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Introduction

Let $\mathfrak{g}1(R^{n})$ be the set of all linear transformations $X$ of an n-dimensional
linear space $R^{n}$ over the field of real numbers, equipped with the ordinary
law of addition $X+X^{\prime}$ and the law of composition [X, $Y$ ]$=XY-YX$. The
purpose of the present paper, which is considered as the first of the series
of papers pursuing the same purpose, is to deal with a method of studying
some properties of r-dimensional subalgebras $\mathfrak{g}$ of this general linear Lie
algebra $\mathfrak{g}I(R^{n})$ .

If we take a base $S$ composed of a set of $n$ linearly independent vectors
$e_{\lambda}(\lambda=1,\cdots, n)$ of $R^{n}$ , then a subalgebra $t!$ is represented by an r-dimensional
linear subspace in an $n^{2}$-dimensional linear space spanned by all matrices
of degree $n$ . This subspace will be denoted by $\theta(\mathfrak{g}, S)$ , or by $R$ if there is
no possibility of confusion. If we take another base $\tilde{S}(e_{\lambda}\sim)$ such that

$\hat{S}=AS$, $e_{\lambda}\sim=A_{\lambda}^{a}e_{\alpha}$ ,

then a matrix $K$ of $\Omega$ representing an element of $\mathfrak{g}$ is transformed into
$\tilde{K}=A^{-1}KA$ . This fact will be denoted by

$R(\mathfrak{g}, AS)=A^{-1}$ l\S $($g, $S)A$ .
The set of matrices $(V^{\lambda_{/1}})$ where $V^{\lambda_{/J}}$ satisfy

$K_{\mu}^{\lambda}V^{p_{\lambda}}.=0$

for all matrices $(K_{\mu}^{\lambda})$ of St spans an $(n^{2}-r)$-dimensional linear subspace in
an $n^{2}$-dimensional linear space spanned by all matrices of degree $n$ . This
subspace will be denoted by $\mathfrak{V}(\mathfrak{g}, S)$ or by $\mathfrak{V}$ for short. The law of transfor-
mation is

$\mathfrak{V}(\mathfrak{g}, AS)=A^{-1}\mathfrak{V}(\mathfrak{g}, S)A$ .
$\mathfrak{V}$ may be considered to represent a set of transformations of $R$“ which will
be denoted by $f(\mathfrak{g})$ or by $t$ for short.

If we take a suitable base $S$ in $R^{n}$ and moreover, if we take a suitable
base $1M$ in $\mathfrak{V}(\mathfrak{g}, S)$

$M$ : $AV$ $(A=1,\cdots, m;m=n^{2}-r)$ ,
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then the matrices $(V^{\lambda},)A$ take special forms as shown in Theorem 1 (\S 6). In

\S 7, we shall introduce the notion of $d$ series which will play an important
role in our studies, in which we shall be able to find out all subalgebras $\mathfrak{g}$

of sufficiently large dimensions $\gamma$ and get some interesting properties of $\zeta j$ of
more general dimensions.

We remark here the important
LEMMA 1. $t$ is an invariant of $\mathfrak{g}$ , that is, if $V\in \mathfrak{V}$ and $ K\in\Omega$ , then $[K, V]$

$\in \mathfrak{V}$ .
PROOF. For any matrices $Ka(a=1, )r)$ forming a base of $R$ we have

$K_{\mu}^{\lambda}(K_{\alpha}^{\mu}V_{\lambda}^{\alpha}-V^{\mu_{\alpha}}K_{\lambda}^{\alpha})\iota bb$

$=V_{\lambda}^{\prime J}(K_{a}^{\lambda}K_{\mu}^{\alpha}-K_{a}^{\lambda}K^{\alpha_{/J}})=V_{\lambda}^{\prime 1}K^{\lambda}{}_{\mu}C_{cb}^{a}=0cbbca$ $(b, c=1,\cdots, r)$ .

