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The theory of rings of operators founded by F.]. Murray and ].v.
Neumann [17], [2] [3], was extended from the case of factors to general
rings of operators by J. Dixmier [5], I. Kaplansky [6], I E. Segal [7], and
others. In particular, the notions of finiteness, and types I, II etc. of general
operator algebras and of the trace of elements of these algebras were
defined and investigated by these authors. The aim of this paper is to
reestablish and generalize some results of these authors from a unified
standpoint by introducing the notion of “local properties” of systems of
elements of operator algebras.

We shall explain in §1 what we mean by “local” and “ global ” pro-
perties of systems of elements of a B*-algebra, and study mutual relations
between them.

In §2 we refer to some general theorems as preliminaries to §§3, 4.
These are mostly known results, but we give also proofs for completeness’
sake. Especially the results on “natural supporters” as named by Ti. Yen
after the idea of Dixmier [5], are given here for arbitrary AW*-alge-
bras, whereas Dixmier introduced them in case of finite W*-algebras
and Ti. Yen considered them only in case of finite AW*-algebras.

In § 3, we shall develope a “local theory” of AW*-algebras. We shall
first reestablish an important theorem of Kaplansky [6] on the equivalence
between projections in AW*-algebras as Proposition 3.5, and obtain finally
a “decomposition theorem” as Proposition 3.10. The method of “localiza-
tion” will turn out to be very useful in the course of this §.

Finally we shall deal with the trace in §4. This concept was introduced
by F.J. Murray - J. von Neumann [1], [2] in finite factors, and investigated
further by J. Dixmier [5] in case of finite W*-algebras, by Ti. Yen [8] and
M. Goldman [9] in case of finite AW*-algebras. We shall obtain a necessary
and sufficient condition for the existence of ‘“local trace” in finite AW™*-
algebras (Proposition 4.1.) and some sufficient conditions for the existence
of trace in these algebras (Theorems 4.1, 4.2, 4.3).

I wish to express my hearty thanks to Prof. S. Iyanaga, Prof. K. Yosida,
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Prof. O. Takenouchi for their kind encouragements, and to Mr. M. Sugiura
for his valuable suggestions. Also, I express my thanks to Dr. T. Kuroda
and Mr. M. Nakai for their valuable discussions.

§1. Global properties and local properties.

Let R be a B*-algebra with a unit 1, that is to say, a Banach algebra
over the complex number field with a unit 1 and an involution * satisfying
following conditions:

(1.1) a**=x,

(1.2) (ax)*=ax* (@=the conjugate complex number of «),

(1.3) (xt+y)y*=a*+y%

(1.4)  (uy)k=y*a*,

(1.5) |lx*x[=[lx]f
We denote by R, the center of R and by £ the spectrum of R, which is a
compact Hausdorff space by the usual topology o(R,, £). It is well known
that R, is isometric and isomorphic to C(2), the B*-algebra of continuous
functions on £ by a theorem of I. Gelfand and M. H. Stone. We identify
R, with C(2) by the canonical isomorphism from R, onto C(£). We write
May) instead of a,(1) for ¢,€R, and Ae£. An element ¢ of R is called a
projection if we have e=e*=¢> We denote by E, the set of projections of
R,, which forms a Boolean lattice if we define the semi-order ey =ey., (€, €ps
ek by Ae)=A(ey) for any 2€f2. As to FE, we shall assume that the
following condition is satisfied:

(1.6) R, is generated by FE,.

A point of £ is called a spectre of R. TFor any spectre 1 of R, we denote
by E,A) the set of projections es of E, with A(e,)=1. Then, Ey) forms
the set of characteristic functions of a basis of neighbourhoods at A.

Let (L) be a property concerned with a system a=(a.;¢€I) of some
elements of R, where [ is a set of indices depending on (L). We denote by
Ea, (L)) (or briefly by Ey(a)) the set of projections ey’s of FE, such that
e,a=(e.a.; t€I) has the property (L). A property (L) is called global, if, for
any system a of elements of R, Ey(a) forms an ideal of E,, that is to say, a
non-empty subset of £, containing e, Ueps, ey Neys’ with e, and e,, for any
ey’ of E,. A property (L;) is called local with respect to a spectre A of R,
if, for any system a of elements of R, it holds that Ey(a, (L)=FE, or E(2)¢
(the complement of Ey(2) in £;). For any global property (L) and for any
spectre A of R, we denote by (L), the local property with respect to 4, which
a has if and only if E,(AD)NE(a)#¢ (we shall denote with ¢ the empty set).
We call (L), the local property corresponding to (L) with respect to 1, and
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denote by 7(L) the system ((L);; A& ) of local properties corresponding to (L).

The following series of propositions play an essential role in our in-
vestigations.

Prorosition 1.1. a kas a global property (L) if and only if a has (L); for
any Spectve A of R.

Proor. Necessity. If a has (L), we have Ey(a)=FE, and hence E, ()N
Efa)+¢. This means that o has (L); for any spectre 2 of R. Sufficiency.
For any spectre 2 of R, there exists a projection ey(2) of E, () with e, ()&
Eya). Since £ is compact, we have 1=¢i(1,)Ue(A)U---Uey(d,) for some
spectres Ay, g+, 4, of R with e ()eE(a) (1=<i<n). Since E,(a) is an ideal
of £,, we get 1€E,(a). This means that a has (L). q.e.d.

For any system ((Lp);d=&) of local properties, we denote by 7'((L;);
A€ ) the logical product of local properties of ((L;); A€®), that is to say,
the property, which a has if and only if a has (L;) for any spectre i of R.
Then, we have

Prorosition 1.2. 7/((Ly); A€ 8) is a global property.

Proor. Let £’ be the set of spectres u’s of R, for which a has not (L,)
and let (L) be 7/((LY); A=£2). Then, we have Ey(a, (L))=N(E(n)’; nsf’),
where the intersection means £, if 2/ is an empty set. Hence, FEy(a, (L)) is
an ideal of E,. q.e.d.

A system ((L;); 2 £) of local properties is called closed if 2’ (=(u: a
has not (L,))) is a closed subspace of £ for any system a of elements of R.
Then, we have

Prorosition 1.3. For a system ((Ly); A€8) of local properties, it holds
(L)=@'((Ly); A€ 2)); for any spectre 2 of R if and only if the system ((L));
Ae D) of local properties is closed.

Proor. Necessity. For a spectre 2 of R with A€ £’, it holds that a has
'L 2€2); by hypothesis, that is, E(ADHNNE); peL)+#¢. Hence,
we may find a characteristic function e, (1) of a neighbourhood of 1 separa-
ting 2 and £’. This means that £’ is closed. Sufficiency. if a has not (L)),
then we have 1=£’. Hence, we have E(D)N(NEL); pe2)=¢. This
means that a has not (7’((L;); 2€8)),. Conversely, if a has (L;), then we
have 1€£’. Since £’ is closed, we may find a characteristic function e,(1)
(€Ey2) of a neighbourhood of 2 separating £’. This means that it holds
EMDN(NEMm; nel)+¢. Thus, a has (9/(L); Ae2):. d.e.d.

We write 0 instead of a=(a.; ¢=I) if each a. of a is 0. Then, the pro-
perty “a=0” is a global property. We denote it by (¢). For a local pro-
perty (L;) with respect to a spectre 2 of R, we denote by (L;)° the property,
which a has if and only if a has (¢); or has not (L;). Then, we have

Prorosition 1.4. The property (L))° is a local property with respect to A.
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Proor. If a has (L;), we have Ey(a,(L))=EFE(a, ($))=EFE, or Ey(A). On
the other hand, if a has not (L)), e,(A)e has not (L;) for any ey (2) of Ey(A).
Hence, we have FEy(a,(L))2E(2). Since a has not (L;),a has not (¢);, that
is, Ey(a, (¢))=E,(A)°. Thus, we have Ey(a, (L))2EMDUEA)=E, q.e.d.

This local property (L;)¢ is called the negation of (L;). Similarly, for a
global property (L), we denote by (L) the logical product of the system
((L))°; 2 2) of local properties. This global property (L)° is called the
negation of (L).

A global property (L) is called normal, if, for any system a of elements
of R, E,(a,(L)) is a principal ideal of E, that is to say, an ideal such as
e, of E, for some projection e, of £,, We denote ¢, by ey(a,(L)). In the
following investigation, we shall add the following assumption

(1.7) (¢) is normal.

Under the assumption (1.7), we have the following

Proposition 1.5. It holds (L)) =((L)%); for any spectre X of R if and only
if (L) is novmal.

Proor. Necessity. Since we have (L))°=((L)"), for any spectre 1 of R,
the system (((L);)°; A€ 8) of local properties is closed by Prop. 1.3. On the
other hand, (#;a has not ((L),))=(#; a has (L),)N(x; a has (¢),)° is open by
(1.7) and by the definition of (L),. Hence, we may find a projection ¢, of
E,, which is the characteristic function of (x#; a has not ((I),)%. Thus, we
have E(a, (1)=(e,De,(a, (PI)NE,. (We used here and shall use hereafter the
notation e,Pe, instead of e,+e, if e,e,=0.) Sufficiency. Since (u#; a has not
(D))= (u; a has (L)) N(u; a has ($),)° is closed, we have ((L)»)°=(L)); for
any spectre 1 of R by Prop. 1.3. q.e.d.

The negation (L)° is normal with (L) if and only if we have (1.7). In
fact, we have FEy(a,(L))=E(a, (L)) DE(a, (¢)) (the direct sum of Ey(a, (L))
and Fy(a, (¢)) as Boolean lattices). Here, we denote by Ey(a, (L)) the set of
projections e)’s of FE, such that e,Ey(a, (L))=(0). Moreover, under (1.7), we
have (L)*=(L) if (L) is normal. In fact, it holds that ((L)*),=(L))*“=(L),
by Prop. 1.5. Hence, we have (L)*=(L) by Prop. L.1.

For example, the property “e=b6" is a global property which concerns
two elements @, b of R. The local property “a=,;b” corresponding to “a=06"
with respect to a spectre 4 of R is defined by the existence of a projection
e,(2) of Ey(2) with “ey(A)a=ey(A)b”. On the other hand, we may define “ a=5"
by |la—b||=e for any positive number ¢, whose local property with respect
to 2 is defined by the existence of a projection ey(2) of Ey(2) with |[le,(X)(a
—b)||<e for any positive number e. Thus, two local properties correspond-
ing to the same global property with respect to the same spectre of R is
not always equivalent to each other according to the mode of the expression
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of the definition of the global property. In this paper, we shall use the
former as the definition of “a@=5".

§2. Preliminary results.

Let R be an AW#*-algebra, that is to say, a B*-algebra satisfying the
following conditions:

(2.1) Any orthogonal system of projections of R has a supremum in
the set of projections of R with respect to the semi-order e ,=e, (e, e, being
projections of R) defined by e,e,=e,, where two elements @, b of R are called
orthogonal to each other if it holds e¢*p=ba*=0,

(2.2) Any maximal commutative subalgebra of R is generated by pro-
jections in it, where two elements @,6 of R is called commutative with each
other if it holds that ab=bae and a*b=ba*.

This algebra was introduced by I. Kaplansky [6] For the sake of
completeness, we shall sketch the proofs of results obtained by C. E. Rickart
[10], I Kaplansky [6], and Ti. Yen [8]. We denote by E the sct of projec-
tions of R and by U the set of partial isometrvies of R, that isto say, the set
of elements #’s of R such that «*x is a projection of R. We notice that
uu* is a projection of R if # is a partial isometry of R.

Lemma 2.1, In a B*-algebra, (2.1) is equivalent to

2.3) Amy chain of E, that is, any linearly ordered subset of E, has a
supremum in E.

