $\{V_{\alpha}. \alpha\in\Theta\}$ of symmetric uniform
neighborhoods. Suppose that $\mathfrak{h}$ is a group of homeomorphisms of 9 salisfying
the following conditions:

$(C_{I})$ $oV_{a}(p)=V_{\alpha}(op)$ for every $\sigma\in \mathfrak{h}$ and eveyy $ p\in\Omega$ .
(CIi) For any two points $p$ and $q$ in $\Omega$ there exists a homeomorphism $\sigma\in \mathfrak{h}$

such that $\sigma p=q$ .
We introduce a topology in $\mathfrak{h}$ as in Theorem 3.7. We assume that $\mathfrak{h}$ is locally
compact and $\sigma$ -compact. Let $\mathfrak{h}_{I}$ be an abstract subgroup of $\mathfrak{h}$ . If $\mathfrak{h}_{I}$ satisfies
the condition $(C_{II})$ , then we have the following:

(1’) We can introduce an outer measure $m_{1}^{*}$ in $\Omega$ which satisfies the fol-
lowing conditions:

(i) $m_{1}^{*}(oA)=m_{1^{*}}(A)$ for every $\sigma\in \mathfrak{h}_{1}$ and every subset $ A\subseteqq\Omega$ .
(ii) The Baire set is $m_{1}^{*}$-measurable.
(iii) For any subset $A$ of $\Omega$ there exists a Baire set $B$ such that $A\subseteqq B$ and

$m_{1}^{*}(A)=m_{1}(B)$ . (For measurable set $B$ we shall use $m_{1}$ instead of $m_{1}^{*}.$ )

(iv) $m_{1}^{*}(M)>0$ for every open set $ M\neq 0;m_{1}^{*}(A)<\infty$ for every totally
bounded set $A$ .
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(2) The outer measure $m_{1}^{*}$ in S2 which satisfies the above conditions $(i)-(iv)$

is unique up to a multiplicative constant, and any two measurable sets $A$ and
$B$ of the same measure are mutually decomposition-equivalcnt with respect to $m_{1}^{*}$ .

(3’) The outer measure $m_{1}^{*}$ is invariant under $\mathfrak{h}$ .
PROOF. (1’) is already proved in Theorem 3.4. We shall prove (2’). Let

$\overline{\mathfrak{h}}_{1}$ be the closure of $f)_{1}$ . Then $\overline{\mathfrak{h}}_{1}$ is a subgroup of the topological group $\mathfrak{h}$ .
Hence $\overline{\mathfrak{h}}_{1}$ is locally compact and $\sigma$ -compact. The proof of the assertion $(2^{o})$ is
obtained by the following lemma:

LEMMA. The outer measure $m_{1}^{*}$ is invariant under $\overline{\mathfrak{h}}_{J}$ , that is, for every

subset $A$ of $\Omega$ and every $\sigma\in\overline{\mathfrak{h}}_{1}$ , we have $m_{1}^{*}(\sigma\Lambda)=m_{1}^{*}(A)$ .
PROOF of the Lemma. Let $A$ be a Baire set of finite $m_{1}$ -measure. From

conditions (ii) and (iii) we see that $m_{1}^{*}$ is normal (see Theorem 2.9, Definitions
2.2 and 2.3). Hence for every $e>0$ there exist a compact Baire set $F$ and an
open Baire set $G$ such that $F\subseteqq A\subseteqq G$ and $ m_{1}(G-F)<\epsilon$ . Let $\sigma$ be any element
of $\overline{\mathfrak{h}}_{1}$ . We wish to show that $m_{1}(\sigma A)=m_{I}(A)$ . It is easily seen that we can
assume $ m_{1}(\sigma G-\sigma F)<\epsilon$ . (Hint: Select $G_{1}$ and $F_{1}$ such that $F_{1}\subseteqq\sigma A\subseteqq G_{1}$ and
$ m_{1}(G_{1}-F_{1})<\epsilon$ . And set $F_{2}=F\cup\sigma^{-}F_{1},$ $G_{2}=G\cap\sigma^{-1}G_{1}$ . Use these F. and $G_{2}$

instead of $F$ and $G.$ ) Since $\overline{\mathfrak{h}}_{1}$ is dense in $\mathfrak{h}_{1}$ , we can chose a $\sigma_{1}\in \mathfrak{h}_{1}$ such that
$\sigma_{1}^{-1}\sigma F\subseteqq G$ (see Theorem 3.7). Then we have

