Journal of the Mathematical Society of Japan Vol. 10, No. 2, April, 1958

On linear Lie algebras 1.

By Yosio MUTO

(Received Nov. 5, 1957)

Introduction

Let gi(R"™) be the set of all linear transformations X of an »-dimensional
linear space R™ over the field of real numbers, equipped with the ordinary
law of addition X+ X’ and the law of composition [X,Y]=XY—-YX. The
purpose of the present paper, which is considered as the first of the series
of papers pursuing the same purpose, is to deal with a method of studying
some properties of r-dimensional subalgebras g of this general linear Lie
algebra gf(R™).

If we take a base S composed of a set of » linearly independent vectors
e, (A=1,---,n) of R", then a subalgebra g is represented by an r-dimensional
linear subspace in an #n?-dimensional linear space spanned by all matrices
of degree n. This subspace will be denoted by £(g,S), or by & if there is
no possibility of confusion. If we take another base 5(&,) such that

S=4s, &=A%e,,

then a matrix K of & representing an element of g is transformed into
K=A"'KA. This fact will be denoted by

K(g, AS)=A"'8(@, SA.
The set of matrices (V%) where V%, satisfy
K2, V%i=0

for all matrices (K’.l,l) of & spans an (#’—7)-dimensional linear subspace in
an n’-dimensional linear space spanned by all matrices of degree n. This
subspace will be denoted by B(g,S) or by B for short. The law of transfor-
mation is

Blg, AS)=A"'B(g, HA.

B may be considered to represent a set of transformations of R* which will
be denoted by 1(g) or by t for short.
If we take a suitable base S in R™ and moreover, if we take a suitable
base M in B(g, S)
M: Ef (A=1,--,m; m=n’—~7r),
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then the matrices (I/f,.l) take special forms as shown in (§6). In

§ 7, we shall introduce the notion of d series which will play an important
role in our studies, in which we shall be able to find out all subalgebras g
of sufficiently large dimensions » and get some interesting properties of g of
more general dimensions.

We remark here the important

LemMma 1. 1 is an itnvariant of g, that is, if VEB and KER, then [K, V]
=B,

Proor. For any matrices K (¢=1,---,7) forming a base of & we have

IC{ 5,1(11)( AV V’f,xfbf W
= V’f;(lc{falbfof,l—lffwlc{"fﬂ)z V’fxlff,lC;;,“:O b, c=1,+,7).
Unless otherwise specified indices are used as follows,
a, B,7, A v, k=10,
A, B=1,--,m,
a, b, c=1,-,7,
t,u,v, X, 9, 2=n—n+1,--, n,
hoi g,k l,m=1,,n—mn,
Dy q, v, s=2,, n—n,,
S, T, U=1,--, P or P+1,
Iy gy Jy Ry bpy Mp=n—np_y+1,--, n—np,
Ly, g, Up, Xp, VY, Zp=N—Np+ 1, 7.

We adopt the summation convention with respect to indices in small letters.

§1, Bases of the first order.

First consider that the base S of R"™ and the base M of ¥ are taken
arbitrarily. When a non-zero vector v, (=vle;) of R" is given, we get m
vectors v (A=1,---,m) of R™ whose components are mev”ﬁ. These span a

4 A

linear subspace of R™ which will be denoted by L(g,v,). Of course this
subspace does not depend upon the choice of S. We observe that L(g,v,) is
spanned by #; vectors

o (x=n—n+1,,n)

or by 14, vectors

A A
V1, Uz (x=n—n+1,--,n),
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In both cases the 1+, vectors vf,vi_n.ﬂ,---,vi are taken linearly independent.
We get the first case if v;e6L(g,v,) and the second case if v,eL(g,v,). As
the number #, depends upon the choice of v, this is denoted, if necessary,
by n,(v)).

Taking #—n,—1 vectors vﬁ,---,vi_m, we can complete a set of # linearly
independent vectors

vi (;c_—..l,...’n)’

whose reciprocal set is denoted by wy), so that

Then

is the transformation of the matrices V of B induced by the transformation
A
~ @
€,=V;€y
of the base S, and we find
V2,=0,--, V", =0.
A A
Moreover, the m vectors

V.,
where y=n—n,+1,--,# and each vector has #z, components, span an #,-
dimensional linear space.
Thus we find that
When a vector v, is given, we can find n—1 vectors ey, e, such that the
space B(g, S) where S=S(, e,, -+, €,) is spanned by the malrices Y with the pro-

perty
case 1:
A A
V-1=€A6A
® 4
6= =Cpn, =0, Epop,y='=6,=1,
or
case 2:
A A
V-IZEABA 5
(2 4
Eg=r=Cnop, =0, €;=€p_p, 1= =¢,=1.