Unless otherwise specified indices are used as follows,

$\alpha,$ $\beta,$
$\gamma,$

$\lambda,$
$\mu,$ $\nu,$ $\kappa=1,\cdots,$ $n$ ,

$A,$ $B=1,\cdots,$ $m$ ,

$a_{)}b,$ $c=1,\cdots,$ $r$ ,

$t,$ $u,$ $v,$ $x,y,$ $z=n-n_{1}+1,\cdots,$ $n$ ,

$h,$ $i,j,$ $k,$ $l,$ $m=1,\cdots,$ $n-n_{1}$ ,

$p,$ $q,$ $r,$ $s=2,\cdots,$ $n-n_{1}$ ,

$S,$ $T,$ $U=1,\cdots,$ $P$ or $P+1$ ,

$h_{T},$ $i_{T},$ $j_{T},$ $k_{T},$ $l_{T},$ $m_{T}=n-n_{T-1}+1,\cdots,$ $n-n_{T}$ ,

$t_{T},$ $u_{T},$ $v_{T},$ $x_{T)}y_{T},$ $z_{T}=n-n_{T}+1,\cdots,$ $n$ .
We adopt the summation convention with respect to indices in small letters.

\S 1. Bases of the first order.

First consider that the base $S$ of $R^{n}$ and the base $M$ of $\mathfrak{V}$ are taken
arbitrarily. When a non-zero vector $v_{1}(=v_{1}^{\lambda}e_{\lambda})$ of $R^{n}$ is given, we get $m$

vectors $Av(A=1,\cdots, m)$ of $R^{n}$ whose components are $AV_{\alpha}^{\lambda}v^{\alpha_{1}}$ . These span a

linear subspace of $R^{n}$ which will be denoted by $L(\mathfrak{g}, v_{1})$ . Of course this
subspace does not depend upon the choice of $S$. We observe that $L(\mathfrak{g}, v_{1})$ is
spanned by $n_{1}$ vectors

$v_{x}^{\lambda}$ $(x=n-n_{1}+1,\cdots, n)$

or by $1+n_{1}$ vectors
$v_{1}^{\lambda},$ $v_{x}^{\lambda}$ $(x=n-n_{1}+1,\cdots, n)$ ,
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In both cases the $1+n_{1}$ vectors $v_{1}^{\lambda},$ $v_{n-n_{1}+1}^{\lambda},\cdots,$ $v_{n}^{\lambda}$ are taken linearly independent.
We get the first case if $v_{1}\not\in L(\mathfrak{g}, v_{1})$ and the second case if $v_{1}\in L(\{], v_{1})$ . As
the number $n_{1}$ depends upon the choice of $v_{1}$ , this is denoted, if necessary,
by $n_{1}(v_{1})$ .

Taking $n-n_{1}-1$ vectors $v_{2}^{\lambda},\cdots,$ $v_{n-n_{1}}^{\lambda}$ , we can complete a set of $n$ linearly
independent vectors

$v_{\kappa}^{\lambda}$

$(\kappa=1,\cdots, n)$ ,

whose reciprocal set is denoted by $w_{\mu}^{\kappa}$ so that

$w_{\kappa}^{\lambda}v_{\mu}^{\kappa}=\delta_{\mu}^{\lambda}$ .
Then

$A\tilde{V}_{\mu}^{\lambda}=w_{\alpha_{A}}^{\lambda}V_{\beta}^{a}v_{\mu}^{\beta}$

is the transformation of the matrices $AV$ of $\mathfrak{V}$ induced by the transformation

$ e_{\lambda}=v_{\lambda}^{a}e_{\alpha}\sim$

of the base $S$ , and we find

$\tilde{V}_{1}^{2}=0A$ $\tilde{A}V_{1}^{n-n_{1}}=0$ .
Moreover, the $m$ vectors

$\tilde{A}V^{v_{1}}.$ ,

where $y=n-n_{1}+1,\cdots,$ $n$ and each vector has $n_{1}$ components, span an $n_{1}-$

dimensional linear space.
Thus we find that
When a vector $v_{1}$ is given, we can find $n-1$ vectors $e_{2},\cdots,$ $e_{n}$ such that the

space $\mathfrak{V}(\mathfrak{g}, S)$ where $S=S(v_{1}, e_{2},\cdots, e_{n})$ is spanned by the matrices $AV$ with the pro-
$p_{erty}$

case 1:

(1) $\left\{\begin{array}{l}AV_{1}^{\lambda}=\epsilon_{A}\delta_{A}^{\lambda}\\\epsilon_{1}=\cdots=\epsilon_{n- n_{l}}=0, \epsilon_{n-n_{l}+1}=\cdots=\epsilon_{n}=1,\end{array}\right.$

$ o\gamma$

case 2:

(2) $\left\{\begin{array}{l}AV_{1}^{\lambda}=\epsilon_{A}\delta_{A}^{\lambda},\\\epsilon_{2}=\cdots=\epsilon_{n-n_{l}}=0,\epsilon_{1}=\epsilon_{n-n_{l}+1}=\cdots=e_{n}=1.\end{array}\right.$

Such a set $(S, M)$ of vectors and matrices will be called a base of the
first order of $(R^{n}, t)$ .