$ m_{1}(\sigma A)\leqq m_{1}(oG)<m_{1}(\sigma F)+\epsilon=m_{1}(\sigma_{1}^{-1}oF)+\epsilon\leqq m_{1}(G)+\epsilon\leqq m_{1}(A)+2\epsilon$ .
This shows that $m_{1}(\sigma A)\leqq m_{1}(A)$ . Similarly we have $m_{1}(\sigma^{-1}(\sigma\Lambda))\leqq m_{1}(\sigma A)$ , that
is, $m_{1}(A)\leqq m_{1}(\sigma A)$ , and thus $m_{1}(\sigma A)=m_{1}(A)$ .

Now we shall prove $(2^{o})$ by using the above Lemma. $m_{1}^{*}$ is invariant
under $\overline{\mathfrak{h}}_{1}$ . On the other hand $\overline{\mathfrak{h}}_{1}$ is locally compact and $\sigma$-compact, so by

Theorem 3.14 the $\overline{\mathfrak{h}}_{1}$ -invariant measure is unique and consequently the $\mathfrak{h}_{1}-$

invariant measure is unique (up to a multiplicativc constant). Let $\Lambda$ and $B$

be two $m_{1}^{*}$ -measurable sets of positive measures. Then there exists a $0\in\overline{\mathfrak{h}}_{1}$

such that $m_{1}(\sigma A\cap B)>0$ . $m_{1}$ is a continuous measure, so it is easily seen
that there exists a $\sigma_{1}\in \mathfrak{h}_{1}$ such that $m_{1}(\sigma_{1}A\cap B)>0$ .

Finally we shall prove (3’). Let $m^{*}$ be an $\mathfrak{h}$ -invariant outer measure in
$I2$ which is introduced in Theorem 3.4. Of course $m^{*}$ is invariant under $\mathfrak{h}_{1}$ .
Hence from (2’) of the present theorem we have $m(\Lambda)=\lambda m_{1}(A)$ for every
Baire set $A$ of $\Omega$ . Thus we get obviously the assertion (3).

\S 4. Topological properties of $\mathfrak{h}$ .
Assumption $(A_{1})$ . Throughout this \S , by “ $\Omega$ ” we shall always mean a

locally compact and $\sigma$ -compact uniform space whose topology is defined by
a sy\‘otem $\{V_{a}, \alpha\in\Theta\}$ of symmetric uniform neighborhoods, unless the contrary
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is expIicitely stated.
Assumption $(A_{2})$ . We assume that for any two points $p$ and $q$ in J2 there

exists a homeomorphism $\sigma$ of $f2$ such that $op=q$ and satisfies the condition
(CII) of Theorem 3.4.

THEOREM 4.1. S2 is a complete space.
The proof is easy and is omitted.
THEOREM 4.2. Let $\mathfrak{h}$ be a group of homeomorphisms of $\Omega$ satisfying the

conditions $(C_{I})$ and (CII) of Theorem 3.4. Then $\mathfrak{h}$ is topologized as in Theorem
3.7. Let $W$ be an open subset of $\mathfrak{h}$ . In order that $W$ is totally bounded it is
necessary and sufficient tlZat for every compact set $ F\subseteqq\Omega$ the set $W(F)=\{\sigma p$ ;
$\sigma\in W,$ $p\in F$} is totally bounded.

PROOF. First we shall prove the necessity of the condition. Suppose that
$W$ is a totally bounded open set of $\mathfrak{h}$ and $F$ a compact set of $\Omega$ . We select
an $\alpha\in\Theta$ and a $\beta\in\Theta$ such that
(4.1) $V_{\alpha}(p)^{a}$ is compact for every $ p\in\Omega$ , and $\rho(p, q)<[2]\beta$ implies $\rho(p, q)<\alpha$ .
(See Theorem 3.3 and Notations 3.2 and 3.1.)