Such a set (S, M) of vectors and matrices will be called a base of the
first order of (R",1).
The linear space spanned by all matrices -V with the property Vfl=0 of
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B is denoted by ®B’. A base of the first order is not determined uniquely
when S is given, for the matrices of M are only determined to within
additive matrices of %,

In short a base of the first order is a base (S, M) of (R" 1) such that the
given vector v, has components (1,0,---,0) and the matrices of M satisfy (1)
or (2).

If (S, M) and (§,1\(~1) where

SNZAS s EAZAD:,qew

are bases of the first order with the same vector v,, then we find

(3) Al=8t, AlL,=0

(=1, n—n; x=n—n+1,,n)
in case 1 and

) Al=sl,  AL=0
(@=2,,n—n,; x=n—mn~+1,, 1)

in case 2. Conversely this is a sufficient condition that A induce a trans-
formation of the bases of the first order with the vector v,(1,0,---,0). In

case 1 M is obtained from M when V are replaced with AY,A-'VA and the
x K4

matrices V in B’ with A~'7VA. But in case 2 M is obtained when V, V are
B B 1 =z

feplaced with A~ VA, AV, A'VA—AY, (A, A ' VA respectively and ¥ with
1 Y 1 B’
A VA.
BI
Later we shall assume the vector v, to be such that the number #,

takes the maximum possible value, but for the present v, is assumed to be
given arbitrarily.

§2. Bases of the second order.

Among the bases of the first order we can choose a special one in the

following manner.
1) Case 1.
In this case the matrix

1 d
Ki,=016L0
1

1) In such a formula a superscript indicates rows and a subscript columns, so
that for example Kfﬂ is the element of the A-th row and of the g-th column of the

matrix (Kf,,). If there is no possibility of confusion we drop the parentheses so
that such an expression often denotes not an individual element but a matrix.
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1
is an element of & Hence according to [K, V]1eB for every
1

Ve®B. We also get [11{, [[1{, V11, and, as we have
1 1

1
L, v1,=8vi,— Vil
and

- h A Arrt A s1 1 sAs1
[flf, [[1{, V1l,,=01Vi,+V.0,—2V.8,,

we find that the matrix Vflé,i— V116f6}11> is an element of V. Moreover, as
we have V'1,=0, we get
Vfﬁ}le%.
Especially, if we take a matrix V, we find éfcébe%, as we have V'.l1='o‘i-.
x x

Hence the matrix

1

i A
Tx/.,l=5x6}1
can play the part of V in M.
X
Again, as we have
KL isleies
1-/,4*’* 1 yE ’
we get
¢ f/ A Ao S
[If“, 4 1.,=—020,=9.
Hence the »n,(x—mn,) linearly independent matrices
®) Vi,=olo

can form a part of a base M of 0.

The subspace of B spanned by (5) is denoted by %B,, and the subspace
of B spanned by matrices with the property V¥ =0 is denoted by B;. Of
course the elements of the first column vanish in all matrices of B; %,
and B; span B.

If a base M is composed of the matrices (5) and an arbitrary base M;
of B;, then the (S, M) is called a base of the second ovder.

2) Case 2.

In this case we have

Ba 4 sdsp —9.
K., =8ef (=2, n—ny)
1

and we get

4 A A 2
[K V].ﬂ:&égVT,;_ V.aﬁfaz N
1 =z x x
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hence the matrices

L2 R S Asp
(6) V-/,L‘_‘_alv./l‘*—axaﬂ
lie in B if for example

V=V,

d x
It is also evident that (6) lie in ¥’. But, as we have
»

V?”::.O (q:2,-..’n__nl)’

x

D
we obtain the same matrices V if we put
x
1 q
V=V42,V (y=n—nm+1,-,n)
xr X Y

in (6). -Especially, if we put i%,=-— JIC/E’Q, we get
1

VY,=0,

x
1

hence we consider hereafter that V satisfy
x

L by
(7) V'I—az‘y l -p—‘O-

T

1
We also obtain a matrix V such that
1

Fh—ol,  Vi,=0
(8) V'l—‘ 1 A op—

1
by adding to V some linear combination of (6).
1

The subspace of B spanned by the 1+4»,(rn—n,) linearly independent

matrices Il/', IZ/ obtained above will be called B,. The subspace of B spanned
1 x

by matrices V of B’ such that V7?,=0 (hence V¥;=0) will be called L;. B,
and B3 span .
A base (S, M) of the first order is called a base of the second ovder if M
is composed of the base of B, mentioned above and an arbitrary base of ;.
In the following only bases of the second order are used.