The linear space spanned by all matrices.$V$ with the property $V_{1}^{\lambda}=0$ of
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$\mathfrak{V}$ is denoted by $\mathfrak{V}^{\prime}$ . A base of the first order is not determined uniquely
when $S$ is given, for the matrices of $M$ are only determined to within
additive matrices of $\mathfrak{V}^{\prime}$ .

In short a base of the first order is a base $(S, M)$ of $(R^{n}, t)$ such that the
given vector $v_{1}$ has components $(1, 0,\cdots, 0)$ and the matrices of $M$ satisfy (1)
or (2).

If $(S, M)$ and $(\tilde{S},\tilde{M})$ where
$\tilde{S}=AS$ , $e_{\lambda}\sim=A_{\lambda}^{a}e_{\alpha}$

are bases of the first order with the same vector $v_{1}$ , then we find

(3) $A_{1}^{\lambda}=\delta_{1}^{\lambda}$ , $A_{x}^{i}=0$

$(i=1,\cdots, n-n_{1} ; x=n-n_{1}+1,\cdots, n)$

in case 1 and

(4) $A_{1}^{\lambda}=\delta_{1}^{\lambda}$ , $A_{x}^{q}=0$

$(q=2,\cdots, n-n_{1} ; x=n-n_{1}+1,\cdots, n)$

in case 2. Conversely this is a sufficient condition that $A$ induce a trans-
formation of the bases of the first order with the vector $v_{1}(1,0,\cdots, 0)$ . In
case 1 $\tilde{M}$ is obtained from $M$ when $xV$ are replaced with $A_{x}^{y}A^{-1}VAy$ and the

matrices $BV$ in $\mathfrak{V}^{\prime}$ with $A^{-1}V,AB$ But in case 2 $\tilde{M}$ is obtained when $V_{1},$ $Vx$ are

replaced with $A^{-1}VA,$$A^{y_{x}}A^{-1}VA-A^{y_{x}}(A^{-1})_{y}^{1}A^{-1}VA1y1$ respectively and $BV$ with

$A^{-1}VAB$

Later we shall assume the vector $v_{1}$ to be such that the number $n_{1}$

takes the maximum possible value, but for the present $v_{1}$ is assumed to be
given arbitrarily.

\S 2. Bases of the second order.

Among the bases of the first order we can choose a special one in the
following manner.

1) Case 1.
In this case the matrix

$K_{1}^{\lambda_{/t}}=\delta_{1}^{\lambda}\delta_{\mu}^{11)}1l$

1) In such a formula a superscript indicates rows and a subscript columns, so
that for example $K_{\mu}^{\lambda}$ is the element of the $)_{\backslash }$ -th row and of the $\mu$ -th column of the

matrix $(K_{\mu}^{\lambda})$ . If there is no possibility of confusion we drop the parentheses so
that such an expression often denotes not an individual element but a matrix.
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is an element of R. Hence according to Lemma 1 $[K_{1}^{1}, V]\in \mathfrak{V}$ for every

$V\in \mathfrak{V}$ . We also get $[K_{1}^{1}, [K_{1}^{1}, V]]\in \mathfrak{V}$ , and, as we have

$[K_{1}^{1}, V]^{\lambda_{\mu}}=\delta_{1}^{\lambda}V_{\mu}^{1}-V_{1}^{\lambda}\delta_{\mu}^{I}$

and

$[K_{1}^{1}, [K_{1}^{1}, V]]^{\lambda_{\mu}}=\delta_{1}^{\lambda}V_{\mu}^{1}+V_{1}^{\lambda}\delta_{\alpha}^{1}-2V_{1}^{1}\delta_{1}^{\lambda}\delta_{\mu}^{1}$ ,

we find that the matrix $V_{1}^{\lambda}\delta_{\mu}^{1}-V_{1}^{1}\delta_{1}^{\lambda}\delta_{\mu}^{11)}$ is an element of $\mathfrak{V}$ . Moreover, as
we have $V_{1}^{1}=0$ , we get

$V_{1}^{\lambda}\delta_{\mu}^{1}\in \mathfrak{V}$ .