Let $U$ be a neighborhood of the identity of $\mathfrak{h}$ such that $U=U_{\beta F}$ (see Theorem

3.7). Since $W$ is totally bounded, there exist $\sigma_{1},$
$\sigma_{p},\cdots\sigma_{n}\in \mathfrak{h}$ such that $\bigcup_{i=1}^{n}\sigma_{i}U\supseteqq W$.

Hence we have $W(F)\subseteqq\bigcup_{=?1}^{n}\sigma_{i}U_{\rho_{F}}(F)$ . On the other hand from the definition of

$U_{\beta F}$ (see Theorem 3.7) we see that $U_{\beta F}(F)\subseteqq V_{\beta}(F)$ (see Notation 3.3). So we
have $W(F)\subseteqq\bigcup_{i=1}^{n}o_{l}V_{\beta}(F)$ . By Theorem 3.3 the set $V_{\beta}(F)$ is totally bounded,

and therefore $W(F)$ is also a totally bounded set.
We shall prove the sufficiency of the condition. Suppose that $W(F_{1})$ is

always totally bounded for every compact subset $ F_{1}\subseteqq\Omega$ . Let $U$ be a neigh-
borhood of the identity of $\mathfrak{h}$ such that $U=U_{\alpha F}$ (see Theorem 3.7). We select
a $\beta\in\Theta$ such that

(4.2) $\rho(p, q)<[4]\beta$ implies $\rho(p, q)<\alpha$ .

Since $W(F)$ is totally bounded, there exists a $\beta$ -Net (see Definition 3.1) $\{q_{1},$ $q_{2}$ ,
$q_{m}\}$ of $W(F)$ . Similarly there exists a $\beta$ -Net $\{p_{1}, p_{2},\cdots,p_{n}\}$ of $F$. Let a

finite system $\{\sigma p_{1}, \sigma p_{2},\cdots, op_{n}\}$ corresponds to $\sigma\in W$. Then for every $\sigma p_{i},$ $1\leqq i\leqq n$ ,

there exists a $q_{j}$ such that $\rho(\sigma p_{i}, q_{j})<\beta$ . So we set $\rho\gamma\iota_{i}(\sigma)=j,$ $1\leqq i\leqq n$ . Thus we
have a finite system $(m_{1}(\sigma), m_{2}(\sigma),\cdots,$ $m_{n}(0))$ of natural numbers corresponding
to $(\sigma p_{1}, \sigma p_{2},\cdots, \sigma p_{n})$ . It is clear that $1\leqq m_{i}(0)\leqq m,$ $i=1,2,\cdots,$ $n$ , and

(4.3) $\rho(op_{i}, q_{m_{i^{(\sigma)}}})<\beta$ , $i=1,2,\cdots,$ $n$ .
If for two elements $\sigma$ and $\tau$ of $W$ the equality $(m_{1}(\sigma), m_{2}(0),\cdots,$ $m_{n}(\sigma))=(m_{1}(\tau)$ ,
$m_{2}(\tau),\cdots,$ $m_{n}(\tau))$ holds, then $\sigma$ and $\tau$ are called to be equivalent and denoted by
$\sigma\sim\tau$ . Thus $W$ is divided into the classes of equivalent elements, and these
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classes are clearly finite. From each class we chose an element as a repre-
sentative of that class. Then we get a finite system $\{\sigma_{1}, \sigma_{2},\cdots, 0_{t}\}$ of elements

of $W$. We shall show that $\bigcup_{i=1}^{t}o_{i}U\supseteqq W$. Let $\sigma$ be an arbitrary element of

$W$. Then there exists a $\sigma_{s}(1\leqq s\leqq t)$ such that
$(m_{1}(\sigma), n\iota-)(\sigma),\cdots,$ $m_{n}(\sigma))=(m_{1}(\sigma_{s}), m_{2}(0_{s}),\cdots,$ $m_{n}(\sigma_{s}))$ .

IIence by (4.3)

(4.4) $\rho(op_{i}, q_{m_{\lambda}}(\sigma))<\beta$ , $\rho(\sigma_{S}p_{i}, q_{m_{i}}(\sigma_{s}))<\beta$ , $i=1,2,\cdots,$ $n$ .
On the other hand $m_{i}(\sigma)=m_{i}(\sigma_{s}),$ $i=1,2,\cdots,$ $n$ and so
(4.5) $\rho(\sigma p_{i}, \sigma_{s}p_{i})<[2]\beta$ , $i=1,2,\cdots,$ $n$ .