§3. Choice of the vector v,, (I),

Hitherto the vector v, was not specified. Now we consider that v, is
such that the number #»,(w,) takes the maximum of its possible values.
Then the matrices of the base of B can assume simpler forms if # <n—2.
Since we have two cases,

case 1: v L, v)),

case 2: v,eL(g,v),
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case 1 is studied at first.

Although we have v, & L(g, v,), we do not know whether we have ve L(g, v)
or not for an arbitrary vector v. But, as we know that #»,(v,), or #, for
short, is not less than #,(v) for any vector v, the number of linearly inde-
pendent vectors in the set of vectors
) v, Vi

4

is no more than z»,+1.
On the other hand we have

2 P
Viead®=0z0",
x

hence the number of linearly independent vectors in

oA 2
vh, 0%, V.®

is no more than »,+1 for any matrix V in %B; Consequently Viw‘” is a
linear combination of »* and 6;}, and in particular we obtain
(10) poer’,
where oc means “ proportional to”.
If n—n,=1, we get no relation.
If n—n,=2, we get Vi,=0 and Viocdi. But since Vi, =0 for any matrix

V of B; we find that V!=0. Thus we obtain the result,
If n,=n—2, every matrices V in By have the form

V=iV Y.55.

If n,=n—1, such deduction fails. But we can divide ®B; into two sub-
spaces By’ and Bi’/, such that the matrices of B;’ have the form

V=0,V 1,05,
while the matrices of By’ have the form
Vi=otV 1,05,

1
These matrices are obtained from matrices V of 8B; by considering V—[K, V]
1

and [K, V1.
1

§ 4. Choice of the vector v,, (II).

We now consider the case of v,eL(g,v,) and assume n—n,=2.
1) As we have #n,=n,(v,)=n,@), the number of linearly independent
vectors among (9) is no more than #»,+1. Since the components of the
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Y4
vectors V tw® are for A=1,q,y
X

1
- V?a*, 0, o%v?
by virture of (6), we find that the rank of the matrix of degree 2,42

n; columns (x=n—n,+1,-+, %)

—t——
1 1
! Vio® - Vep®
z X
1
v? V 2ap® 0
2
1
vY Vyap® oYp? } n, rows (y=n—mn,+1,--,n),
2

where p, g, z are arbitrary within p,¢=2,--,n—»n, and z=n—n,+1,---,n, is at
most 7,-+1. We thus obtain

1 1 1 1 1 1
an VWPV Ip" =00tV i 0 — 01V 2 V B+ V 4™ V 2 goPr' =0
z F4 t z 2 t

As this must be fulfilled for an arbitrary vector v, we get by picking
up the terms involving »?o%"

(12) V=0,

for we have (7).
Then becomes

1 1 1
(13) VP Vi +ow? Vip —oPtV iyt
1 1 1
— U (V20 "+ V20 + Vi)
t t 2
1 1 1 1
V8L +VIwoWVIip™+ Vi Ww'=0,
z z i 2
and we get from the terms involving »!
1 1
PV Iy - VEip =0,
1 1
PV Iipt—v VPt =0.
z2 2
If n—n,=2, these give no relation. If n—#»n,<3, we get

1 1
(14) V?pocag, V?t:O (n—}’llz?)) .
In

1 1
T V20"
z t

is the only one term involving »%*%°. Since this must vanish, we get
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(V50 XV 200,
hence
f/?uv“v”:() .
Thus we obtain

(15) ‘ Ilfgy'}’ Tl/'?x=0 (n,=n—2).
z Yy

Now, collecting the terms involving »"»%" and v"v'v* respectively, we get

from
! o1 11
{10 —(070%-+ 050D V2= 04V 1, VI =8tV VL,

1 11
an —0Ve, V=0Vl Vi,

1 1 1 1
F VRV VE V=0,
t z w z

As we have for n,<n—3, we can put

1

Vi, =00}
for n,<n—2, and becomes '
(18) f/iﬂrfz f/?,*%)zo.
On the other hand becomes
(19) VEVIA VLV =0 V=0 V=0

for n,=n—2, but for n,=<n—3 (17) is fulfilled already by virtue of [14).
The results obtained, (7), [12), [14), (15}, (18), (19}, are arranged as follows