Especially, if we take a matrix $xV$, we find $\delta_{x}^{\lambda}\delta_{\mu}^{1}\in \mathfrak{V}$ , as we have $xV_{1}^{\lambda}=\delta_{x}^{\lambda}$ .
Hence the matrix

$V_{\mu}^{\lambda}=\delta_{x}^{\lambda}\delta_{\mu}^{1}x^{1}$

can play the part of $xV$ in $M$.
Again, as we have

$K_{1}^{\lambda_{/J}}=\delta_{1}^{\lambda}\delta_{\mu}^{i}\in id$ St,

we get

$[K_{1}^{i}, V]^{\lambda_{\mu}}=-\delta_{x}^{\lambda}\delta_{\mu}^{i}\in \mathfrak{V}x^{1}$

Hence the $n_{1}(n-n_{1})$ linearly independent matrices

(5) $V_{\mu}^{\lambda}=\delta_{x}^{\lambda}\delta_{J}^{i_{l4}}x^{i}$

can form a part of a base $M$ of $\mathfrak{V}$ .
The subspace of $\mathfrak{V}$ spanned by (5) is denoted by $\mathfrak{V}_{1}$ , and the subspace

of $\mathfrak{V}$ spanned by matrices with the property $V^{y_{i}}=0$ is denoted by $\mathfrak{V}_{\hat{1}}$ . Of
course the elements of the first column vanish in all matrices of $\mathfrak{V}_{i}$ . $\mathfrak{V}_{1}$

and $\mathfrak{V}_{\hat{1}}$ span $\mathfrak{V}$ .
If a base $M$ is composed of the matrices (5) and an arbitrary base $M_{\hat{1}}$

of $\mathfrak{V}_{\hat{1}}$ , then the $(S, M)$ is called a base of the second order.
2) Case 2.
In this case we have

$ K_{1}^{p_{\lambda_{\mu}}e}=^{t}\delta_{1}^{\lambda}\delta_{\mu}^{p}\in\Omega$ $(p=2,\cdots, n-n_{1})$

and we get

$[K^{p},V]^{\lambda_{\mu}}=\delta_{1}^{\lambda}\delta_{a}^{p}V^{a_{\mu}}-V_{a}^{\lambda}\delta_{1}^{a}\delta_{\mu}^{p}1xxx$
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hence the matrices

(6) $x^{p}x^{1}V_{\mu}^{\lambda}=-\delta_{1}^{\lambda}V_{\mu}^{p}+\delta_{x}^{\lambda}\delta_{\mu}^{p}$

lie in $\mathfrak{V}$ if for example
$V^{1}=Vxx$

It is also evident that (6) lie in $\mathfrak{V}^{\prime}$ . But, as we have

$x^{p}V^{q_{\mu}}=0$ $(q=2,\cdots, n-n_{1})$ ,

we obtain the same matrices $V^{p}x$ if we put

$x^{1}xy^{q}V=V+\lambda_{xq}^{y}V$ $(y=n-n_{1}+1,\cdots, n)$

in (6). Especially, if we put $\lambda_{xq}^{y}=-V^{y_{q}}x$ we get

$V_{p}^{y}=0x^{1}$

hence we consider hereafter that $x^{I}V$ satisfy

(7) $V_{1}^{\lambda}=\delta_{x}^{\lambda}x^{1}$ $x^{1}V_{p}^{y}=0$ .

We also obtain a matrix $V^{1}1$ such that

(8) $V_{1}^{\lambda}=\delta_{1}^{\lambda}1^{1}$ $V^{y_{p}}=01^{1}$

by adding to $V1$ some linear combination of (6).