Proor. (2.3) implies (2.1). In fact, let £, be an orthogonal system of
projections of a B*-algebra. We shall show that £, has a supremum in
the set £ of projections of the B*-algebra. We denote by & the family of
subsets Ey’s of E, having a supremum in E. Obviously, & is non-empty.
Moreover, from (2.3) it follows that § is an inductively ordered set with
respect to the inclusion semi-order. Hence, by Zorn’s lemma, there exists a
maximal subset £, of £, in & with respect to this semi-order. It is easy to
see that E, coincides with E..

(2.1) implies (2.3). First, we shall prove that, if a projection ¢’ is com-
mutative with each element of an orthogonal system .E, of projections, then
e’ is commutative also with its supremum e, under the assumption (2.1).
We denote by e, the supremum of (e‘e.; e.€E)) and by e, that of ((1—e')e.;
e.€E)). Then, we have e,<¢’,e;=<1—¢’, and e,=e,(Pe;,. Hence, e’e,=e, and
thus e’e;=ee’. Next, we shall prove that any commutative system E; of
projections has a supremum in £ under the assumption (2.1). We denote
by E, the set of projections e¢’s such that e<e, for some ¢.€F; and that e is
commutative with each projection of a commutative system E; of projections
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containing £,. (There is no need .to introduce E, here, but we do so in
order to prove the corollary below by a method without large charge.)
Moreover, we denote by £, a maximal orthogonal system in FE, whose
supremum we denote by e. Then, we have e, <e for any e<FE,. In fact
e(l—e) is orthogonal to eash projection of £, and commutative with each
projection of £, and hence e(l—e¢)=0. On the other hand, if e.<¢’ for any
e.€E,, then we have e:’<¢for any e’€FE, and hence e<e’. Thus, we have
e=suple.; e E). q.e.d.

CoroLLary. If a projection e, of R is commutative with each projection of
a commutative system of E, then it is commutative also with the supremum of
the system.

Proor. Under the same notation as in the proof of Lemma 2.1, we take
the commutative system consisting of e, and E, as E;. Then, we get the
assertion by the proof of Lemma 2.1. qg.e.d.

Prorosition 2.1. R has a wunit (denoted by 1).

Proor. There exists a maximal orthogonal system E, of FE, whose
supremum we denote by e. Then, we have ge=a for any element ¢ of R.
For, otherwise, we could find an element ¢ of R with ¢—ae+0. We denote
(a—ae)¥(a—ae) by h. Then, we have 20 and es=he=0. Let A be a maximal
commutative subalgebra of R containing % and e. Then, for any natural
number #, there exists an orthogonal system (e, ; 1=v=k,) of projections of
A and real numbers («a,™; 1=v<k,) such that [[A—X, Frea, e, ™| =1/n.
If ee,™ +#0 for any » and any v, we have || X, bra,™ee,™ ||<1/n, from which
follows |a,™ |=1/n, 1<v=k,). Hence, we have ||2|[<2/n, which leads to a
contradiction. Thus, we have ee,™=0 for some z» and some v. But this
contradicts the maximality of Z,. Hence, we obtain ee=a for any element
@ of R. On the other hand, we have ¢=(a*)*=(a*e¢)*=eca. Thus, R has a
unit e. q.e.d.

An element #2 of R with A=h* is called hermitian. We denote by N the
set of hermitian elements of R. By virtue of M. Fukamiya [11], J. L. Kelley-
R.L. Vaught [12], and I. Kaplansky [13] (cf. J. A. Schatz’ review [14]), it is
known that the set of hermitian elements of a B*-algebra with a unit 1
forms a semi-ordered set with respect to a semi-order A2=0 defined by the
following mutially equivalent conditions:

(2.4) Any spectrum of %~ is positive,

(2.,5) h=Fk? for some hermitian element % of R,b

(2.6) ||a—#k]|£a for sufficiently large positive number «,
and with respect to this semi-order it holds that

@.7) a*a=0 for any element ¢ of R.

We can easily see that the semi-order of £ stated in (2.1) coincides with
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that of N reduced to E.

Let A be a maximal commutative subalgebra of R and N, be the set
of hermitian elements of A. We say that an element % of N has a resolution
of the unit in N, if there exists a system (e,; —co<<a<<) of projections
of N, satisfying (1) e,=1,e_,=0 for a sufficiently large positive number ¢,
(2) ey=ep for a=p,3) ]ﬁllrg eg=e,, and

28 = fgdew.

Lemma 2.2. If each of h k of N, has a vesolulion of the unit in N, then

2.9 A=k holds if and only if e ()Ze (k) for any veal number «.

Proor. Necessity. We denote by (e, (h); — o< <Zoo) a resolution of the
unit of an hermitian element % of R if % has a resolution of the unit. We
may assume without loss of generality that we have 0=4=<k We denote
1—e by ¢° for any projection e of N. Then, we have feg(h)°'<k, from which
follows Beg(h)=zB—k and hence Peg(h)e  k)=(8—a)e (k) for f>a=0. Thus,
we have eg(h)=e, (k). Making £ | a, we have e (h)=e, (k). Sufficiency. First
we shall prove that, for any element ~2 of N, not being 4£2=0, there exists a
projection e¢ of N with e£2=0 and es+0. In fact, under the same notation
as in the proof of Prop. 2.1, we obtain 1/x#-+), fra,Me, M zh=~1/n+
Sk, ™e, ™ and here we have not always 1/n=«,™, for, otherewise, we
would have 2=0. Thus, for some # and v,a,™—1/#>0, so e,™h=(a,™ —
1/n)e,™ >0 and e,™Ah=+0. Next, we assume that e,(h)=e,(k) for any real
number « and that Z=<£k does not hold. Then, we may find a projection e
of N, with esz=ek and ehr+#ek. Since each of ek, ek has also a resolution of
the unit, we have ee,(h)=<ee, (k). On the other hand, we see ee,(h)=ecea(k)
from ey (h)=e (k). Thus, we get ee,(h)=ce, (k) for any real number «, that
is, eh=ek. This leads to a contradiction. Therefore, if e (A)=e,(k) for any
«, then we have 2=k, q.e.d.

Lemma 2.3, Any upper-bounded system (h.; c=1) of N, whose. member has
a rvesolution of the wunit in N, has a supremum with a vesolution of the unit
in Ny

Proor. We denote by (e, (h); —o<la< ) a resolution of the unit of
k. Then, (e, (h); ceI) forms a commutative system of projections of N,.
We put e,/=inf (e, (r);csI). By the Corollary of Lemma 2.1, ¢, is a pro-
jection of N, We put é?f eg’=e, Then, (¢,; —o<<a <) forms a resolution

of the unit of an element % (h:j‘°° ade,). It can be proved that 2 is a

supremum of (&.;c¢eI). In fact, we have A=<h from ey (r)=e (%) for any
real number «. On the other hand, if 2. <%k for any ¢<l, there exist, for
any natural number z, projections (e,™ ; 1=<v=k,) and real numbers («,™;
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1<v=#k,) such that [[k—E™+1/n||<<1/n with K™ =1/n+3, kra, e, ™, which
has a resolution of the unit (denoted by (e (k™); —co<<la<<)). Since A=<
k™, we have from Lemma 2.2 e (2)=e (k™) and hence e () =e (k™). Thus,
it follows 2<k,. Making n—o, we get h<k. q.e.d.

We say that an element %~ of N has a resolution of the unit if there
exists a system (ey(h); —oo<<a<<o) of projections of N satisfying (1)-(3)
and (2.8) as hefore. Then, we have the so-called spectral theorem as follows.

Proposition 2.2. Any element of N has a unique vesolution of the unit.

Proor. Existence. Let & be an element of N and let 4 be a maximal
commutative subalgébra of R containing k. Then, under the same notation
as in the proof of Lemma 2.3, it holds that k=1im 2™ (=inf(sup(k™ ; v=n);

n-—oo

1=<n <)) and sup(k™ ; n=<v=m) has a resolution of the unit in N,. Thus,
by Lemma 2.3, 2 has a resolution of the unit (in N,). Uniqueness. We
denote by (&) the set of elements of R commutative with & and by (&)’
the set of elements of R commutative with each element of (k). Then, the
uniqueness and ey (k)e(k)’’ are proved by a similar argument as in the
proof of the spectral theorem of hermitian operators on a Hilbert space.
q.e.d.

The following proposition is an immediate consequence of Lemma 2.3
and Prop. 2.2.

Prorostrion 2.3. In any maximal commutative subalgebra A of R, every
upper-bounded system of hermitian elements has a supremum in A.

For any element ¢ of R, we denote ¢,(¢*a)® (=1—e)(a*a)) by esx(a) and
ex(a®) by e(a), where (e (a*a); —co<<a< ) is the resolution of the unit of
a*q. After C.E. Rickart [10] and I. Kaplansky [6], we call eyw(@) the initial
projection of a and e(a) the final projection of . We say that a projection e
fixes an element a from right side if ae=a.

LemMma 2.4. eyn(a) is the minimal projection fixing a from right side.

Proor. Since esy(a)(a*aes(a)?)=0, we have aey(2)°’=0. Hence, we have
aes(@)=a. On the other hand, if ee=a for a projection e of R, we get ae°=0
and hence g*ge®=0. By easy computation, it follows that e,(a*a)%¢*=0 for
a>0. Making a0, we get eu(a)e®=0 and so ei(a)=e. q.e.d.

Prorosition 2.4. For any system F of elements of R, there exists the
minimal projection fixing each element of F from vight side.

Proor. We denote by E, a maximal orthogonal system of projections

e’s of R with ge=0 for any e¢=F and by e, its supremum, which satisfies

ae;=0 for any ee€F. If gqe=0 for any a=F, then e(e—e,e) (the final projec-

tion of e—e.e) is orthogonal to e, and ae(e—ee)=0 for any e=F. Hence,
ele—ee)=9, that /s, e<e,. Thus, ¢, is the projection in question. q.e.d.
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We denote by eu(F) the minimal projection fixing each element of F
from right side and by e(F) that from left side. It is obvious that e(F)=
ex(F¥), where F*=(a*;acF). As a corollary of Prop. 2.4, we have (cf. L
Kaplansky [6]

Prorosition 2.5. The set E of projections of R forms a complete lattice.

As to e(e) and e(F), we have the following

Levmma 2.5. It holds that

2.9  e(ab)=e(ae(d)),

2.10) e(a(U(e; ceD)))=Ul(elae); t€I),

211) e(F)=U(e(a); acF),

(2.12) e(efe)=e,Ue,—ey,
where (e.; t=1I) is a system of projections of R and F is a system of elements
of R.

Proor. (2.9) follows from the fact that eab=0 is equivalent to eae(b)=0
for any @, bR and any e FE (the sct of projections of R). We shall prove
(2.10). From e(a(U(e.; ceIMa(Ule.; cel))=a(U(e.; cel)) it follows that e(e(U
(e.; ceI)ae.=ae, that is, e(a(U(e.; tcl)))=e(ae). Hence, we have e(a(U(e.;
ceD))=U(e(ae); ceI). On the other hand, denoting Uf(e(ae); tI) briefly
by e, we see eqe.=ae. and hence (ea—a)e.=0 and so ey(ea—a)e.=0. Therefore,
by Prop. 2.5, it holds that ew(ea—a)(U(e.; cI))=0 and so (ea—a)(U(e.; c€1))
=0. Thus, we get e(a(U(e.;cel)))<e. (2.11) is an immediate consequence
of Prop. 2.5. We shall see (2.12). It is easy to see that e(ee,)<e Ue,—e,.
Conversely, putting e’ =e(e,%,), we have e’%e,°e,=0, that is, ¢,°—e¢’<e,>. Hence,
we have ef—e'=Ze°Ne,’, that is, e,Ue,—e;=e,°—e,°Ne,°<e’. Thus, we get
(2.12). q.e.d.

After Ti. Yen [8], a subalgebra R, of R is called an AW *-subalgebra of
R if it is a B*-subalgebra of R with structure of an AW*-algebra. We
shall consider two AW#*-subalgebras R; ((=1,2) of R, whose units are
denoted by I; (1=1,2), and a system A of elements of R satisfying b*e=R,,
ab*cR,, and R,aR,<SA for any a,besA. We denote by Ry, E;, and E,; the
center of R;, the set of projections of R;, and the set of projections of Ry
respectively.