1 1
vi=sl, vi=vo! (m=<n—2),
1 1
ijﬁgg—ngfx (m=n—2),
1 1 1 1 1 1

(20) S TL/?foy—i- Vi Vi=0Vi+toVi, ny=n-2),

z t z x z vz

1 1
xV?qﬂ- 1T,/'?JDZO (ny=n—2),
1
K?/A:gaﬂ (nlén—3) .
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1
2) Let us study the matrix V. We obtain the matrix of degree »,+2
1

n; columns
——t—
1 1 1
v! Vip® — V2
1 x
1
v? V wv® 0
1
1
oY VYo~ oYp? } 7n; TOWS
1

and, as the determinant must vanish, we get
1 1 1’ 1 1 ¢ 1 1
VP VIp® =00tV ip® =0 V2 0® Vigph+ VEp* Vighr'=0,
1 1 t 1 1 t
which becomes by virtue of (8) and or
1 1
VPV 8o o Vi
1 1
1 . 1
— Pt —pPp? V LT — 0Pyt Vit
1 1
1 1 1
— (V2 + V2V i’
t t 1
1 1 1
H (V20 + ViV Povt=0.
1 1 t
From the terms involving »' we get
1 1
Vi=06? V=0,
1 1

and from the only one term involving »"»%” we get

Then making use of and the result just obtained, we get by collecting
the terms involving pPp%*
1 1
—Vi—oV¥+v=0.
1 y 1 t
The remaining terms are

1 1
— V2V iD®
t 1
from which we get
1 1 ¢ 1 1 .
Ve, Vo+ Ve, V.=0.
t 1 t 1

This is already fulfilled if #,=x#—3 as we have [14).
The results obtained are arranged as follows.
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3) If we effect a transformation of the base of R",

where

then the components of v, remain unchanged, for & =e,.
B is transformed into

and we write

Then we can understand easily that the matrices

of B are such that
@)

@®y

Consequently we get relations quite similar to [20), [2I), but, as we have
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8
|

s

D e

Lo
8
H<~
o
<
-

S=4s,
Al=04—01v

(A l) /4'_‘6 +61

V=A"vA

~ 24
eA:A. Aem

2
0%

z
6M,

P=A"BA.

VI=ATVA, VI=AT VA=A VA
x x 1

x

1
A 73
I{/.I:BI , V/y =

1

1 A
I/ /.1:61, ,
X

1
Vt,=0

V71,=0.
x

(nlén’—z) ’

(=

(=n-2),

(n,

n—2),

=n—2).

now, the quantities v which correspond to v of [20), (21} must vanish.

This shows that, if we take a su1table base S in R®, then we get (20,

with vanishing .
z

If ni=n—3,

(22)

Thus we obtain

1 1

3 A A
yi=ot, Vi=0,
z 2
1 1

A qA i i
Tl/'.j—aj , E/.,,~6ﬂ

1
Vi,=0,

171

Each matrix V of



172 Y. Mutd

[f nlzn_2r
1 1 i 1
J Va=0:, Vu=0, V!i,=0
(23)
La L i
V=0, V=0,
II/Z f/t II/Z ! t __O
Vsl .y+t V=0,
1 1 1 1
(24) Tt/?xyfﬁ E/E"yyfxzo,
1 1
V-Zy_l_V?x’—_“O-
&z Y

In the following we use only such bases S.
4) Let us consider the matrices V of ;.
Then we get

1 1
0PV I0% 0PtV i 0® =0 VI Vigph+ VEw® Vb =0,
t t

and, as we have Vﬁ:o, v'w?VIp® are the only terms involving »!'. Hence
we get V?,=0, and from the remaining terms we obtain

1
=PV 0" =0V ipt— otV 2w (Vo™ Vip®)=0
t

by virtue of or [23). Since we have V!, =0 as stated in §2, we get, if
%1=n—2,
1 1
V=0, V,LVL,+VIiVi=0, Vi=0
t t

and, if »,=<n-3,

Vi.=0, Vie=

We can summarize the result as

(25) Vi=0,V .85 (n=n—2),
1 1

(26) }/?foy+ I/?nyJc:O n,=n—2).

5) Thus we find that for all matrices V in ¥ we have V!,=0 as long
as n,=n—2. Hence the matrix

Ki,=030l,
lies in &, and, as we get
2 2 2 1 1
[K, VI,=81V b Vb= =8V k(01 V 5~ 8200,

and
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the matrix
Aot | sdiro
82l +0i12,
1
lies in B. We can choose this for 7,

L, A ad
V.,£:6x6},+6-_>}0/?,,.

x

If n,=n—3, we get
L gy
y.,,~6x6u.

6) If n,=n—1, such deduction fails.

§5. DBases of the third order, resumé of the first step.