Consequently we have
(4.6) $\rho(\sigma_{s}^{-1}\sigma p_{i}, p_{i})<[2]\beta,$ $i=1,2,\cdots,$ $n$ (see the Remark in Notation 3.1).

Let $p$ be an arbitrary point in $F$. Then there exists a $p_{i}$ such that $\rho(p,p_{i})<$

$\beta$ . Hence we have from (4.6)

$\rho(p, \sigma_{s}^{-1}\sigma p)\leqq\rho(p, p_{i})+\rho(p_{i}, \sigma_{s}^{-1}\sigma p_{i})+\rho(\sigma_{s}^{-1}op_{i}, \sigma_{s}^{-1}\sigma p)<4\beta<\alpha$ .
(See the remark in Notation 3.2.)

This shows that $0_{S}^{-1}\sigma\in U_{\alpha F}=U$, that is, $0\in o_{s}U$. Hence $W$ is totally bounded.
THEOREM 4.3. Under the assumptions of the preceding theorem, in order

that an open set $W$ of $\mathfrak{h}$ is $\sigma$ -bounded (see Definition 3.2) it is necessary and
suffcient that for every compact set $F$ of $\Omega$ the set $W(F)=\{op;\sigma\in W, p\in F\}$ is
o-bounded.

PROOF. This is proved quite similarly as in the preceding theorem.
THEOREM 4.4. Let $\mathfrak{h}$ be a group of homeomorphisms of $\Omega$ satisfying the

conditions $(C_{I})$ and (CII) of Theorem 3.4. $\mathfrak{h}$ is topologized as in Theorem 3.7.
In order that $\mathfrak{h}$ is totally bounded it is necessary and sufficient that 9 is compact.

PROOF. If $\Omega$ is compact, then $\mathfrak{h}(F)$ is always totally bounded for every
compact subset $F$ of $\Omega$ . From Theorem 4.2 we see that $\mathfrak{h}$ is totally bounded.
Conversely, suppose that $\mathfrak{h}$ is totally bounded. Then from Theorem 4.2 $\mathfrak{h}(p)$

$=\Omega$ is totally bounded (see Assumption $(A_{2})$). Hence $\Omega$ is compact (see

Theorem 4.1).

THEOREM 4.5. Under the assumptions of the preceding theorem $\mathfrak{h}$ is always
o-bounded, that is, for any open set $U$ of $\mathfrak{h}$ there exists a sequence $\sigma_{1},$ $\sigma_{2},\cdots\sigma,\cdots$

of elements of $\mathfrak{h}$ such that

$\bigcup_{i=1}^{\infty}\sigma_{i}U=\mathfrak{h}$ .

PROOF. This is evident from Theorem 4.3, as $\Omega$ is o-bounded.
THEOREM 4.6. Let $\mathfrak{h}$ be a group of homeomorphisms of $\Omega$ satisfying the

conditions $(C_{I})$ and (CII) of Theorem 3.4. $\mathfrak{h}$ is topologized as in Theorem 3.7.
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If 9 is connected, lhen $\mathfrak{h}$ is always locally totally bounded.
PROOF. Since 2 is locally compact, there exists an $\alpha\in\Theta$ such that

(4.7) $V_{\alpha}(p)^{\iota}$ is compact for every $ p\in\Omega$ .
We select a $\beta\in\Theta$ such that

(4.8) $ p(p, q)<[2]\beta$ implies $\rho(p, q)<\alpha$ .

We take an arbitrary point $p_{0}$ in J2. From Theorem 3.3 and 3.2 it is evident
that

(4.9) $V_{\beta^{n}}(p_{0})$ is totally bounded for every $n$ and $\bigcup_{n=1}^{n}V_{\beta^{n}}(p_{0})=\Omega$ .