To e; of E,, we associate the minimal projection e of E, in E, fixing
cach element of ¢,R, from right side. This notation e was introduced by
J. Dixmier [5] in another expression e/"=(s,*¢e;s,; s, unitary of R)) in finite
W+*-algebras and was called by Ti. Yen [8] the natural supporter of e,. (An
element s, in R, is called unitary if it holds that s/*s,=s;s,*=17,.) Similarly,
to e, of I, we associate the minimal projection e¢* of F, in E, fixing each
element of Ae, from left side. In the same way, we can associate with any
e, €E, an e'eE, and an efeFE, by considering Rye, and e,A respectively.
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Then, we have the following

Prorosition 2.6. As to operation ¥ the following statements hold.

(213) efe k.,

(2.14) eMt=e

(2.15) (Ule; cel)f=Ulet; cel),

(2.16) (ef'Ne/Y=etNe,

2.17) eft=eM if and only if e"<I¥,

(2.18) e,Ae,=0 if and only if e,fe'=0.

Proor. The proof of (2.13). For any element b of R with bb*c R, we
denote also by e(d) the minimal projection in E, fixing b from left side.
Moreover, we denote Ae, by F. .Then, for any element ¢ of F, we have
aa*e R, and RS F. By (2.11), we have ef=U(e(a); acF). Putting c=be}*
—ebet for any (but fixed) element b of R,, we have ca=e ba=0 for any
a=F and hence ey(c)a=0 for any aec<F, that is, e#=<eu(c)’. Thus, we get
es(c)ef=0. On the other hand, ce#*=0 and so ey(c)e;*=0. Hence, there holds
es(c)=0 and hence ¢=0, that is be*=e¢*be* Since arbitrary elements of R,
are generated by hermitian elements of R,, this completes the proof of (2.13).

In the proof below, we shall use the fact that efeF,. This fact is
nothing but (2.13)’ below and so the proof is omitted.

The proof of (2.15). Let (e,;c=I) be a system of projections of R,
Then, from (2.10) and (2.13) it follows that (U(e.; ce))*= U(ela(U(e,.; c€1)));
acA)y=Ulelae,); ac A, tel)=U(e }; cl).

The proof of (2.14). Since e¢,=¢/, we have ef=e . On the other hand,
we have = (e(a(U(exled); bER))); as A)=Ule(a(U(e(b¥e); VER))); ac A))
=U(e(a(U(ebe,); beR,)); acA)=U(elabe,); bR, as A)<e!. Thus, we get
(2.14).

The proof of (2.16). First we prove e#=eM In fact, we have e##=
Ulelae)t s as A)=U(exle(ae)d); a,be A)=U(e(b*ae)); a,bc A)<el. Next, we
prove ae/e,’=etae,’. In fact, from (2.14) and from the fact above, we have
ae e, =eMae e =c'ae e, =e tae Fe e,/ =e fae e, =etae,’. Hence, we have
(ee, )= Ulelaele,’); ac A)=Ule(efae,) ; ac A)=ele (U elae,’) ; ac A))=ele,te,’*)
=ete,t.

The proof of (2.17). First we prove ¢*=e*. In fact, we have ¢ <l
=e¢f. Conversely, it holds that e*ae, =(e*((e,*a)e,))e ¥ =e (e *(ae))e ¥ =ae,.
Hence, we have ef=<e*. Thus, we have e*=e¢* If ¢"<I,# then it holds
that eft=e®, because, as we have Lf=I#=¢#D(l ke ¥ we must have
equality sign in both of ¢ize®, and Lie "=l fe,"")*. Conversely, if ¢/=e,*,
then it holds that e/ =(e)=I*

The proof of (2.18). It holds that e,Ae;=0 if and only if e*<e,". Hence,
we have ¢/*R.e;=0. Thus, we obtain efe,=0 if and only if e;Ae;=0. q.e.d.
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In what follows, it may happen to use # simply without specifying A,
R, R,. In that case, we are supposing that R=R,=R,=A, and, by virtue
of the * operation, Y and # are identified. As an immediate consequence of
Prop. 2.6, we have

Prorosition 2.7. In an AW*-algebva R, whose center is denoted by R, it
holds that

(2.13)Y e'eR,,

(2.14) M=e,

2.15Y (U(e.; ce)=U(el; cl),

(2.16) (ne=eNet,

(2.18)" e,Re, =0 if and only if e e=0.

For an element g of R, we denote e(a)! by e, a). It is easy to sec that
e,(a) is the minimal projection of R, fixing a.

Since the mapping e—e# is an isomorphism from I,*E,, onto I}*FE,, as
structure of Boolean lattices, it is extended to an algebraic isomorphism
from [*R,, onto I*R,,, which we denote also by #. (Here, we say that ¢ is
an algebraic isomorphsm from an AW#*-algebra R, onto an AW*-algebra
R, if ¢ is a one-to-one mapping from R, onto R, with following conditions:
1) ¢la+aN=pla)+e@), 2) ¢laa,)=¢(a)e(a), and (3) ¢la,*)=g¢(a,)* (for
any a,, a;/€R,).)

Prorosition 2.8. With the same notation as before, let ¢, be an algebraic
isomorphism from R, onto R, and suppose that A satisfies the property ©y(co)a
=acy, for any a=A and any cyERy. Then, we have @\(cy)i=cy for any ¢, €
L¥R,.. Movreover, if ¢ (I,H)=I% it holds that ¢yce)=cot for any c, Ry,

Proor. Since ¢,(e,)ae,=ae, for any a=A and ¢, <FE,, it holds that
et < @y(ey) and so e, #=@(e))t. Moreover, from ¢y (e, )a=¢,(e,)ae, it follows
that ¢, (ey)f<e,. Thus, we have ¢ (e,)'=ey if e, €lfE,, and hence @ (cy)¥
cor if cpnELFRy. q.e.d.

§3. Local relative dimension.

Again, let R be an AW*-algebra. Hereafter, throughout this paper, a
local property with respect to a spectre of R is called briefly a local pro-
perty, if the spectre is considered as given once for all. In this case we
use also the term “locally ” in the corresponding sense. A global property
is simply called a property.

In order to apply results in §1 to AW*-algebras, we must prove the
following

Prorosttion 3.1. R satisfies (1.6) and (1.7).

Proor. The proof of (1.6). For an hermitian element % of R,, we denote
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by (e h); —co<<a< ) the resolution of the unit of % Then, from the
definition itself, % is the limit of linear combinations of e, (%), and, as we
saw in the proof of Prop. 2.2, ex(B)=FE,, We thus see that 7% is in the
subalgebra generated by E,. As regards to a general element of R,, being
able to be written as a linear combination of two hermitian elements of
R,, it is also in that named subalgebra. This shows (1.6).

The proof of (1.7). Let a=(a.;¢sI) be a system of elements of R.
Then, by (2.11), we get Ey(a, ()=(U(e)a.); cI))°E,. Hence, (¢) is normal.
q.e.d.

First, we introduce some concepts.

Derinttion 3.1. 1) Two projections e, (i=1,2) are called equivalent to each
other and denoted by e ~e, if there exists a partial isometry u of R with es(u)
=e, and e(u)=e,. Here, we say that an element u of Ris a partial isometry if
u*u is a projection of R. In this case, uu*® is also a projection of R.

2) A projection e of R is called finite if e=e, follows from e~e, and e=e,.

3) A projection e of R is called infinite if it is not finite.

4) A projection e of R is called irveducible if e,=e,=0 follows from e=e,
Pe, and e, ~e,.

These properties are normal properties except for infiniteness (as this
is easily seen from Lemma 3.1 below for 1) and is clear for 2), 4)) and are
properties concerning with one projection of R except for equivalence,
which concerns with two projections of R. We call negation of finiteness
the normal infiniteness.

We denote by U the set of partial isometries of R. We write #,=,u,
for u, u,cU if u,—u, is a partial isometry orthogonal to #,. Then, it is
easy to see that U forms a semi-ordered set.

The first aim of this § is to prove a theorem of I. Kaplansky [6] (cf.
Prop. 3.5). By the local consideration, his proof will be slightly shortened.
We denote by (L,) the property concerning with an orthogonal system a=
(#.; cel) of elements of U, which a has if and only if a has a supremum
in U.

Lemma 3.1. (L,) is normal.

Proor. If each system aq, of partial isometries has a supremum #, in U
and if (#.;c=I) has a supremum % in U, then # is the supremum of (»; v<a.
for some ¢(€l) in U. Hence, we need only to prove that an orthogonal
system a=(#.; tcI) of elements of U has a supremum in U, if (e((n.); cc])
is an orthogonal system of projections of R,, We denote by A a maximal
commutative subalgebra of R containing (#*-tu.; (€l) and denote by (e,,.;
— << o) the resolution of the unit associated to #*+u. Putting e,
=sup(e,,.; t€l), the system (g,; —co<la<{ew) forms the resolution of the
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unit associated to some hermitian element of A. We denote it by [u*+u«].
Then, we have e,(u)[u*+u]=u*+u. Similarly, we may find an element
[u*—u] of N with e (uw)[u*—ul=u*—u. We put wu=3i[wu*+u]l—[u*—u])
(PBley(n); tel)). Then, it is easy to see that # is the supremum of (u,; t€l)
in U. q.e.d.

The following lemma is due to [6] But the present proof need less
calculation.

Lemma 3.2, Let (u.; t&1) be an orvthogonal system of elements of U, whose
initial projection e ((u.; c=1)) and final one e((u.; c€1)) are orthogonal to each
other. Then, (u,; 1) has a supremum in U.

Proor. We denote ey ((%.; 1)) by ey and e((n.; c1)) by e. Since u*
+u, is hermitian and unitary in (ex(u)Pe(n.))R(ew(u)Pe(n.)), we have u,*+u,
=e/—e/’’, where e/, e’/ are mutually orthogonal projections of (es(2)P
e(u)R(es(u)Pe(u)). Putting e'=Ple/;tel), e’ =P(e’’; cel), and u=e(e’—e’’),
we have e(u.)u=e(u)(e(u)PDe(u))(e'—e')=eu) e —e.' Y=e(u) u>*Vu)=ec(u)u.
=y, and similarly we have wues(u#)=u.. Further we get uu*=e(e’'—e'')’e=
eles@Pe)=e and w*u=(>e'—e')e(e’ —e"’)=Plex(nt); tI)=es. q.e.d.

Prorosition 3.1. For two projections e, e, of R, there exists a mnon-zero
element u of U with es(u)=<e, and e(u)<e, if and only if it holds ee"+0.

Proor. Necessity. Since e,Re,#0, we get e/fe,'+#+0 by (2.18). Sufficiency.
By (2.18), we may find a non-zero element ¢ of R with ew(e@)=<e, and e(a)<e,.
Let (e,; 0=a<x) be the resolution of the unit of a*¢. We denote by ks
the inverse of a*ae,’ in e,"Re,’ for a sufficiently small positive number «.
Then, uzakf is a non-zero element of U with ey(#)<e(a) and e(u)=e(a).
Thus, we get the assertion. q.e.d.

Prorosition 3.2. The following Statements are mutually equivalent: (1) e
is normally infinite, (2) e=Ple,; 1=n<0) with e, ~e, (1=En<co) for some e,
of E, and, (3) e~e’'~e’® for some ¢’ of E.