In foregoing paragraphs we obtained a base S(v,,e. -, e,) of R" such
that »,(n—n,) or n,(n—n,)+1 matrices with special property compose a base
M, of B, and m—n,(n—n,) or m—n,(n—n)—1 matrices with the property

V=0, VL0
compose a base M; of B;, by assuming that v, satisfies the inequality
nm()=n,) for all vectors v of R*. The only one exceptional case is the
case of n,=n—1.

The results obtained are resumed as follows.

We can find a base (S, M) such that M is composed of the base M, of B,
and the base M; of By mentioned below.

(i) case 1, ny;=n—1

1

M, : Vi=ds.,

x

My’ : some matrices V with the property
M; Vi=6,V1085,
M;: some matrices V with the property
vi=olvies,
(ii) case 1, n,=n—2
My V=0,
M;: some matrices V with the property

V3=,V 1,05,
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(iii) case 2, n;=n—1
M, : n matrices f/With the property
vh=a,
M;: some xmatrices V with the property
V=0,
(iv) case 2, n,=n—2

1
M, : a matrix V with the property
1
1 1. .
ijzﬁ;!, fuzaz’
1 1
1
n; matrices V with the property
x

1 1 1
A A A A
vi=alst, vi=e8lvi,,
x x

x

2
n; matrices V with the property
x

2 2 1

A Aqg 1 A
V.]=5x6], V.y:_al ?y,
x x x

M;: some matrices V with the property

PR
V=0,V i05,

where
1 1
Vi+Vi,=0,
z y
1 9 1 ¢ 1 9 1
.xr vy+ Vty Exzo ’
t‘ 1 t 1
1 1
! Vot }/?nyx=0,
(v) case 2, n,=<n—3
1
M,: a matrix V with the property
1
1

Vi=ot, Vi=d
oY ! on—Cus

1
matrices f/f,l=5ia§,,
x
M;: some matrices V with the property
V=6,V 1,05,

Now let us assume that we have bases M, and M; with the property
just mentioned without assuming #»,(v,)=#,@®). The matrices obtained by

. A .
arranging the vectors »* and V.w* in columns are as follows where #,
A

denotes n,(v,).
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@ n—1 columns
e
! 0 0 Vipt
B’
v? o¥p? Vipt 0 } n—1 rows
BI
(i1)’ n,(n—mn,) columns
——t—
o* 0 0 } n—mn, TOWS
Y oYy’ VYt } 7, TOWS
BI
(iv)’ n—2 columns »—2 columns
1
! vt 0 —Vipt 0
v
1
v? v? Vipt 0 0
u
1
v? Vit o¥p! OYp? V¥pt } n—2 rows
1 B
) n(n—mn,;) columns
——Ht—
vl ! 0 0
v? v? 0 0 } n—n,—1 rows
l .
oY Vipt o%° Vipt } 7, TOWS
1 B’

The matrix (iii)’ for case 2, #,=n—1 is not described as it is needless.
Then we find that the rank R is at most #»,-+1 for any of them. For
(i) and (iii)’ this is due to #»,+1=n. For (ii)’ and (v)’ this is found easily
by inspection. For (iv)’ this is proved as follows.
If we put
1
a,=v?, ay=—v!, a,=Vipt,
X
then we can vérify that the column vectors »4, Vfwv‘” of (iv)’ satisfy
A

agP=0, ap Y?mv“———O
by making use of and [(26). If the vector «, is not zero, this proves
that R<n—1, hence R=n,+1. If @,=0, the matrix (iv)’ becomes
0 0 0 0
0 0 0 0

1
7 % 0 0 Vidt,
1

;-

0
0
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hence we get R<<#n,+1.

Since n,(v)=R—1, we get the following result.

If a base (S, M) of the first ovder is such that M is composed of M, and
M formed by matrices stated in (1), (ii), (iii), (iv) or (V), then we get n,(v\)=n,(v).

Such a base (S, M) will be called a base of the third order. Decomposi-
tion of B into B, and B; now becomes significant.

If #,=#n—1, it may happen that we get, for some v satisfying »n,(v)=n—1,
vel(g,v) when v, &L(g,v,). This is easily found from (i)/, and this means
that for n,=n—1 it is not an intrinsic property of g whether we get case 1
or case 2. On the contrary this is an intrinsic property of g if n,<n—2,
for we find from (ii)’ that we get vesL(g, v) as long as we have »,(v)=n,.

Thus we obtain the

Lemma 2. When a subalgebra ¢ of a generval linear Lie algebra gI(R™) is
given, we can always find a base (S, M) of the thivd order which is characterized
by (i), (ii), (iii), (iv) or (v). FEspecially, if we get (ii), (iv), or (v), this is an
intrinsic property of g.