Let $U$ be a neighborhood of the identity of $\mathfrak{h}$ such that
(4.10) $U=\{\sigma;op_{0}\in V_{\beta}(p_{0})\}$ .
We shall show that $U$ is totally bounded. Let $F$ be a compact subset of J2.
From (4.9) there exists $V_{\beta^{n}}(p_{0})$ such that $F\underline{\subset_{-}}V_{\beta^{n}}(p_{0})$ (notice that $ V_{\beta^{m}}(p_{0})\subseteqq$

$V_{\beta}^{n+1}(p_{0})^{i})$ . Hence for every point $p\in F$ there exists a $\beta$ -Chain (see Definition
3.1) $\{p_{0}, p_{1},\cdots,p_{n}=p\}$ of order $n$ . Then for every $\sigma\in U$ the system $\{p_{0},$ $\sigma p_{0},$ $\sigma p_{1}$ ,

, $op_{n}=\sigma p$} is clearly a $\beta$ -chain of order $n\dashv- 1$ . This shows that $\rho(p_{0}, \sigma p)<$

$[n+1]\beta$ , that is, $\sigma p\in V_{\beta}^{n+1}(p_{0})$ . So we have $U(F)\subseteqq V_{\beta^{n+1}}(p_{t)})$ . Hence $U(F)$ is
totally bounded. From Theorem 4.2 we see that $U$ is totally bounded.

THEOREM 4.7. Let $\Omega$ be a metric space whose bounded set is compact and
$\mathfrak{h}$ a group of isometric transformations of 9 satisfying the condition (CII) of
Theorem 3.4. We introduce a topology in $\mathfrak{h}$ as in Theorem 3.7. Then $\mathfrak{h}$ is always
locally totally bounded.

PROOF. For any $\epsilon>0$ and any point $ p_{0}\in\Omega$ we set $U_{\epsilon p_{0}}=\{\sigma;d(p_{0}, op_{0})<\epsilon\}$ .
Then $U_{\epsilon p_{0}}$ is a neighborhood of the identity of $\mathfrak{h}$ . We shall show that $U_{\epsilon p_{0}}$

is totally bounded. Let $F$ be a compact subset of $f2$ . Then there exists a
number $R>0$ such that

(4.11) $d(p_{0}, p)<R$ for every $p\in F$ .

For every $\sigma\in U_{\epsilon p_{0}}$ and every $p\in F$, we have $d(p_{0}, \sigma p)\leqq d(p_{0}, \sigma p_{0})+d(op_{0}, \sigma p)<\vee c$

$+d(p_{0}, p)\leqq\epsilon+R$. This shows that the set $U_{cp_{0}}(F)$ is contained in the sphere of
center $p_{0}$ and radius $\epsilon+R$, and consequently is totally bounded. Hence by
Theorem 4.2 we get our theorem.

THEOREM 4.8. Let $\Omega$ be a locally compact and o-compact uniform space
whose topology is defined by a system $\{V_{\alpha}, \alpha\in\Theta\}$ of symmetric uniform neigh-
borhoods. We assume that for any two points $p_{0}$ and $q_{0}$ in $I2$ there exists a
homeomorphism $\sigma$ such that $op_{0}=q_{0}$ and

$(C_{I})$ $\sigma V_{\alpha}(p)=V_{a}(\sigma p)$ for every $\alpha\in\Theta$ and every $p\in t2$ .
Let $\mathfrak{h}^{*}$ be a group of all the homeomorphisms $0’ s$ which satisfy the above
condition $(C_{I})$ . $\mathfrak{h}^{*}$ is topologized as in Theorem 3.7. We assume that $\mathfrak{h}^{*}$ is
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locally totally bounded, then $\mathfrak{h}^{*}$ is complete if the following condition is satisfied:
(CIII) For any point $q\in V_{\alpha}(p)$ there exists a $\beta\in\Theta$ (depending on q) such

that $r\in V_{\beta}(p)$ and $s\in V_{\beta}(q)$ imply $s\in V_{\alpha}(r)$ .
PROOF. Let $\{\sigma_{\xi}, \xi\in\Phi\}$ be a generalized Cauchy sequence of $\mathfrak{h}^{*}$ , that is, a

scquence such that for any neighborhood $U$ of the identity of $\mathfrak{h}^{*}$ there exists
a $\xi_{0}\in(p$ such that $\xi_{0}\leqq\eta$ and $\xi_{0}\leqq\zeta$ imply $\sigma_{\zeta^{-1}}\sigma_{\eta}\in U$. Then it is easily seen
that for every point $ p\in\Omega$ the sequence $\{\sigma_{\xi}p)\xi\in\Phi\}$ is also a generalized
Cauchy sequcnce in 9. Since 2 is complete (see Theorem 4.1), the generalized
Cauchy sequence $\{o_{\xi}p, \xi\in\Phi\}$ converges to a limit $\varphi(p)$ . From the condition
(Ct $1\{$ ) we can easily see that

(4.12) $\rho(p, q)<\alpha$ implies $ p(\varphi(p), \varphi(q))<\alpha$ .
We shall show that the generalized sequence $\{\sigma_{\xi^{-1}}, \xi\in\Phi\}$ is also a generalized
Cauchy sequence of $\mathfrak{h}^{*}$ .