Proor. (1) implies (2). Since e is normally infinite, we may find a
projection ¢’ satisfying that e¢’<e and e#e¢’~e. Then, by the well known
way, we may find a decomposition Ble,’; 1£n<o)<e with ¢,/ ~e,’ (1=n<0).
Hence, we may find a maximal orthogonal system (eL}; tel) of projections
of R with e,//~e/(tcI) containing (e, ; 1=#< ). Furthermore, using
Lemma 3.2, we may find a maximal pair (¢/,e’’) of projections of R with
e/ =e'~e’Z(Ple.; ccI)). Then, we get (e,/—eN(DPle; ccI))—e’)=0 by
Prop. 3.1. Since (e,’/—e’M+0, there exists at least one spectre 1 of R, with
respect to which it holds that e=@(e.””; cel) with e,~e.”” (t<I) locally by
the well known way. Since the cardinal number of [ is greater than R, we
find a decomposition (2) with respect to 2 locally. The property that a
projection decomposes into the sum of a countable orthogonal system con-
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sisting of mutually equivalent projections being normal, one easily sees the
validity of (2) from this.

(2) implies (3). We may use the index (n,m) instead of »# and a decom-
position e=@P(en,n; 1=n, m< o) instead of (2). We write e,=@P(esm; 1<m
<Ce0). Applying Lemma 3.2 to ey—1~es, (1=n<e0). we have a partial
isometry # of R with ey(u)=P(esm_1; 1=n <o) and e(w)=P(egm; 1=n<0).
Similarly, we have a partial isometry » of R with ex()=P(ewm; 1<n <o)
and e(®)=@P(ewm+; 1=n<0). We put w=u+v». Then, w is a partial isometry
of R with e,(w)=e and e(w)=e,°. Moreover, it holds e¢,~¢,° by Lemma 3.2.

(3) implies (1). Let ¢,(X) be a projection of E,(1). Since e~e’¢, it holds
that (e,(A)e’)i=ey(A)e’M=¢,(A)e". Hence, if ¢, (D)e#0, we get e (Dexey(e’~
e((De, that is, e,(A)e not being locally finite. This means that e is locally
zero or not locally finite. Hence, e is locally normally infinite with respect
to any spectre 2 of R. Thus, ¢ is normally infinite by the definition of
normal infiniteness.

We say that R is discrete, finite, and normally infinite if 1 is discrete,
finite, and normally infinite respectively, where a projection e, of R, is
called discrete if there exists an irreducible projection e¢ of £ with ef=e,.
We call the negation of discreteness the non-discreteness. These properties
are obviously normal properties concerning one element of R, namely the
unit 1 of R. Hence, we can say about these local properties.

DeriniTioN 3.2. A projection e of R is called simple of ovder n if there
exists a decomposition '=@P (e, ; 1=v=n) with e~e, (1=v=n).

This property is also normal.

Lemma 3.3. There exists a unique decomposition

GBI 1=@(e); 1= n<oo)Dey)Dey(), where eI, eIL)), and ey(wo)
are the uniquely determined maximal projections of R, among the projections e,’s
of R, with a simple irveducible projection e of ovder n satisfying e'=e,, with
finiteness and non-discreteness, and with normal infiniteness respectively.

Proor. It is easy to see that there exist the maximal projections e,(I,)
(1=n <o), ey(Il,), e,(e0) in question and that they are orthogonal to each
other. We put e,=(B(e)(ln); 1=n<<oo)Pey(Il)Dey())’. Then, ¢, is finite
and discrete. We shall prove that, if ¢;#0,e, must be 0. From this, we
can conclude the assertion.

Now, assume that e,#0. Since ¢, is discrete, we may find a non-zero
irreducible projection e; of R with e/'=¢,. Then, there exists a maximal
orthogonal system (e.; ceI) of projections of R containing e, and satisfying
e,~e. (cel). If the cardinal number of I is greater than ¥R, we see from
Prop. 3.2 that, for any countable subsystem (e,; 1<n<co) of (e tel),
Ple,; 1£n<oo) is normally infinite. Since (Ple,; 1=n<<o)li=eli=¢,), ¢, is
normally infinite. This is a contradiction. Hence, I is a finite set (say
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I=W;1=v=n). We put eW=¢(P(ev; 1=v=n)). Then, we may find a
maximal pair (¢/,e’’) of projections of R with e,=¢'~e”’<e™. By Prop. 3.1,
we have (e;e(eWe’*M=0. Since (e;e’®)"+#0, we have e, =e¢'~e® locally.
Since e, is irreducible, we have (e'e,e’“)'=e"(ee’®)"=0, that is, e’"e,e’°=0.
Hence, we get e, =e’Me,=¢’. Thus, we obtain eMi=P(eMle, ; 1=y =n)Pe®
with e,~e® locally. This means that eM¥<,e,Ney([n+;)=0. Hence, we get
eM=,0, that is, e;=;P(e,; 1=<v=#n) and so e¢,<,e,([,). Since e, is locally
orthogonal to ey(l,), e, must be locally zero. From this it follows that e,
is zero by Prop. 1.1. q.e.d.

Lemma 34. If R is locally normally infinite, then an orthogonal system a
of elements of U has (L,).

Proor. We may assume without loss of generality that R is normally
infinite. By Prop. 3.2, we may find a projection e of R with 1~e~e¢°. Hence,
there exist a partial isometry # of R with ew(#)=1, e(u)=e and a partial
isometry v of R with es@)=e¢, e(v)=¢*. By Lemma 3.2, vuau*=_@uau*; )
has (L,). By multiplying #*»* from the left and «# from the right, we see
that a has (L,). q.e.d.

We denote by “a=;6" the local notion of “g¢=0" and similarly by
“az=,b” that of “a=b—e¢ for any positive number ¢”. Moreover, we denote
by e,~,e, the local notion of e, ~e,.

We say that an element @ of R is locally non-zero (denoted by a+,;0) if
it is not locally zero and that a projection e of R is locally minimal if e is
locally non-zero and if e=;e, follows from e=,e, (e, being locally non-zero).
Though these properties are never local properties, we shall use such
terminologies for convinience. Denoting by (L*) one of them, (L*) satisfies
that 1€ Ey(a, (LY) is equivalent to Ey(a, (LA))=E,A).

Prorosition 3.3. As to the locally irreducble projections, we have (1) any
locally non-zero irveducible projection is locally minimal, (2) any locally non-zero
projection contains a locally non-zervo irreducible projection if R is locally discrete,
and (3) locally non-zero irreducible projections of R are mutually locally equivalent.

Proor. (1) Let e be a locally non-zero irreducible projection of R and
suppose that e=,e¢’ holds for a locally non-zero projection ¢’ of R. Then,
we have e=,e'Pee’’, ¢’e’"=0 and hence e=e"e=z¢’. (2) Let ¢’ be a locally
non-zero projection of R and e be a locally non-zero irreducible projection
of R. Then, there exists a maximal pair (e,e,’) of projections of R with
e'=e’'~e;<e by Lemma 3.1. By Prop. 3.1, it holds that (¢’e,/)(ee,)"=0. If
2((e’e,/M)=0, we have e'=;¢,/~e;<e and elf=MeFE,(2). Thus, we have
e’~,e;=,e. On the other hand, if A((e’e,/))=1, we have A((ee;")=0 and so
e=(e’e,/Ve=(ee,/)e e=(e"e,/)e,~(e'e, Ve,'<e,. The fact (3) follows im-
mediately from (1) and (2). q.e.d.
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Lemma 3.5. If R is locally finite and has a locally simple irreducble projec-
tion of order n, then an orthogonal system a of partial isometries of R has (Ly).

Proor. We may assume without loss of generality that R is finite and
has a simple irreducible projection of order n. Let P be the set of projec-
tions eees(u)’s of R for arbitrary e,€F, and (=l. We denote eu. by
oleses(#)). Then, there exists a maximal orthogonal system P, of projec-
tions of P satisfying that (¢"; e P,) is an orthogonal system of projections
of R,. Similarly, by induction, we may find a maximal orthogonal system
P, of projections of P satisfying that (¢%; e P,) is an orthogonal system of
projections of R, and that P, is orthogonal to P, (1<u<v). Then, (o(e);
ecP,) has (L,) by Lemma 3.1. We denote by ¢, the supremum of (&,
ecP,)) and by e® that of P,. Then, it holds that ¢, =e,¥*V.

We shall prove that ¢,(**)=0. For otherwise, we can take a spectre 1
of R with respect to which e® = e,V ,0. As e®’s are mutually orthogonal
and eMhi=¢, and R is discrete, we see from Prop. 3.3 that R has no locally
simple irreducible projection of order » with respect to 2, and this con-
tradicts with the assumption by virtue of Prop. 1.1. Hence, we have ¢,V
=0. Consequently, we may assume without loss of generality that [ is a
finite set. Then, X (#.; t<I) is the supremum of a. q.e.d.

The following proposition is due to J. Dixmier [5].

Prorosition 3.4. If R is non-discvete, theve exists two projections e and
e® of R satisfying e=eMPe® and eV~e® for any projection e of R.

Proor. There exists a maximal pair (e®,e®) of projections satisfying
eM~e® and e=eMWPe®Pe® for some projection e¢® of R. Hence, e® is
irreducible and must be 0. q.e.d.

Lemma 3.6. If R is locally finite and locally non-discvete, then an orthogonal
system a of partial isometries of R has (Ly).

Proor. We may assume without loss of generality that R is finite and
non-discrete. First we shall prove that two simple projections e; (i=1, 2)
of order 2 with e'=1 are equivalent to each other. By Prop. 3.1, we may
find a pair (e/, e,”) of non-zero projections of R with ¢,=e,’~e,’<e,. Since
e, #0, there exists a spectre X of R, with respect to which it holds that
e,/=ze,/" for some locally simple projection e,” of order 2" (r>1) (cf.
Lemma 4.2.). Since e,/~e,’, we may find a projection e,’” of R with e¢,/'~e,"’
=<e,’., We shall prove that e,”” is also locally simple of order 2". There
exists a maximal pair (¢, e’’) of projections of R satisfying e,/ °=e’'~e''<e,”’
by lemma 3.2. If e,"%’° is locally non-zero, we can repeat this process.
Thus, we get a decomposition 1=;P(e,”’® ; 1<v=n+1), where e,/ =e,' N~
e,/ ' (1=v=n) and e,/ ™D~ e’ <e,/’ for some e¢’/’€FE. Hence, multiplying
some projection ey (2) of Ey(2), we obtain a decomposition e,(3)=PB(e,(ey’’ ¥ ;
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1=v=n+1), where e¢y(Rey’ =e(Dey’ D~ey(ey’ @ (1=v=mn) and ey(A)e,” "+~
e e’’’ <ey(e,’’. Since e Re, is finite, we have, by the well known method,
n=2" and e,’™*V=,0. (On the same time, by the same method, we can
prove that above local decomposition is possible.) Thus, e, is locally
simple of order 2. Here, we notice that “e,’<1” is trivial, but this fact
is an essential part of above proof. Therefore, remembering that e/ =e;
(i=1,2), we may find a decomposition e;=P(e;,’® ; 1=v<2"1), where ¢,/ =
e, W~pg,/’ " (1=y<2""1). Since ¢,/’® (I1=v=2""1,i=1,2) are mutually locally
equivalent to each other, we can easily conclude that e, is locally equi-
valent to e,. Since equivalence is normal, e, is equivalent to e,.

Let a (=(u.;c=I)) be an orthogonal system of elements of U. For each
cel, we may find a decomposition e(u)=e.VPe,» with e, HD~e . We denote
by a® the orthogonal system (e.Vu,; c=I) of elements of U. We need only
to see that a® has (L,). Then, we can find two simple projections e, e, of
order 2 of R with Plexle.MVu); cel)<e, and Plele.Vu); ce€l)<e,. Since
e, e’ e, are simple projections of order 2, we may find partial isometries
u,v of R such that esx(u)=e,, e(u)=e,°, e4+(v) =e,, and e()=e,. Applying Lemma
3.2 to uva® =(uveWu,; c=I), uva® has the supremum w in U. Hence, a¥ has
the spremum. g.e.d.

Under these preparations, we shall prove the following important pro-
position already discovered and proved by I Kaplansky [6], which plays
an essential role in AW*-algebras.

Prorosition 3.5. Any orthogonal system of elements of U has a supremum
in U.