The subspace of $\mathfrak{V}$ spanned by the $1+n_{1}(n-n_{1})$ linearly independent

matrices $V11Vx^{i}$ obtained above will be called $\mathfrak{V}_{1}$ . The subspace of $\mathfrak{V}$ spanned

by matrices $V$ of $\mathfrak{V}^{\prime}$ such that $V_{p}^{y}=0$ (hence $V^{y_{i}}=0$) will be called $\mathfrak{V}_{\hat{1}}$. $\mathfrak{V}_{1}$

and $\mathfrak{V}_{\hat{1}}$ span $\mathfrak{V}$ .
A base $(S, M)$ of the first order is called a base of the second order if $M$

is composed of the base of $\mathfrak{V}_{1}$ mentioned above and an arbitrary base of $\mathfrak{V}_{\hat{1}}$ .
In the following only bases of the second order are used.

\S 3. Choice of the vector $v_{1},$ (I).

Hitherto the vector $v_{1}$ was not specified. Now we consider that $v_{1}$ is
such that the number $n_{1}(v_{1})$ takes the maximum of its possible values.
Then the matrices of the base of $\mathfrak{V}$ can assume simpler forms if $n_{1}\leqq n-2$ .
Since we have two cases,

case 1: $v_{1}\not\in L(\mathfrak{g}, v_{1})$ ,
case 2: $v_{1}\in L(\mathfrak{g}, v_{1})$ ,
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case 1 is studied at first.
Although we have $v_{1}\not\in L(\mathfrak{g}, v_{1})$ , we do not know whether we have $v\not\in L(\mathfrak{g}, v)$

or not for an arbitrary vector $v$ . But, as we know that $n_{1}(v_{1})$ , or $n_{1}$ for
short, is not less than $n_{1}(v)$ for any vector $v$ , the number of linearly inde-
pendent vectors in the set of vectors

(9) $v^{\lambda}$ , $AV_{\alpha}^{\lambda}v^{a}$

is no more than $n_{1}+1$ .
On the other hand we have

$V_{\alpha}^{\lambda}v^{\alpha}=\delta_{x}^{\lambda}v^{i}x^{i}$

hence the number of linearly independent vectors in

$v^{\lambda}$ , $v^{i}\delta_{x}^{\lambda}$ , $V_{a}^{\lambda}v^{a}$

is no more than $n_{1}+1$ for any matrix $V$ in $\mathfrak{V}_{\hat{1}}$ . Consequently $V^{\lambda_{\alpha}}v^{ct}$ is a
linear combination of $v^{\lambda}$ and $\delta_{x}^{\lambda}$ , and in particular we obtain

(10) $V_{a}^{i}v^{a}\propto v^{i}$ ,

where $\propto$ means “ proportional to”.
If $n-n_{1}=1$ , we get no relation.
If $n-n_{1}\geqq 2$ , we get $V_{x}^{i}=0$ and $V_{j}^{i}\propto\delta_{j}^{i}$ . But since $V_{1}^{i}=0$ for any matrix

$V$ of $\mathfrak{V}_{\hat{1}}$ , we find that $V_{j}^{i}=0$ . Thus we obtain the result,

If $n_{1}\leqq n-2$ , every matrices $V$ in $\mathfrak{V}_{i}$ have the form
$V_{\mu}^{\lambda}=\delta_{y}^{\lambda}V_{x}^{y}\delta_{\mu}^{x}$ .

If $n_{1}=n-1$ , such deduction fails. But we can divide $\mathfrak{V}_{\hat{1}}$ into two sub-
spaces $\mathfrak{V}_{\hat{1}}^{\prime}$ and $\mathfrak{V}_{\hat{1}^{\prime\prime}}$ , such that the matrices of $\mathfrak{V}_{\hat{1}^{\prime}}$ have the form

$V_{\mu}^{\lambda}=\delta_{y}^{\lambda}V^{y_{x}}\delta_{\mu}^{x}$ ,

while the matrices of $\mathfrak{V}_{i^{\prime\prime}}$ have the form
$V_{\mu}^{\lambda}=\delta_{1}^{\lambda}V_{x}^{1}\delta_{\mu}^{x}$ .

These matrices are obtained from matrices $V$ of $\mathfrak{V}_{\hat{1}}$ by considering $V-[K_{1}^{1}, V]$

and $[K_{1}^{1}, V]$ .