To prove this it is sufficient to show that for every neighborhood $U=U_{\alpha F}$

(see Theorem 3.7) of the identity of $\mathfrak{h}^{*}$ there exists a $\xi_{0}\in\Phi$ such that $\xi_{0}\leqq\eta$

and $\xi_{0}\leqq\zeta$ imply $\sigma_{\zeta}\sigma_{\eta}^{-1}\in U$. Let $U_{0}=U_{0^{-1}}$ be a totally bounded neighborhood
of the identity of $\mathfrak{h}^{*}$ . Then there exists a $\xi_{0}\in\Phi$ such that $\xi_{0}\leqq\eta$ and $\xi_{0}\leqq\zeta$

imply $\sigma_{\zeta^{-1}}\sigma_{\eta}\in U_{0}$ . Hence we have

(4.13) $\sigma_{\eta}\in\sigma_{\xi_{0}}U_{0}$ for every $\eta\geqq\xi_{0}$ .
Define
(4.14) $F_{0}=(U_{0^{-1}}(\sigma_{\xi_{0}^{-1}}F))^{a}$

Since $\sigma_{\xi_{0}^{-1}}F$ is compact and $U_{0^{-1}}(=U_{0})$ is totally bounded, $U_{0^{-1}}(\sigma_{\xi_{0}^{-1}}F)$ is totally
bounded (see Theorem 4.2) and consequently $F_{0}$ is compact. Let $U^{*}$ be a
neighborhood of the identity of $\mathfrak{h}^{*}$ such that

(4.15) $U^{*}=U_{\alpha F_{0}}$ (see Theorem 3.7).

Then there exists a $\xi^{*}\in\Phi$ such that $\xi^{*}\leqq\eta$ and $\xi^{*}\leqq\zeta$ imply $0_{\zeta^{-1}}\sigma_{\eta}\in U^{*}$ . We
chose a $\overline{\xi}_{0}\in\Phi$ such that $\xi_{0}\leqq\overline{\xi}_{0}$ and $\xi^{*}\leqq\overline{\xi}_{0}$ . Then for every $p\in F,$ $\eta\geqq\overline{\xi}_{0}$ and
$\zeta\geqq\overline{\xi}_{0}$ , we have

$\rho(\sigma_{\zeta}\sigma_{\eta}^{-1}p,p)=\rho(\sigma_{\eta}^{-1}p, o_{\zeta^{-1}}p)=\rho(\sigma_{\eta}^{-1}p, \sigma\sigma_{\eta}^{-1}p)$ , where $\sigma\in U^{*}$

(using (4.13)),

$=\rho(\sigma_{0}^{-1}\sigma_{\xi_{0}^{-1}}p, \sigma\sigma_{0}^{-1}\sigma_{\xi_{0}^{-1}}p)$ , where $\sigma_{0}\in U_{0}$ ,

(using (4.14) and (4.15)),

$<\alpha$ .
This shows that $\sigma_{\zeta}\sigma_{\eta}^{-1}\in U=U_{aF}$ . Hence the generalized sequence $\{\sigma_{\xi^{-1}}$ ,

$\xi\in\Phi\}$ is a Cauchy sequence of $\mathfrak{h}$ “. So the generalized sequence $\{\sigma_{\xi^{-1}}p, \xi\in\Phi\}$

of 2 converges to a limit $\psi(p)$ . Then we have similarly

(4.16) $\rho(p, q)<\alpha$ implies $\rho(\psi(p), \psi(q))<\alpha$ .
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On the other hand it is easily seen that $\psi(\varphi(p))=p$ and $\varphi(\psi(q))=q$. This
shows that $\varphi$ is a one-to-one mapping of $\Omega$ onto itself. Moreover from (4.16)
we have