Proor. Since an orthogonal system a of elements of U has (L,) with
respect to any A according to Lemmas 3.3-3.6, we see that a has (L,) by
virtue of Prop. 1.1. q.e.d. ’

CororLrary. Amny chain of elements of U has a supremum in U.

Proor. Let (#.;¢€I) be a chain of elements of U. We denote by E, a
maximal commutative system of projections of R containing (e(w.); (1)
and by U, the system (e#.;e,€E\,csI). Moreover, we denote by U, a
maximal orthogonal system of elements of U,. Then, there exists the supre-
mum # of U, in U by Prop. 3.5. It is easily seen that # is the supremum
of (w.;tsl). q.e.d.

Recently, Ti. Yen [8] has given the proof of the canonical decomposi-
tion theorem in AW#*-algebras (cf. Lemma 2.1 and its Corollary, [8]). The
following proposition contains the results of Ti. Yen [8].

ProrosiTion 3.6. For any eclement a of R, we may find a unique system
(#4(@) ; 0= <o) of elements of U satisfying (1) u,=0, u,=const. €U for q,=«,
(2) a<p implies u,=ug; and (3) %133 ug=1u, and further
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¢2) a={ adu,,
and, from these it follows that
B3 ew@=| dexu),

(34) €(a):jige(uw)’

(3.5) a=uh, where /L:(a*a)glz, and u:j:duw (the canonical decomposition of
a), and that

3.6) ag*a=u*aa*u.

Proor. The proof of (3.2). Let (e,; 0=a=< <o) be the resolution of the
unit of (a*a)%. We deno:te by k, the inyerse of a*ae,’ in e, Re,’ for 0 <<«
<|la|l. We put w,,=ak,” and h,=(a*a)’e,’. Then, we have ae,=u,‘h,.
Since (#,°; 0<<a<||a||) is a chain of elements of U, we may find its supre-
mum # in U by the Corollary of Prop. 3.5 and hence we have qel=uh.
:uf:oadewzfaduew We put u#,=ue, for a>0 and MOZE?{? u,=0. It is easy
to see that (u,; 0=a <o) satisfies (1)~(3). Making ¢ ] 0, we have (3.2) from
ae’ :5' x’aduw .

Th€e proof of uniqueness. Let (#, ; 0<a <) be another system of ele-
ments of U satisfying (1)-(3) and (3.2). From a*azf:anuw*umzjjazduw’*uw’,
it is easy to compute that u,*u,=u, *u, for 0=a< . Hence, we have
w(u, ) =a f :a"1duw*uw:aj:a‘1duw’*um’:u’(uw’*uw’)", where we put u’:f:dum’.
Making a | 0, we see that u=u" and so u, =u’—u' (1, 1, ) =1 — (1, 16,,)" =y,

The proof of (3.3) and (3.4). To see (3.3), we have ey(a)=ey(a*a)
ze*(j;agde*(um)):j‘:de*(uw). Thus, we have (3.3). Similarly, we get (3.4).

The proof of (3.5) and (3.6). To see (3.5), we have uh=| du,| ade,(u,)
0 0

=£:aduw:a. Moreover, we have u*aa*u:f:agdu*uwuw*u:jjanuw*um:a*a,
because u*u ufu=u*ueu u=ee =1, u,. q.e.d.

Cororrary 1. It holds that e .~e, if and only if theve exists an element a
of R with e,=ey(a) and e,=e(a).

Proor. We need only to see the sufficiency. By (3.3) and by (3.4), we
have eyx(@)=ey(#) and e(a)=e(u). q.e.d.

Cororrary 2. For any equi-bounded orthogonal system (a.; c€1) of elements
of R, there exists an element a of R satisfyving e(a)a=aey(a)=a. for any (&1

Proor. We denote by (#,(a.); 0=a<C) the system of elements of U for
a. satisfying (1)-(3) and (3.2). Since (a.; ¢€I) is an orthogonal system of
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elements of R, (#,(a.);I) is that of elements of U. We denote its supre-
mum in U by %, Then, (#,; 0<a <o) satisfies (1)-(3). We put aszaduw.
0

It is easy to see that it holds that e(e)a=aesx(a.)=a. for any (€. q.e.d.

The element ¢ is called the divect sum of (a.;c&I).

After . ]J. Murray-J. v. Neumann [1], J. Dixmier [5], and I. Kaplansky
[6], we shall introduce the following

Derintrion 3.3. A mapping d, which carries I onto some semi-ordered set,
satisfying the following condition:

B.7) dle)=d(e,) if and only if e,~e,’<e, for some e,’ of E,
is called a relative dimension of R.

By virtue of the complete additivity of equivalence, it is easy to verify
that there exists one and only one relative dimension in R (except for
isomorphism of the semi-ordered set as structure of semi-ordered set). We
denote it by d. ,

Derinition 3.4. A mapping d,, which carries £ onto some semi-ovdered set
and satisfies the following condition:

3.8) dile)=d(e)) if and only if e~ ey’ <e, for some e, of E,
is called a local velative dimension of R, wheve e~ e, means that e, is locally
equivalent to e,'.

It is easy to see that there exists one and only one local relative di-
mension in R (except for isomorphism of the semi-ordered set as structure
of semi-ordered set). We denote it by d,.

As to d,;, we have the following important

Prorosition 3.7. The semi-order of di(l£) introduced by d, is linealy ovdered.

Proor. For any two projections e; (i=1,2) of R, we may find a maximal
pair (e/,e,’) of projections of R with e¢,=e¢,’~e,’<e,. By Prop. 3.2, we have
(e, (ese,’*)"=0. Hence, it holds either ee,’°=,0 or e,e,°=,0. q.e.d.

The property d(e)=d;(ey) concerned with a pair (e, es) of projections
is the local property of the property d(e,)=d(e,) concerned with a pair
(ei,e,) of projections. Hence, we have d(e,)=<d(e,) if and only if d;(e;)=<d;(e,)
with respect to any spectre X of R by Prop. 1.1

Prorosition 3.8. (1) A projection e of R is locally finite if and only if
e, ==,e follows from e, < ;e and e,~ ;e.

(2) A projection e of R is locally normally infinite if and only if there
exists a decomposition e= e, Pe, with e~ e~ ;e,.

() A projection e of R is locally irreducible if and only if it is locally zero
or locally minimal.

Proor. The proof of (1). We need only to prove the sufficiency. If e
is not locally finite, then ¢ is locally normally infinite. Hence, from Prop.
3.2, we may find a decomposition e=,¢,(Pe, with e~ ,¢e,~,e,. Therefore, it
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holds that e, <,e,e,~;e, and e,#,e. The statement (2) is an immediate con-
sequence of (1) and Prop. 3.2.

The proof of (3). We have already proved the necessity (cf. Prop. 3.3).
Hence, we need only to prove the sufficiency. Let ¢ be locally minimal.
Then, in the same way as J. Dixmier has done, we may find a maximal
orthogonal pair (e, e,) of projections of R satisfying e=e;~e,<e and hence
e;=e—(e,Pe,) is irreducible. Since e is locally minimal, we have e¢=e,.
For otherwise, it holds that e,=;e, which leads to a contradiction. Thus,
e is locally irreducible. q.e.d.

Prorosition 3.9. The following statements ave equivalent to each other.

(1) A projection e of R is irreducble,

2) e =e, follows from eze,~e,<e,

(3) eRe is commutative.

Proor. It is obvious that (2) implies (1). New we shall prove that (1)
implies (3). In fact, for any e ,<e and any e,<e, we have ¢,=,0 or ¢ and
e;=,0 or e with respect to 2 and hence e,e,=,e,¢,, from which follows ee,
=eye, by Prop. 1.1. Next we shall prove that (3) implies (2). In fact, from
eze ~e,<e¢ it follows that there is a partial isometry # of eRe satisfying
w*u=e, and uu*=e, and hence e¢,=e, by (3). q.e.d.

Under these definitions, we may classify AW *-algebras into six local
types (analoguous to F.J. Murray-J.v. Neumann [1], c¢f. J. Dixmier [5] and
I. Kaplansky [67):

Derinition 3.5. (@) R is called of locally finite discrete type (In)x (or locally
homogenous type of order n) if R is locally finite and theve exists a locally
irreducible and locally simple projection of order n.

(b) R is called of locally finite discrete limiting type (Iy): if R is locally
finite and there exists a locally irreducible projection, which is never locally
simple of order n for any natural number n.

(©) R is called of locally infinite discrete type (I-); if R is locally discrete
and locally normally infinite.

(@) R is called of locally finite continuous type (I1,); if R is locally non-
discrete and locally finite.

(e) R is called of locally infinite continuous type (Il-); if R is locally non-
discrete, locally normally infinite, and R cotains a locally finite and locally non-
zero projection.

() R is called of locally purely infinite type (Ill.); if R is locally novmally
infinite and contains no locally finite and locally non-zero projection.

A projection e, of R, is called of local type (¥) if it holds that A(e))=0 or
that e,Re, is of the same local type, wheve *=1I,, I, l«, [, 1], [I]... We define
type (*) by globalization of local type (¥); (that is to say, R is called of type (¥)
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if R is of local type (¥); with respect to any spectve A of R), except for (I,),
which we define by globalization of being (1)), or (I.), for some n. Finally, a
projection e, of Ry is called of type (%) if eyRe, is of the same type.

Since these are normal, we have (cf. Lemma 3.3)

Provosition 3.10. There exists a decomposition

B9 1=Pley(x); *=1,, I, I, [le, I1]..),

(B.10) eyl =D(ey(l,) ; 1=n<oo).
where ey(x) is uniquely determined as the maximal projection of E, of type (k).

§4. Local trace.

Let R be a finite AW*-algebra. First we shall introduce the following
Dermntrion 4.1, A functional t; of R satisfying the following statements :
4.1 #,M=1,

(4.2) t(aa)=at(a) for ac=R and for any complex number «,

4.3) tila+b)=ti(a)+1(b) for a,bER,

4.4) tia¥)=t(a) for acR (t;(a)=the complex conjugate of t,(a)),

4.5) i (a*a)=0 for a=R,

4.6) t(e,(Da)=t;(a) for aER and e, ()& E(A),

47 tilab)=ti(ba) for a,bER,
is called a local trace of R (with respect to 2).

By virtue of Prop. 3.2, a local trace of R may exist only if R is locally
finite. Concerning this trace, in this §, we shall prove the following

Prorosition 4.1. There exists a local trace of R if and only if there exists
a locally non-zevo and locally simple projection e of R with t(e)<<1. (c¢f. Def.
4.5 as to t;)

We denote by N the set of hermitian elements of R, by N, the set of
hermitian elements of R, and by 2 the set of (real-coefficient) linear
operators ¢’s of R defined by

4.8y ola)=>2,2a,s,*as, for any a of N,
where s, $,r, S, are unitary elements of R and al,vag,---, a, are positive
numbers with X, 2«,=1.

The following proposition is due to J. Dixmier ([5], théoréme 7). His
proof was based on an AW*-algebra. Recently, M. Goldman [9] has given
a proof of this theorem in algebras satisfying weaker conditions than
AW*-algebras by a similar method of J. Dixmier [6] Here, we shall give
an alternative proof of this theorem in an AW*-algebra.