§ 6. Bases of order 4, complete decomposition of 8.

1) Let us begin the second step.

We have found that, if (S, M) is a base of the third order, then the
elements in the first #—»n;, columns of the matrices in B; are all zero,
while any non-zero linear combination of matrices of M, has at least one
non-zero element in the first z—#n, columns. As we only use bases of the
third order hereafter, we can consider that this property characterizes 9;.

Now, if we take a transformation of S

5,1=A?’,18¢ y
@n L
A.j:'aj y Afljza,}l ’

the elements in the first #—#, columns of the matrices in A" 'B;4 are all
zero. On the other hand, the matrices

~ 1 i
(28) MI(A‘ITI/A, AL AT VA)
in A7'®,A have the same form as the matrices MJ(TI/, Ti/) in B,, hence
1 x

1 i
plays the same role in A™'8,A as M](If, l/) does in B,. Consequently a base

of the third order (§ AZI) is obtained for S=AS when M is constructed of
and some base M; of A~1%;A.
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If we take a suitable transformation and choose M; suitably, the

matrices? of degree n, constructed of the elements V7Y, of the matrices (Vf,l)
of Mj take special forms. This implies that, if we take a suitable base
(S, M) of the third order, the #»,-submatrices of M; take special forms. This
is obtained in a quite similar manner as in the first step with the use of
the following lemma.

Lemma 3. If a matrix (KY,) of degree n, satisfies
K?.V?,=0
for all matrvices V of Bi, then there is a matrix (K fﬂ) of & such that its »n,-
submatrix is the matrix (KY,) given above and moreover such that
KY;=0.
Proor. We only need to find a matrix
K1, =81K Y05+ 6K,

such that K% V% =0 for all matrices V of B; and for

V=7,

1
1

8 <6-

If V lines in B3, we get
KL V4O=KY, V=KV ?=0.
k
If V=V, we get

A ku Ay xk/l Ar-i ku
K-,zZUl:az/K'xauIz/v'l+6iK'/zy'l
& ok,
=KV VE,+K,VE
k
=K', V?+K",,
z
1
while, if V=17V, we get
1

1 1 1
i ”n i
K.,u Y.A:K?m I{?y‘l‘K%u V':!z
1

1
Hence Ke§& is satisfied if we put
in case 1
29) K=KV, V7,=0,

2) In the following such matrices are called #;-submatrices for short,
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in case 2

k
K*=—KV, V%,

30) 1
Ki=—KLV?,.

This proves the lemma.

Conversely, if a matrix K of & satisfies K?;=0, then it satisfies KY, V7,
=0 for all V in %;.

Consequently the subspace ®; of & spanned by such matrices (Kf,l) can
be considered to be an isomorphic representation of a subalgebra g, of the
Lie algebra g. The #n,-submatrices (KY,) of the matrices (Kf,l) in &, span
a linear subspace §(,) in an #nj-dimensional linear space spanned by all
matrices of degree n,. () can be considered to be an isomorphic repre-
sentation of a Lie algebra g¢) which is isomorphic or homomorphic to g,.
As R determined B, so &) determines B(). But any matrix of B, is the
n,-submatrix (V'7?,) of a matrix (Vf#) in B;, and the n,-submatrix of any
matrix ¥V in B; is a matrix of By. This is easily understood as K, is
spanned by the matrices (K?,) satisfying K?,V?7,=0 for all matrices V in
B;, and the n,-submatrices of matrices in B; span B). As {(g) is an
invariant of g, so 1(g¢)) is an invariant of g).

Now, an element of g¢;) can be considered as a transformation of an #,-
dimensional space Ry which is spanned by the vectors e,(x=n—n,+1,-, n)
in a base (S,M) of the third order. Let the base of R, formed by these
vectors be denoted by S¢y. If S is transformed into S=AS by means of 27y,
then S, is transformed into S(y=AS(y which is composed of the vectors
&,—=A’.e,. The matrix A, is the n-submatrix (A%,) of A. If a base M of
ABA is chosen suitably, then the base (§, ]\71) becomes a base of the third
order, and, as we have seen, the portion of M has the same form as M,.
On the other hand, as for R, 8¢), we can construct a base of the third
order (§(1),M(1)) by choosing Ay and the base ]\7(1) of A@®B)A(, suitably.

Thus we find that we can choose a base (S,M) of the third order for
the given (R% 1(g)) in such a way that the corresponding base (S, M) of
(R, 1(aiy)) is also a base of the third order. From this fact we see that

If we take a particular base of the thivd order, then the base M; of Bj
decomposes into two portions M, and Ms such that the n,-submatrices of lhe
matrices of M,, Ms arve quite similar in form to the matrvices of M, M; stated
in §5 respectively, with the understanding that the numbers n,, n, play the parts
of n, ny.