\S 4. Choice of the vector $v_{1}$ , (II),

We now consider the case of $v_{1}\in L(\mathfrak{g}, v_{1})$ and assume $n-n_{1}\geqq 2$ .
1) As we have $n_{1}=n_{1}(v_{1})\geqq n_{1}(v)$ , the number of linearly independent

vectors among (9) is no more than $n_{1}+1$ . Since the components of the
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vectors $V^{\lambda_{\alpha}}v^{\alpha}x^{p}$ are for $\lambda=1,$ $q,$ $y$

$-V_{\alpha}^{p}v^{a}x^{1}$ $0$ , $\delta_{x}^{y}v^{p}$

by virture of (6), we find that the rank of the matrix of degree $n_{1}+2$

$v^{1}$ $V_{a}^{1}v^{\alpha}z1$

$n_{1}co_{1}1u_{a}mns\infty_{x}-V^{p}v^{\alpha}(x=n-n_{1}+1,\cdots, n)$

$v^{q}$ $V^{q_{\alpha}}v^{a}z^{1}$ $0$

$v^{y}$ $V^{y_{a}}v^{\alpha}z1$ $\delta_{x}^{y}v^{p}\}$
$n_{1}$ rows $(y=n-n_{1}+1,\cdots, n)$ ,

where $p,$ $q,$ $z$ are arbitrary within $p,$ $q=2,\cdots,$ $n-n_{1}$ and $z=n-n_{1}+1,\cdots,$ $n$ , is at
most $n_{1}+1$ . We thus obtain

(11) $v^{1}v^{p}V_{a}^{q}v^{\alpha}-v^{p}v^{q}V_{\alpha}^{1}v^{\alpha}-v^{q}V_{a}^{p}v^{a}V_{\beta}^{t}v^{\beta}+z^{1}z^{1}t^{1}z^{1}V_{\alpha}^{q}v^{\alpha}V_{\beta}^{p}v^{\beta}v^{t}=0z^{1}t^{1}$

As this must be fulfilled for an arbitrary vector $v^{\lambda}$ , we get by picking
up the terms involving $v^{p}v^{q}v^{r}$

(12) $V_{r}^{1}=0z^{1}$

for we have (7).

Then (11) becomes

(13) $v^{1}v^{p}V^{q_{\gamma}}v^{r}+v^{1}v^{p}V_{t}^{q}v^{t}-v^{p}v^{q}V_{\iota}^{1}v^{t}z^{1}z^{1}z^{1}$

$-v^{q}(V^{I}t?rv^{r}+Vt^{1}?uv^{u})(\delta_{z}^{t}v’+V_{v}^{t}v^{v})z^{1}$

$+(V^{q_{r}}v^{r}+z^{1}V^{q_{u}}v^{u})(Vz^{1}t^{t} ? sv^{s}+V^{p_{v}}v^{v})v^{t}=0\iota^{1}$ ,

and we get from the terms involving $v^{1}$

$v^{p}V^{q_{r}}v^{r}-v^{q}V^{p_{\gamma}}v^{r}=0\epsilon^{1}z^{1}$ ,

$v^{p}V_{t}^{q}v^{t}-v^{q}V^{1}z^{1}z$ ?$tv^{t}=0$ .

If $n-n_{1}=2$ , these give no relation. If $n-n_{1}\leqq 3$ , we get

(14) $V^{q_{p}}\propto\delta_{p}^{q}z^{1}$ $V^{p_{t}}=0z^{1}$ $(n-n_{1}\geqq 3)$ .
In (13)

$V_{u}^{q}v^{u}V^{p_{v}}v^{v}v^{t}\iota t11$

is the only one term involving $v^{t}v^{u}v^{v}$ . Since this must vanish, we get
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$(V_{u}^{q}v^{u}v^{z})(V^{1}\iota^{1}t ? vv^{v}v^{t})=0$ ,

hence

$V_{u}^{q}v^{u}v^{z}=0z^{1}$

Thus we obtain

(15) $x^{1}V_{y}^{2}+V_{x}^{2}=0y^{1}$ $(n_{1}=n-2)$ .