Prorosrrion 4.2.  For any element a of N and jfor any number ¢=>0 there
exist an element a, of N, and a linear opevator o2 satisfying

4.9 \|lol@—ayll=e. (Here, R is not necessarily finite.)
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Proor. Let R be a (not necessarily finite) AW*-algebra. First we shall
prove (4.9) locally for a=ecE. If, for any natural number », there exists
an orthogonal systemT(e,; 1=<v=mn) of projection of R satisfying e=e,~,e,
(I<v=n) and Dle,; 1<v<m)<1, then (4.9) holds good locally for «,=0, as
we can verify it by taking such an z that »n™!'<C¢ and making s,=u,*+u,
+(e,Pe)(1=Lv=<n), where #, is a partial isometry of R with eyx(x,)=e¢, and
e(u,)=e. In the other case, namely, if the above-mentioned condition is not
satisfied by e, there exists, for any natural number m, a commutative
system (e,; 1=v=<n+1) of projections of R satisfying (1) m=,;2,2 e, (2)
e=ey, e e, ~e e (1Z2v=n), (B) dilen)=d(e), and (4) m=n. We shall see it by
induction. It is obvious for m=1. For an m, suppose that such a system
has been constructed. Since the system (e,; 1=<v=n-t+1) is commutative,
we may find an orthogonal system P of projections of R such that P con-
sists of a finite number of projections of R and that each e, is expressed
as a direct-sum of members of P. We denote by P(e’) the set of projections
e'’s of P such that e”’=e¢’. Then, we can construct a locally equivalent
pair Ple,: 1<v=y'+1), Ple, ; 1sv=y"-+1) catisfying ) e/ AZvsy)e
Pleey), e,/ (1sv=y)eP(eenyy), either (6) e,y being commutative with
each projection of P and e,/ =;0 or (7) e....,/=,0 and e,..,”" being com-
mutative with each projection of P and (8) # is best possibly maximal. By
Prop. 3.7, it is easy to see that e=@P(e,; 1=v=r'+1)P(De’; ¢’ € Pleen,,))
Or eny=D(e,; ISv=r"+1)MD(D(e ; e’ EP(eensr)). I e=Dle,/; 1Sv=r'+1D
(Ble’; e’ € Pleenrr))), then we have di(e)=d;(enr1), and so dile)=d;(eqs) by (3).
This means that e~je,,,. Starting from ¢, we can construct a decomposi-
tion 1=Ple,; n+2=v=r+1) satisfying (9) e~ e.(n+2=v=r), (10) each e, is
expressed as a direct-sum of projections of a common orthogonal system
of projections of R commutative with each projection of P, (11) d;(e,+)=
d(e). Therefore, we can take (e, ; ISv=r-+1) as a commutative system in
question for m+1. On the other hand, if e,.,=PD(e,”; 1=Sv=r"+1)P(D’’;
e''€P(ee,yy)), then we have d,(en..Pe,..,/)=d;(e) and, by starting from
enriDery’, we can construct a decomposition 1=P(e,; n+2=<v=<r+1) satis-
fying (9)-(11) by the same way as above. Hence, we can construct (e,;
1<v=<r+1) as a commutative system in question for m-+1. It iseasy to see
that for some o€, ole)=1/n)Y,%e,. Thus, we have [|o(e)—«|;=1/n for
some scalar «. (Here, we denote by |lall; the local norm of g, that is,
inf([le,(Nall; es(A)EE(A))). Hence, (4.9) holds locally for e.

Next we shall prove (4.9) locally for a=}] ,-fa,e, with ¢ <e¢,<---<e,. It
is obvious for r=1. Moreover, by the assumption of induction for 7, there
exists a linear operator o€ of e,Re, with [[o(e;)—ae,[|[<Min(e/2, e/2|a, .

We denote it by o(e)=X,07s*as,, where s, (1=1<#u) are unitary elements
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of e;Re; and 7, (1=v=n) are positive numbers with },.7,=1. The opera-
tor 0 may be extended to a linear operator ¢ —Y, %a,s,’*as,’ of R, where
s,/=s,+ee’. We denote it again by ¢. Then, we have o(e,)=e,(2<u<%) and
so [[o(@)— 2 5 e lli=¢e/2, where ay’=a;—aa, and a,/=a,3<up=<7). By the
assumption of induction we have |0,(Z 5, e,)—F|:<¢/2 for some o, &3
and some scalar 8. Thus, we have |[o,0(a)—8|;<ec. Hence, we have (4.9)
locally for such an element @ of N as before. Since any element ¢ of N is
uniformly approximated by those elements as before, we get (4.9) locally.

Finally, we shall prove (4.9) globally. Since we have already proved
(4.9) locally, for any spectre 1 of R, we may find 0,3 such that [|o;(e)
—a;|;=¢/2 for some scalar a;. Hence, we have [|e,(A)(o(a)—a))||<e for
some e Ey(d). As we know, £ is compact and so we get 1=U(e)(A);
1=i=m) for some ;&£ and some e (A)eE(1;). We put e,V=e,(1,) and
er® =e,(A)(U(eu(A); 1=j=i—D)Y(1<i=n). Then, we have [le,®(0,(a)—az)[|<e.
Suppose that o, is defined by ou(@)=32,7%a,Ps,:(D)*as,(i), where ey(1,)s,:(2)
is a unitary element of ¢,(1;)R. Then, we may find a unitary element s(v,,
Vo,ory V) of R satisfying that e,Ds(v), vy, vm)e@s,:() (1=i<m) for any v,,
Voo Vi With 1=y,=n; (1=<i<m). We denote by ¢ the linear operator of R
defined by o(@)=2,.2120. 23 Dvaimat, (1)@, (2) -y m(m)s(V1, Va,ooy Vi) ¥as(Wy, Vo,
va) and by a, the element Y (e, ; 1<i<m) of R,. Thus, we have [|e,(o(a)
—ap)l[=lles(2)(ou(@)—a)l[=¢ and so [Jo(@)—ay[[<e, q.e.d.

Lemma 4.1. There exists a local trace of R, if R is of local type (I,);.

Proor. It is easy to see that R is locally isomorphic to the full matric
algebra of degree n over the complex number field, whose local isomorphism
is denoted by ¢(@)=21;, ;5 e, where (;;; 1<i,j<n) is a system of complex
numbers and (e;;; 1=4,7<#n) is a system of matrix units. Thus, we have
tila)=>3:Ja,; as a local trace of R. q.e.d.

For a while, we denote by R a finite and non-discrete AW*-algebra.
But we notice that the results in this § are all valid, even if we drop the
non-discreteness assumption and assume simply that R is finite.

Since R has the unit 1, we may assume without loss of generality that
R contains the complex number field and so the unit 1 may consider as
coinciding with the number 1.

Derinition 4.2. (1) A projection e of R is called elementary if it is simple
of order 2. We put 27""=D(e) and 27"2(")=D(e).

(2) A projection e of R is called locally singular if d,(e)=<d;(e)) for any
locally non-zero and locally elementary projection e, of R.

The projection 0 is considered as simple of order » for any #z. In this
way, the elementarity of a projection of R is a normal (global) property
concerning a projection of R. Hence, we say about being locally elementary.
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The local singularity of a projection of R is a local property concerning a
projection of R. Hence, the property concerning a projection of R that the
projection is not locally singular, is never a local property. But, for con-
venience, we call this property the local non-singularity. What property
is the global form of local singularity ? The following lemma is an answer
to this question. Here is a property, which does not coincide with the
local form of its global form (cf. §1).

Lemma 4.2, If e is a locally singulay projection of R with respect to any
spectre of R, then e=0.

Proor. Using Prop. 3.4 step by step, we find a decomposition 1=P(e,;
1=n <o) with D(e,)=2""(1=<n< ), Since e is locally singular with respect
to any spectire of R, we may find a projection e, with e~e,’<e, for each
natural number n. If ¢ is a non-zero projection, then @le, ; 1<n <o) is
also a non-zero projection. According to Prop. 3.2, Ple, ; 1<n <) is nor-
mally infinite, and we arrive at a contradiction. q.e.d.

As an immediate consequence of Lemma 4.2, we have the following

CororLary. Every projection of R is expressed as a divect-sum of elementary
projections of R.

The following lemma is due to J. Dixmier [5] and the present proof is
essentially the same as his.

Lemma 4.3, For a decomposition 1=D(e.; c&l) we have

4.10) 1=X(D(e); <I)
where each e. is an elementary projection of R.

Proor. We denote by I, the set of indices ¢’s of T with D(e)=2""eM and
by P, the set of projections eee’s of R for ¢(el, and e¢,&F,. Then, there
exists a maximal orthogonal system P,V of projections of P, with efefi=0
for e, #e, (e, e, P,M). Furthermore, by induction, we may find a maximal
orthogonal system P,® (k=2) of projections of P, with ele,'=0 for e, #e,
(es, e, P,®) and orthogonal to P, (1sv=<k—1). We put Ple; ec P, M) =e¢,®.
Then, we have D(e,®)=2"¢,®" because the simplicity is normal. Moreover,
it holds that e,MWize,®"1=.... If N(e,®"; 1<k<2"+1) (say=e,) is not 0, we
must have Ple,®; 1=k=<2"+1)<1 -and D;(e,®)=2"" for a spectre 1 of R
with A(e,)=1. This leads to a contradiction. Hence, we may find a natural
number k(n) with ¢,® =0 (1<k<k(n)) and e¢,® =0 (k(r)<<k). ‘This implies
that Ple.; cel)=D(e,® ; 1=k=<k(n)). Since it holds that e,=P(e.e,® ; 1<k
<k(n)) for t=1,, we see that D(e)=2(D(e.,®); 1<k=<k(n)) (finite sum). On
the other hand, we have D(e,®™)=3(D(ee,™); t&I,) (direct sum). Thus, the
equality S(D(e); cel)=3(D(e,®); 1=k=k(n), 1<n<w) is obtained.

By the above arguement, we may assume without loss of generality
that I is a countable set (say(n; 1=n<<o0)). If it does not hold that 1=
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X (D(en); 1=n<<oo), we may find a non-zero elementary projection e of R
such that 1=D(e)+ S(D(en); 1<n<<eo). TFor, putting e,= Y (D(e,); 1<n<o0),
we have A(1—e))>0 for fome A€, that is, e,(A)({(1—e)2 ™)=0 for some
e(A)ekEy () and some natural number n. Hence, we have e,(2)(1—e,— D(e))
=0 for any elementary projection e of order n with ¢"=¢,(2). Thus, we get
1—e,=ey(A)(1—ep)=e(A)D(e)=D(e).

We shall prove that there exists an orthogonal system (e,’; 1<#n< o) of
projections of R satisfying e,~e,” and (e, ; 1=n<<x)=e’ by induction.
For an =, suppose that we have construct already an orthogonal system
(e;; 1=i=mn) of projections of R satisfying e;~e;’ (1<i<n) and P(e;’; 1<i<n)
=<e¢°. Then, denoting (eP(P(e;’; 1=<i<n))* briefly by ¢/, we have D(e')=1—
D()—21(D(e)); 1=isn)=1—D(e)— 2 (D(e;) ; 1=i<n)=D(e,.,). Since ¢/, eny, are
expressed as a direct-sum of a finite number of elementary projections, for
any spectre 1 of R, we have e,y ~ e /<e’ for some e, €F by Prop. 3.7.
Hence, we have e,y,~e,.,/<e’ for some e,,,’€FE by Prop. 1.1. The proof for
n=1 is obtained by making e’=e¢°. Thus, we can construct the system
(e./; 1=n<<eo) in question. From this it follows that 1=P(e,; 1<n <o)
~Ple, ; 1sn<<o)Ze+1. This is a contradiction. Therefore, we arrive at
the assertion. q.e.d.

Now, we shall introduce the following

Derinition 4.3. An operator D from E into R, satisfying the following

(4.11) DQ)=1,

(4.12) D(B(e.; ceD))=x(D(e); t€1),

(4.13) D(eye)=e,D(e) for e, E,,

(4.14) D(e)=D(e,) if and only if e,~e,,
is called a relative dimension function of R (after ]. Dixmier [51). From this
definition, it follows D(ey,)=e, for e, E,.

Prorosition 4.3. There exists one (and only one) relative dimension function
of R if and only if R is finite.