M, contains just n,(s,—n,) or n,(n,—n,)+1 linearly independent matrices.
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The two cases are distinguished by writing 2&C1 or 2eC2 as we are now
in the second step. The linear spaces spanned by M, M; are denoted by
B,, B; respectively.

2) We can proceed in this way step by step. Let us assume that we
have completed the P-th step. If we have np,,#0, then the P+1-th step is
carried out as follows.

By assumption B is decomposed in the form

%=%1+"'+%T—1+%(T:1) (T=P).
We also have ,
Br2y=Bp+Bp,
where the matrices V of ¥ satisfy Vf,l:() for
l:l,---’ ", /,t—“—-l,"', n—mny,

A=n—n+1,,n;, p=n—n-+1,,n—n,,

A=n—npy+L-n; p=n—ng 1 n—ng,
and a base My of By is such that the #y_,-submatrices
V?u (l) ﬂ:n“nT—l+1y"" n)

of the matrices of M, have the same forms as the matrices of M, written
in §5, with the understanding that the numbers n,_;, #n, play the parts of
n,n,. Moreover, the n,_,-submatrices of the matrices in 2, also have the
same form as the matrices in B; This fact becomes significant when

nT_l_%ng.
If we effect a transformation of S where

(31) AL=0),  Al=d,
(X) /’t:]n“') 7, i: j:“l;"" n‘%P) ’
then the spaces A™'8,A, A"'BpA keep the properties mentioned above.

Now let us consider ®. If (KY,) where x, y=n—np+1,---,n is a matrix of
degree np satisfying
(32) K Vi=0
for all matrices V in Bp, then we can find a matrix (Kfﬂ) of & containing
this (KY,) as the np-submatrix and such that K fﬂzo for
A=n—n+1,,n; u=l.,n—n,,

A=n—nyt+1ln s u=n—n+Le, n—ny,

........................
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This is an extension of and is proved as follows.
We put
(33) K =0,K 1,05+ 00 K byt 07 K.,
(51217"'7 n—Ry5 Z.P:”-'nl’-l"{wl)"'a n””P) s
where
(34) K.y =0

(T:L"'7 P; xT:n“nT+1:"” n) ’
and determine Kf;‘,---,K.I,f so as to get (Kf,)e&‘?. If Ve, we get {rom
V=G Vi 0 Vil 0, Vi
(35) Vol =0,, Vo =0 S=1,--, 1),
V.wle—‘:O,"', V.j;:O
and
Yp

i ” zp
K-l; V‘A:K'-TT V:yT ’

hence, if VeB,, (T<<P), the equation Kf,,VfQ:O becomes simply

(36) Kl V=0,
But By, is spanned by the base My,; composed of
LA}
BNr+1
14y
or
Fpiq
(38)T+1 V! V ’
r+1 ZT—H

where the np  (np—ngpe) o np(Mp—np)+1 matrices are such that their
np-submatrices have the same form as the matrices of M, stated in §5,
with the numbers ng, #py, playing the parts of #,%,. Hence, for T4-1=P,
that is, in regard to the condition that K2,V =0 for all matrices V in p,
we get, just as we obtained or in the second step,

k

k Yy Px
(39)p K-zﬁz '_Kmr}; V—cyl; =0 (PE C].)
Zp
or
kp vp Pap
K'ZPZ —“K'xp T/-yl_-, Py
“p
(40)» op (P=C2).

ip Up
K.iP: _K-xP Z-yp
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Pe=Cl1 or C2 means that the dimension of Bp is #p(#p_,—np) O np(p_,—np)
+1 respectively. Similarly we get for an arbitrary T(1<T<P) (39), or [40),
according as T&Cl or Te(C2, and all these together are a necessary and
sufficient condition that the matrix (Kf,,) given above lie in &.

We determine KZZ at first by means of or [40), and then K.,' by
means of [39),_, or _; and so on. It will be seen that, if 7’€Cl, we can

choose the matrix (K.ZJ-TT) of degree ny_,—ny arbitrarily, while, if T€C2,

only the trace of (K;TT) is given by the second equation of [40),. This fact
will become important later.

By virtue of the fact that we can find such matrices K of & and that
the spaces A7'8B,4, A8, A obtained from B, By by a transformation of S
satisfying have the same property as B, Bp, it will be understood that
the P-1-th step is completed in the same manner as the former ones.