(4.17) $\rho(\varphi(p), \varphi(q))<\alpha$ implies $\rho(\psi(\varphi(p)), \psi(\varphi(q)))=\rho(p, q)<\alpha$ .
From (4.12) and (4.17) we see that $\varphi$ satisfies the condition $(C_{I})$ . Hence $\varphi$

belongs to $\mathfrak{h}^{*}$ . It is easily seen that $\varphi$ is the generalized limit of $\{\sigma_{\xi}, \xi\in\Phi\}$ .
So $\mathfrak{h}^{k}$ is complete.

From \S 3 and the above discussions in this \S , we have the following
theorem.

THEOREM. Let $\Omega$ be a locally compact and $\sigma$-compact uniform space whose
topology is defined by a system $\{V_{\alpha}, \alpha\in\Theta\}$ of symmetric unifonn neighborhoods.
Let $\mathfrak{h}$ be a group of homeomorphisms of 2 satisfying the following conditions:

(CI) $oV_{\alpha}(p)=V_{a}(op)$ for every $0\in \mathfrak{h}$ and every point $ p\in\Omega$ .
(CII) For any two points $p$ and $q$ in 9, there exists a $\sigma\in \mathfrak{h}$ such that $op=q$.
(1) Then we can introduce an outer measure $m^{*}$ in 2, such that

(i) $m^{*}(\sigma A)=m^{*}(A)$ for every $0\in \mathfrak{h}$ and every subset $A$ of $\Omega$ ,
(ii) Baire sets are $m^{*}$ -measurable,
(iii) For every subset $A$ of 2 there exists a Baire set $B$ such lhat $ A\subseteqq$

$B$ and $m^{*}(A)=m(B)$ ,
(iv) $ m^{*}(A)<\infty$ for every totally bounded set $ A\subseteq\Omega$ ,
(v) $m(G)>0$ for every open Baire set $ G\neq\theta$ .

(2) We can introduce a topology in $\mathfrak{h}$ as follows:
For every $\alpha\in\Theta$ and every compact subset $F\subseteqq J2$ we define

$U_{aF}=$ { $0$ ; for every $p\in F\sigma p\in V_{a}(p)$}.

Then the system { $U_{\alpha F}$ ; $\alpha\in\Theta$ , compact set $F$} can be taken as a complete system

of neighborhoods of the identity of $\mathfrak{h}$ . $\mathfrak{h}$ is always o-bounded (see Definition 3.2).

In order that $\mathfrak{h}$ is totally bounded it is necessary and sufficient that 2 is com-
pact.

(3) The outer measure $m^{*}$ is continuous with respect to $\mathfrak{h},$ $t/mt$ is, for any
$\epsilon>0$ and any measurable set $A$ of finite measure there exists a neighborhood $U$

of $\mathfrak{h}$ , such that
$ m(\sigma A\ominus A)<\epsilon$ for every $0\in U$ ,

where $oA\ominus A$ denotes the symmetric difference of $\sigma A$ and $A$ .
(4) If $\mathfrak{h}$ is $l_{oCa}u_{y}$ compact and o-compact, then the outer measure $m^{*}$ which

satisfies the conditions $(i)-(v)$ of the asserlion (1) is unique (up to a multiplica-
tive constant), and any two measurable sets $A$ and $B$ of the same measure
are decomposition-equivalent to each other with respect to $\mathfrak{h}$ .

(5) Suppose that $\mathfrak{h}$ is locally compact and o-compact. If $\mathfrak{h}_{1}$ is an abstracl
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subgroup of $\mathfrak{h}$ satisfying the following condition:
$(C_{II}^{\prime})$ For any two points $p$ and $q$ in $\Omega$ there exists a $\sigma\in \mathfrak{h}_{1}$ such that $\sigma p=q$.
Then any $\mathfrak{h}_{1}$ -invariant measure $m_{1}^{*}$ is a constant multiple of the measure

$m^{1^{\prime}}\backslash $ which is introduced in (1), and consequently any $\mathfrak{h}_{1}$ -invariant measure is
invarianl under $\mathfrak{h}$ . Any two measurable sets $\Lambda$ and $B$ of the same measure
are decomposition-equivalent to each other with respect to $\mathfrak{h}_{I}$ .