Proor. Necessity. If R is not finite, then we may find a projection e
of R and a non-zero projection ¢, of R, with e,e~e,~ee® by Prop. 3.2. Thus,
we have ey=D(e,)=D(e,e)+D(e,e®)=2¢, if R has a relative dimension function
D. This is a contradiction. Sufficiency. For any projection e of R there
is a decomposition e=@(e.; ccI) by the Corollary of Lemma 4.2, where each
e. is an elementary projection of R. We denote X (D(e); c<I) by D(e). For
another decomposition e=@(e.; ¢’eI’) combining with a decomposition e°
=Ple/ 3 'el'), we have XN(D(e);cel)+2(De); el )y=(D(e): /I)+
(D) ; 'el’”), by Lemma 4.3. Hence, we have Y (D(e); cel)=3(D(e));
¢/eI’). This means that D(e) is well-defined. It is easy to see (4.11)-(4.14).
Uniqueness. For another relative dimension function D’ of R, we have
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D(e)=D’'(e) for an elementary projection e, of K. For an arbitrary projec-
tion ¢, we may find a decomposition e=@(e.; (=), where each e, is an
elementary projection of R by the Corollary of Lemma 4.2, and so we have
D(e)=D’'(e) by (4.12). This completes the proof. q.e.d.

We now establish the local forms of Lemma 4.3, Def. 4.3, and Prop. 4.3.

Lemma 4.4, We have 1=3(D;(e); t<I) for any maximal ovthogonal system
(e.;: t€1) of elementary projections e’s of R with Ale)=1.

Proor. It is easy to see that 1=2(D(e); ¢<I’) for any finite subset I’
of I. Hence, we may assume without loss of generality that 7 is a coun-
table set (say I=(n; 1<n<x)). Thus, we have 1=3],5Die,). Moreover,
we may assume without loss of generality that Dy(e,)=D;(en.) for n=1.
If >.5D.(e,)<<1, we may find a natural number 2=2 with },51D;(e,)+2-¢D
<1. There exists a system (e, ; 1=i<2" 1<n<<) of elementary projec-
tions of R, which satisfies the following conditions: (1) D(e,®)=27", (2)
enMe, D=0 for i#74, and ¢,Pe, =0 or e, for m<<n. Then, it is easily seen
that there exists an orthogonal subsystem (e,’; 1=<#n< o) of the above system
(e, ; 1<i<2", 1<n<<oo) satisfying e,~e,/’'<e,’ and e, (e,VPe,»)=0. Since
(Plen; 1=n<<oo)y is locally singular, we have d;(P(e,; 1=n<o))<d(erD).
Thus, we have d;(1)=d,;(e;®°), which is a contradiction. q.e.d.

Derinition 4.4. A functional D, of E satisfying the following

(4.15) Dy(1)=1,

(4.16) Di(Dle.; cel)=21(De); cI) for mutually orthogonal elementary
projections e’s of R with 2(eM)=1 except for at most a finite number of projec-
tions,

(4.17)  Die)=D;(e)(Re) for e(A) € EyA),

(4.18) Dyle)=Dy(e,) for e,~ es,
is called a local relative dimension function of R (after F.J. Murray and J.v.
Neumann [1]).

Prorosition 4.4. There exists one (and only one) local relative dimension
Sunction of R if and only if R is locally finite.

Proor. We can prove the assertion by a similar argument as in the
proof of Prop. 4.3. q.e.d.

For any projection e of R, the center of eRe is isomorphic to that of
e"R. In fact, putting R,=¢"R, R,=e¢Re, and A=¢R, we have b*aER,, ab*cR,,
and R.aR S A for any a,be A, that is, we see that A satisfies the conditions
of A in 2. Under the same terminologies as in §2, we have [ *#=e=I, and
Lt=e'=I,. Hence, the center of ¢MR is isomorphic to that of eRe by # (cf.
Prop. 2.8). Thus, # induces a homeomorphism between the spectrum of the
center ¢"R, of ¢"R and that of eRe. Therefore we may identify a spectre
of "R and its image by the induced homeomorphism,
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We denote by R the real number field, which we consider as being
imbedded in N,.

Now, we shall introduce the following important tool for the proof of
Prop. 4.1.

DermniTion 4.5, For an elementa of N, we write

4.19) fi(a, o)=sup(a; ol@)=z,a, acR), [ (a, o)=inf(a; o(@)=,a, acR), for
=P

(4.20) Fi(a)=sup(t(a,o); c=X), ti{a)=inf(t)(a,0); 0 ).

Moreover, we use the notation T (a,e) instead of T;(a) of eRe and the notation
fi(a, e) instead of t(a) of eRe for an element a of eRe.

In order to prove Prop. 4.1, we use the following three lemmas.

Lemma 4.5, For a,bEN,e;€E(i=1,2,3) and acN, we have

(1) fis*tas)=f(@) for any unitary element s of R,

(2) xaa)=ata) for «=0, (3) [;(@)=0 for a=0,

@) fa—a)=ta)—«a, (5) f(a+0)=Ta)+TD),

(6) f/l(a)gl/l(a): @ f/l(el’ ez)f-/l(ez’ es)éfx(el’es) Sfor e, <e;<e; (8) t—/l(el)/D/l(ez)
<filey))/Dley) for locally elementary projections e; (i=1, 2) with 0<<D,(e))< D;(e)),
and hence Ti(e)=I(e;) when Djle)=Dile,), and (9) I;(e)=0 for every locally
singular projection e of N.

Proor. It is easy to see (1)-(4). In order to show (5), we may find
0,€¥ (i=1,2,3) and «;&N (j=1,2) for a positive number ¢ such that ,(«
+b)—e=,0,(a-+b) by the deflinition of 7, |00, (@)—a,|;=<e¢ by Prop. 4.2, and
[lo30,0,(b)—asl[;=<e by Prop. 4.2. Hence, we have f,(a+b)—e<a,+a,+2¢ by
an easy computation. Since a;—e=f (@) and a,—e=<f;(0), we get ;(a+bd)=<
F(@)+T(b)+4e. Making e ] 0, we have (5).

In order to see (6), we may find s and ae®R for a positive number
¢ such that [[o(a)—«all;<e by Prop. 42. Therefore, we have a—e=<7¥;(¢) and
a-t+e=t(e). Making €| 0, we obtain (6).

In order to see (7), we may find g,€2 with o.(e;)=e,, 0,(e;)=e; such that
(T i(ey, es)—e)ey=,0,(e;) by Prop. 4.2 (cf. the proof of Prop. 4.2) and o, with
oy(e;)=e; such that (f,(e,, e;)—e)e;=<,05(e;) by Prop. 4.2. Hence, we have
(Faley, e)—)(Ealesy e5) —€)=i(es, ;). Making €0, we get (7).

In order to see (8), we may find 0,2 such that o,(e;)=3(D,(e;)/Dile))e;
by using the local elementarity of e,,e, and D;(e,)=D;(e,), and ¢ such
that ;(e,)—¢=;0(e;) by the definition of #,, Hence, we have ({(e))—e)D,(e,)/
Di(e)<00,(e;). Thus, we have (Fi(e)—e)Di(e,)/Dyle)<Fi(es). Making €0,
we obtain (8).

In order to prove (9), we notice that e, Ue, is locally singular with e,
(i=1,2) because of dile,Uey—e)=d;(e;) (cf. Lemma 2.5 and the Corollary 1
of Prop. 3.6.). From this, it follows easily that (9) holds. q.e.d,
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Lemma 4.6, If there exists a locally nown-zevo and locally elementary pro-
Jection e, of R with T(e)<<1, then there exists a projeclion e, of R and a state
f of e, Re, such that it holds fle,)=0 if and only if e,’ is a locally singular
projection of e Re,, wheve we say that a linear functional f of R is a state of
R if it satisfies that (1) f(1)=1, (2) Aaa)=af(a) for aER and « being any
complex number, (3) fla®*)=f(a) for acR(f(a)=the conjugate complex number of
fla), (4) fla*a)=0 for a=R.

Proor. Let E; be the set of elementary projections e,’s of R with e/f=1
and let G, be the set of supremum of orthogonal system of projections of
E;. We may assume without loss of generality that e is a projection of FEj.
We note that D(e)=D;(e’)+1 when e¢"=1. So we shall consider henceforth
D(e’) (when e"=1) as a real number and then the above equality can be
written as D(e’)=D;(¢’) when ¢’"=1. Then, we can find a maximal chain G
of projections of G, containing e and satisfying (D(e’); ¢’=G)=[0, 1] (the
closed interval of real numbers between 0 and 1). In fact, we can find a
system Go=(e.(fy); 0=5,=1,2"8, a natural number with #) of projections of
E; such that (1) e€G,, (2) D(e.(By)=27" and (3) e.(Bo)=ensi(Be—2""* NP
ens1(By) for 0<<B,<1 and 2”4, is a natural number. For any real number S
with 0<f=1, we have an expression f=72;,%627%(,=0 or 1). We put fB,=
2627 and e(B)=P(en(Br); for n such that 2"8, is odd) for >0 and e(0)
=0 for f=0. Then, e(B) is independent on the expression of 3. We denote
(e(B); 0=p=1) by G. Then, G is a chain of projections of G, in question.
It is easy to see that D(e(B))=pA and }arllr:} e(B)=e(ax). We denote by e, the

supremum of (¢’; #;(e’)<<1,e’€G). Then, we have e;&G and D(e)<D(e,).

If f,(e))=1, then we have f;(¢/,e,)<<1 for any projection ¢’ of G with
D(e") <<D(e,) by (7) of Lemma 4.5. For any elementary projection e, of e, Re,
with 2(e,/")=1, we may find a projection ¢’ of G such that D;(ee,’*)<<D(e’)
<<D(e,). Hence, we have f;(ee,’% e;)<<1. By the extention theorem of Hahn
and Banach, there exists a state f of e, Re, with fla)<t;(a,e,) for any her-
mitian element ¢ of e¢,Re, by virtue of (2), (4) and (5) of Lemma 4.5. There-
fore, we have fle,)=1—f(ee,/)=1—ti(e.e,'*) <0, for any elementary projection
e, of ¢, Re, with A(e,/N=1.

If #,(e,)<<1, denoting by e,’’ the projection of G with D(e,)=(1+2"")D(e,)
for large »n say n=n,, there exists a state f, of e,’’Re,’’ with f(@)=<fi(a,e,"”)
for any hermitian element a of e¢,”’Re,’”’. Since f;(e;, e,/ )<<1 by (7) of Lem-
ma 4.5, we have f,(e,/)<<0 for any elementary projection e, of ¢ Re, with
Dy(e,)=2"". We put fla)=¢"'1-nl fal@) for any element ¢ of e, Re,, where
e=227"f(e). Then, f is a state of ¢, Re,; and f(e,”)>0 for any elementary

projection e’ of e;Re; with A(¢e;’*)=1. This complete the proof. g.e.d.
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Lemma 4.7. A locally finite (locally mon-discvete) AW *-algebra R has a
local trace, if eRe has a local trace for a locally non-singular projection e of R.

Proor. Since e is a locally non-singular projection of R, there exists a
locally non-zero and locally elementary projection e, of order 2" with e, =<e.
Then,* we may find a local decomposition 1=;P(e;; 1=<7<2") with e,~;e;
(1=7=2") and local partial isometries #; (1=7=<2") with e4(x;)=e¢; and e(u;)
=e;. We put e;=u*u; (1=4,7<<2"). Then, (e;; 1<i,j<2") is a system of
matrix units of R. Put ¢(a)=X(u au;; 1<j<2") for each aceRe,. Then,
@ is an isomorphism from e, Re; onto ¢(e,Re,). It is easily seen that ¢(a)e;;
=e,;0(@) (1=<i,7=2") for each ace Re, and R=3(¢(e,Re)e;;; 1<i,7<2"), the
full matric algebra of order 2" over e,Re,. Since a local trace of eRe is
that of e,Re;, by restriction with neglect to constant multiplier, we may
assume without loss of generality that ¢(e,Re,) has a local trace (say #;).
We put tx(@)=2E (@5 1=7=2"), where a=X(ayei;; 1=, j=2" a,;EP(e,Rey)).
Then, it is easy to see that #; is a local trace of R. q.e.d.