Such process can be continued until we get #p,,=0. Then the P-th
step is the last step and we can not decompose B further in a similar
manner. The np-submatrices of the matrices in By are scalar matrices,
and, if these are all zero, we write P+1=Cl. If some are not zero, we
write P4+1<C2, and in this case we can find just one linearly independent

matrix V in Bp such that the up-submatrix is a unit matrix. If Bjpy,
P41

denotes a subspace of Bp spanned by the matrices whose #np-submatrices
are zero, then we have

%f’:%é’+1 (P+1EC1):
Bp :PV1+ By (P+1eC2).
_',.

It may happen that Bp is an empty set.

We thus obtain the

Tuaeorem 1. Let ¢ be an r-dimensional subalgebra of a geneval linear Lie
algebra ol(R™) operating on an n-dimensional linear space R" over the field of
real numbers. An isomorphic representation of ¢ is taken in an ni-dimensional
linear space spanned by all matvices of degree n and is denoted by £(g,S) where
S is a base of R". . The matrices (Vf,l) which satisfy

KL, V=0

Sfor all matrvices K of & span a subspace B(8,S) of dimension m=n*—vr in an
n*-dimensional linear space spanned by all matrices of degree n. Then we can
choose S such that B is decomposed as follows
4D, B=B 4+ B+ BVp A=T<P),
{ Bp=Bh, (P+1eCl),

%A:V+%£:+] (P+1EC2),
P41

(42)
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where the matrices V of Vp satisfy (35) and

i

V-::O l:f %T_1~%T22,

while By, AT P) is spanned by (30)p or (38)y according as TeCl or TeC2.
Especially the matrices of By, ave such that their np-submatrices ave zevo, and
the np-submatrix af V is a unit matvix.

P+1

The base My of LBy as given by [37), or [38)y for each T(A=T=<P), V if
P+1

P+-1€C2, and an arbitrary base Mj,, of B4, together compose a base M of
B. Such a base (S, M) will be called a base of the fourth order.

§7. The d series and the dimension of g.

Let us put n,=# and

(43) dr=tp-y—Np, dp.=np A=T=P).
Then we get

(44) n=d+-+dps,

and the space %, is spanned by de(n—d,—--—dr) or de(n—d,— - —dp)+1

linearly independent matrices according as 7€Cl or 7’C2. Thus we obtain
the

Tueorem 2. Let B decompose in the form stated in Theovem 1. Then its
dimension m=n*—r satisfies the inequality

(45) mgdl(n—‘dl)%""'h}‘dP(n*dl_""—dp)"}*c,
hence
(46) m= > dyrtc,

1=8<T=P}1

wheve ¢ is the number of times T satisfies TEC2 when it takes the values from
1 to P+1,
c= 2, 1.

IreC2

The ordered set of numbers d,, -+, dpy; Will be called the d series of g.
The exact value of m is obtained by the addition of the dimension of
Bh,, to the right hand member of [46). It is evident that

dimBp, = X dydr.
1S8<T=P+1

But according to § 5 the matrices 7 of B4, satisfy, besides

@) ViE =0 (1=SST<P+1),

the equations
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[

(48) Vi, = (1S, TEP+1; dpz2)
if dp=2. If T* denotes T such that dr=1, then we get
dim 85, =X ( 5 ,dT) s
T T>T*

hence the
Turorem 3. If v is the dimension of g, the number m=n®>—vr satisfies
(49) DX dt X dydptezmz= 3 dydrtc.
T T>T* 1=S<r=r4t 1=8LT=sP+1

ExampLeE. According to Theorem 3 we can obtain in principle all pos-
sible d series for any given value of . This is especially easy for suffi-
ciently large ». For example, if r=#*—3n+-9, that is, if m=3n—09, the possible
d series and the corresponding values of m are as follows. Of course some
of them must be omitted.

P d series m

0 n 0,1

1 1, n—1 n—1,-,2n
2, n—2 2n—2), 2n—2)+1, 2n—2)+42
3, n—3 3(n—3), 3n—3)+1, 3#m—3)+2
n—3, 3 3(n—3), 3(n—3)+1, 3(n—-3)+2
n—2 2 2n—2), 2n—2)+1, 2(n—2)+2
n—1, 1 n—1, n, n+1

2 1, 1, n—2 2n—3,+,4n—3
1, n—2, 1 2n—3,+-,3n—1
n—2, 1, 1 2n—3, 2n—2, 2n—1, 2n, 2n+1.

Some of the values of sz must be omitted not because of m>372—9 but
because of the property of g. Its study will be continued.

Mathematical Institute,
Yokohama National University.
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