(6) Here we assume the further condition (CIII) of Theorcm 4.8. Let $\mathfrak{h}^{\triangleleft}\backslash $

’ be
a group of all the homeomorphisms $0’ s$ which satisfy the condition (CI). (Of

course $\mathfrak{h}\subseteq \mathfrak{h}^{*}$ holds.) We introduce a topology in $\mathfrak{h}^{*}$ as in (2). If $\mathfrak{h}^{*}$ is locally
totally bounded, then $\mathfrak{h}^{*}$ is complete and hence locally compact. $\mathfrak{h}^{*}$ is locally
compact and $\sigma$ -compact in the following cases:

$(\alpha)$
$\Omega$ is compact. (In this case $\mathfrak{h}^{*}$ is also compact.)

$(\beta)$
$\Omega$ is locally compact, $\sigma$ -compact and connected.

$(\gamma)$ $\Omega$ is a metric space whose bounded set is compact.

Hence in these cases, regarded as $\mathfrak{h}=\{)^{*}$ , the assertions (4) and (5) are satisfied.
THEOREM 4.9. Let $\Omega$ be a locally compact, $\sigma$ -compact and connected Hausdorff

space and $\mathfrak{h}$ a group of homeomorphisms of $\Omega$ satisfying the condition $(C_{lI})$ of
the preceding theorem. Suppose that $m^{*}$ is an outer measure in 2 satisfying the
conditions $(i)-(v)$ of the above theorem. If we can define a system $\{V_{a}, \alpha\in\Theta\}$

of symmetric uniform neighborhoods of $\Omega$ which satisfies $lhe$ conditions
(0) the condition (CIII) of Theorem 4.8 is satisfied,
(1) the topology of J2 which is introduced by the system $\{V_{\alpha}, \alpha\in\Theta\}$ coincides

with the original topology of 2,
(2) $oV.(p)=V.(op)$ for every $0\in \mathfrak{h}$ and every $ p\in\Omega$ ,

then any $\mathfrak{h}$ -invariant measure coincides with $m^{*}$ , and the outer measure $m^{*}$ is
invariant under any homeomorphism $0$ which satisfies the above condition (2)

(even thou., $ho$ does not belong to $\mathfrak{h}$ ).

PROOF. We have our theorem from (4), (5) and (6) of the preceding
theorem.

$C_{oROLLARY}$ . Let $\Omega$ be the n-dimensional Euclidean space and $\mathfrak{h}$ the group of
all the translations of $\Omega$ . Let $f(x_{1}, x_{2},\cdots, x_{n})$ be a continuous function of n-
variables satisfying the following conditions:

1o $f()$ $f(x_{1}, x_{2},\cdots, x_{n})=0\Leftrightarrow x_{1}=x_{2}=\cdots=x_{n}=0$ .
$2^{o}$ $f(x_{1}, x_{2},\cdots, x_{n})=f(-x_{1}, -x_{2},\cdots, -x_{n})$ .
3 $f(x_{1}, x,.’\cdots, x_{n})+f(y_{I}, y_{2},\cdots, y_{n})\geqq f(x_{1}+y_{1}, x_{2}+y_{2},\cdots, x_{n}+y_{n})$ .
4’ $f(\chi\chi_{\lrcorner},\cdots, \chi_{n})\rightarrow 0$ implies $(x_{1}^{2}+x_{2}\lrcorner+\cdots+x_{n}^{2})\rightarrow 0$ .

We define
$d(x, y)=f(x_{1}-y_{1}, x_{2}-y_{2},\cdots, x_{n}-y_{n})$ for any two points $x=(x_{1}, x_{2},\cdots, x_{n})$

and $y=(y_{1}, y_{2},\cdots, y_{n})$ in $\Omega$ .
This metric $d(x, y)$ is invariant under $\mathfrak{h}$ and obviously introduce the original
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topology in S2. The Lebesgue measure is invariant under any d-isometric trans-
formation $\sigma$ . In particular, setting $f(x_{1}, x_{2},\cdots, x_{n})=\frac{x^{2}}{1}\overline{+x_{2}^{2}+\cdots+x_{n}^{2}}$, the Le-
besgue measure is invariant under any rotation.
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