The proof of Prop. 4.1. We need only to prove the sufficiency. From
Lemma 4.6, and Lemma 4.7, we may assume without loss of generality that
there exists a state f; of R such that f3(e)=0 if and only if ¢ is locally
singular.

First we shall prove that, for any positive number ¢, there exists a
local state g; of R such that it holds

4.21) |gx@)—gi(o(@)|=2¢]lall;
for any @ of N and for any o2, where we say that g; is a local state of
R if it is a state of R with gi(@)=gi(e,()a) for any e (A)eE,(A). By a
similar argument as in [2], we can find a locally non-zero and locally ele-
mentary projection e of R satisfying fi(e)<D;(e,) for each locally elementary
projection e, of R with e, of R with ¢,<e. We shall prove this fact
below. If we have a decomposition 1=Q(e.; ccI)+e’ such that file)> D,(e.)
(tel) and that ¢’ is locally singular, then, using (4.16) and the fact that
Fe)=0, Di(e)=0, we have 1=£(0)=(file); ccl)>(Ds(e); (€I)=D;(1)=1.
This leads to a contradiction. Hence, we get the above-mensioned fact.
For a positive number 6, we denote by ex,0 (or e=,0) if file))=0D;(e,) (or
file)=60D,(e)) for any projection ¢, of eRe after F.]. Murray-J. v. Neumann
[2], J. Dixmier [5], Ti. Yen [8], and M. Goldman [9]. Then we can write
e<,l. In this cases, moreover, for any decomposition (4.16) in eRe, we have
f@=>(file); teI). In fact, by the definition of the sum of a infinite
number of positive numbers, for any >0, we can find a finite number of
projections (say ey, ey, e,) of (e.; ¢&I) such that D(e)<< 31(Dy(ey); 1< i<n)-t-e.
Since Di(e(@(e;; 1=<i=n)))=D;(e)— 2 (Dy(e;); 1=i<n)<e, we can find a posi-
tive number A, such that D (e(@®(e,; 1=i=n)))=<pB,<<e¢ and that 2"F, is a



Local theory of rings of operators I. 213

natural number for some natural number x. In this case, we can find a
projection e® satisfying that e(@(e;; 1=i<n))’<e® and that Die®)=pg,.
Since D (e®)=p4,, we can find a local decomposition e®=PeW ;1<j=<m) for
some natural number m, where each e® is locally elementary. Hence, we
have file(D(e;; 1si=m))= fale®)=N(faleD); 1=j=m)= (D ; 1=i=m)=
Dy(e®)=p,<<e. This means that fi(e)=>(file)); 1=i=n)+fi(e(Ple; 1=i=n))°)
< Y (fale); 1=<i<mn)+e. On the other hand, of course, we have fi(e)= > (fale);
cel). Thus, we get the desired equality fi(e)=X(fi(e); c€I). Put =inf(6’;
e<,0"). Then, for any positive number 7, we may find a locally non-zero
and locally elementary projection ey of R with 6—7=,ey» by a similar argu-
ment as in [2]. Hence, we have |fi(e,))—0D;(e)|=nD;(e)) for any locally
elementary projection e; of R with ¢, of R with e;<ey. Therefore, we get
[ fale)—0D (e =7 D,(e)) for any projection e® of R with eV=<e¢y. For
any element @ of N, we denote by (ey(@); —o<<a <) the resolution of the

unit for . We put t,l‘)(a):‘r adDy(e(a)). Then, we have |fi(a)—0¢%a)|=

.V aD=nllall; for a€eqRey by an easy computation. Since ¢;,%(a*a)=¢;'(aa*)
by (3.6) of Prop. 3.6, we have |fi(a*a)—fi(aa®)|=<27t;(a*a), that is, fi(aa®)=
(I+e)fi(a*a), where e=27(0—n)"'(0<<n<<#). We denote the local order of ey
by 2™ (that is, D;(ey)=2""). Then, we may find a system (¢;;; 1=¢,7<2") of
matrix units of R with e;=e;;. We shall write g,l(a)zzjj?f,l(ejl*aeﬂ) for
any element ¢ of R. Then, g; is a local state of R. Moreover, for any
clement ¢ of N with =0 and for any unitary element s of R, we have
gis*as) = T X Flen* sV a ene*V a se; )L+ ) T ;4 Filen™V a seje; stV aey)
=(1+e¢)gi(@). Thus, we have |gila)—gi(s*as)|=¢c|la|l» Hence, we get |g:(@)
—gi(s*as)|=2¢el|allx for any element @ of N. Therefore, we obtain (4.19).

Next, we shall prove that 7(e)=t,(a) for any element @ of N (with [|a]],
=1). For, otherwise, putting 7;,(@)—{a)=T7¢>0, we may find 0,2 (i=1,2)
such that o,(@)=(a)—¢ and fi@)+e=,0.,(a) by the definition of f, f;. Since
gi(o(@))—gio(a))|=<4de by (4.21), we get 6ez=t(a)—1,(@). This leads to a
contradiction. Hence, we have {x(a)=1(a).

We shall write #(@)=t:Ne(a))+it (Im(a)), where ?)?e(a):é*(a%‘a*) and

Sm(a)zfé% (a—a*). Then, it is easy to see that ¢; satisfies (4.1)-(4.7) by
Lemma 4.5. The uniqueness of the local trace of R is an immediate con-
sequence of Prop. 4.2. q.e.d.

As a global form of Def. 4.1, we shall introduce the following

Dermation 4.6. An operator t from R onto R, is called a trace of R if it
satisfies the following
4.22) t(1)=1,
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“4.23) tlat+b)=t(a)+td) for a,bER,
4.24) ta@®)=ta)* for aER, :
4.25) #a)=0 for a=0,

(4.26) t(a@)=at(a) for a=R and ay<R,
“4.27)  t(ab)=t(ba) for a,beR.

It is normal as a property in our sence that, for a projection e, eRe has
a trace. The property that R has a local trace with respect to a spectre 1
of R is not the local property corresponding to the property that R has a
trace, but we have the following

Prorosirion 4.5. R has a trace if and only if R has a local trace with
vespect to any spectrve of R.

Proor. Necessity. It is easily verified that A(#(a)) (¢=R) satisfies the
conditions (4.1)-(4.7) of the local trace of R. Sufficiency. By Prop. 4.2, for
any @ of N and for any #, there exists an element ¢, of N, and ¢,€2 such
that [[o,(@)—a,™ |[|<1/n. Then, we have |[#;(a)—2(@,"™)|[=1/n for any spectre
A of R. This means that ¢, converges uniformly to an element (say #(«))
of R,. Then, ¢ satisfies (4.20)-(4.24). q.e.d.

We denote by £, the set of spectres A’s of R such that R has a local
trace with respect to A.

Lemma 4.8. 2, is a closed subset of L.

Proor. Let g be a limit of a hypersequence A of spectres of £,. With
the same notations as in the proof of Prop. 4.5, we have [#(a)—A(a,™)|<1/n
for any spectre 2 of A. This means that #;(a) converges to a scalar (say
t,(a)). Then, ¢, satisfies (4.1)-(4.7). q.e.d.

Lemma 4.9. Let (P) be a global condition of R. We assume that R has at
least ome local trace if R has the condition (P). Then, R has a trace if R has
the condition (P).

Proor. If £,°#¢, we may find a non-zero projection ¢, of R, such that
Aef, implies A(e,)=0. Hence, e¢,R has no local trace. This contradicts the
property of (P). q.e.d.

Turorem 4.1. Let R be a finite AW*-algebra with a faithful representation
© on a separvable Hilbert space H. Then, there exists a trace of R.

Proor. Let (f,;1<n< ) be an orthogonal basis of . We denote by
the same f, the state of R defined by fo.(a)=<(a)fw fo> for a€R indiffer-
ently, where we denote by < f,g> the inner product of f and g in H We
put fla)=>,52""f.(a). Then, f is a state of R satisfying that ¢=0 if and
only if f(a*a)=0. Hence, there exists a locally non-zero and locally ele-
mentary projection e of R such that f(e,)<Di(e,) for any locally elementary
projection e, of R with e¢,<e. We shall prove this fact in the below. If
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there is no projection such as e, in the above, we have a decomposition
1=Ple.; te)Pe’ such that f(e)>Dile) (¢cI) and that ¢’ is locally singular.
Then, using (4.16) and the fact that Di(e’)=0, we have IZf()=X(f(e); t<I)
>3(Dile); ccl)=D(1)=1. This is a contradiction. Hence, we get the
desired projection e. As we have only to prove the existence of a local trace
by Prop. 4.5 and as, for that sake, we need to show it for eRe by Lemma
4.7, we may assume that e=1. And moreover, from what we have seen just
above, we may assume that 0f(o(e))<Di(e) (f: some constant) for any s
and for any locally elementary projection e of R.

If R has no local trace with respect to any spectre of R, then, for any
elementary projection e with ¢"=1 and for any ¢e>0, we may find an opera-
tor ¢ of X such that o(e)=1—e. Hence, we get Die)=0(1—¢). As we can
make Dile) | 0, this leads to a contradiction. Thus, R has at least one local
trace. Since it is a global condition that R has a faithful representation
on a separable Hilbert space, we arrive at the assertion by Lemma 4.9. q.e.d.

Ti. Yen [8] proved that a finite AW*-algebra has a trace if it has a
complete set of p-normal states. The following theorem contains this result
of Ti. Yen.

Turorem 4.2. Let R be a finite AW*-algebra with a complete set of states
’s of R such that, for any orthogonal system E| of projections of R, f(Ple,:
e, € E))=0 follows from f(e)=0 for each e,=FE,. Then, R has a trace.

Proor. Let I' be a complete set of states of R. TFor any f&rI', by the
assumption for f, there exists the minimal projections e(f) of E and e, (f)
of E, fixing fF (cf. Lemma 1.3, [15]), where we say that a projection e fixes
fif f(e)=0. It is easy to see that f is a state of e(f)Re(f) satisfying that
a=0 if and only if fla*a)=0. Hence, there exists a trace of e(f)Re(f) by
the proof of Theorem 4.1. Hence, there exists a local trace of e(f)Re(f)
with respect to any spectre of e(f)Re(f) by Prop. 4.5. From this, together
with Lemma 4.2, Lemma 4.7, it follows that there exists a local trace of
el fHRe,(f) with respect to some spectre of e,(f)Re,(f), and hence there
exists a local trace of R with respect to some spectre of R.

For any projection ¢, of R, and for any state f of I, we denote by £,
the state of ¢,Re, defined by f,(a)=f(a) for any a<e,Re,. Then, it is obvious
that the system (f,,; f€I") forms a complete set of states of e,Re, satisfying
the condition stated in the theorem. This means that the present condition
imposed on R is a global condition. Thus, we arrive at the assertion by
Lemma 4.9. q.e.d.

M. Goldman [9] proved that a finite AW*-algebra R has a trace if it
has a complete set of p-normal C-valued states, where C is a commutative
AW#*-algebra contained in the center of R. The following theorem contains
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this result of M. Goldman.

Turorem 4.3. Let R be a finite AW*-algebra and C be a commutative
AW*-algebra contained in the center Ry of R. Further, we assume that R has
a complete set of C-valued states f’s such that f is completely additive on E,
and that, for any orthogonal system E, of projections of R,f(P(e,; e, €E))=0
Jollows from f(e,)=0 for each e, E,. Then, R has a trace.

Proor. Let I' be a complete set of such states of R. For any ferl,
there exist the minimal projections e(f) of E and ey(f) of E, fixing f (by
the similar method as in the proof of Lemma 1.3, [15]), where we say that
a projection e fixes f if f(e®)=0. It is easy to see that f is a state of
e(Re(f) satisfying that ¢=0 if and only if f(a*e)=0. By a similar argu-
ment as in the proof of theorem 4.2, there exists a trace of e(f)Re(f).
Hence, R has a trace by the same argument as in the proof of theorem 4.2.
q.e.d.
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