Now, collecting the terms involving $v^{r}v^{s}v^{t}$ and $v^{r}v^{t}v^{u}$ respectively, we get
from (13)

(16) $-(\delta_{r}^{p}\delta_{s}^{q}+\delta_{s}^{p}\delta_{\gamma}^{q})V_{t}^{1}-\delta_{s}^{q}V_{r}^{p}V_{l}^{u}-\delta_{r}^{q}V_{s}^{p}V_{t}^{u}z^{1}u^{1}z^{1}u^{1}z^{1}$

$+V_{r}^{q}V^{p_{s}}+V^{q_{S}}V^{p_{\gamma}}=0z^{1}t^{1}z^{1}t^{1}$

(17) $-\delta_{r}^{q}V_{u}^{p}V_{t}^{v}-\delta_{r}^{q}V_{t}^{p}V_{u}^{v}vzv7,1111$

$+V^{p_{r}}V^{q_{u}}+V^{p_{r}}V_{t}^{q}=0t^{I}z^{1}u^{I}z^{I}$

As we have (14) for $n_{1}\leqq n-3$ , we can put

$V^{q_{p}}=v_{z}\delta_{p}^{q}z^{1}$

for $n_{1}\leqq n-2$ , and (16) becomes

(18) $V_{t}^{1}+vV_{t}^{u}-vv=0z^{1}uz^{1}tz$

On the other hand (17) becomes

(19) $V_{u}^{2}V_{t}^{v}+v^{1}z^{1}V_{\iota}^{2}V_{u}^{v}-vV_{u}^{2}-vV_{t}^{2}=0v^{1}z^{1}tz^{1}uz^{1}$

for $n_{1}=n-2$ , but for $n_{1}\leqq n-3(17)$ is fulfilled already by virtue of (14).

The results obtained, (7), (12), (14), (15), (18), (19), are arranged as follows

(20) $\left\{\begin{array}{l}V^{1}.=\delta_{z}^{\lambda}r_{1} V^{1}.=v\delta_{p}^{\lambda}r_{p}\\l l z\\1 1\\V_{x}^{I}=vv-vV_{x}^{\iota}\\l xz tz\\V_{x}^{2}V_{y}^{t}+V_{y}^{2}V_{x}^{t}=vV_{y}^{2}+vV_{x}^{2}t^{1}z^{1}t^{1}\iota^{1}x\iota^{1}yz^{1}\\V_{y}^{2}+V_{x}^{2}=011\\x y\\V^{p_{\mu}}=v\delta_{\mu}^{p}1\\x x\end{array}\right.$
$(n\leqq n-3)(n_{1^{1}}^{1^{1}}=n-2)(n_{1}=n-2)(n\leqq n-2)(n\leqq n-2).$

’
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2) Let us study the matrix $V^{1}1$ We obtain the matrix of degree $n_{1}+2$

$n_{1}$ columns

$v^{1}$ $V_{a}^{1}v^{\alpha}11$

$\rightarrow^{-V^{p}\cdot\cdot av^{\alpha}x^{1}}$

$v^{q}$ $V_{\alpha}^{q}v^{\alpha}11$ $0$

$v^{y}$ $1V^{y_{a}}v^{\alpha}1$ $\delta_{x}^{y}v^{p}$ $\}$
$n_{1}$ rows

and, as the determinant must vanish, we get

$v^{1}v^{p}V_{\alpha}^{q}v^{a}-v^{p}v^{q}V_{\alpha}^{1}v^{\alpha}-v^{q}V^{I}1^{I}1^{1}t$ ? $a_{1^{1}}v^{\alpha}V_{\beta}^{t}v^{\beta}+1^{1}tV_{a}^{q}v^{\alpha}V^{1}$’: $\beta^{v^{\beta}v^{t}=0}$
’

which becomes by virtue of (8) and (14) or (15)

$v^{1}v_{1}^{p}V_{r}^{q}v^{r}+v^{1}v_{1}^{p}V^{q_{t}}v^{t}11$

$-v^{p}v^{q}v^{1}-v^{p}v^{q}V_{r}^{1}v^{r}-v^{p}v^{q}V_{t}^{1}v^{t}1^{1}1^{1}$

$-v^{q}(V_{\gamma}^{p}v^{r}+t^{1}V^{p_{u}}v^{u})V_{v}^{t}v^{v}t^{1}1^{1}$

$+(V_{r}^{q}v^{r}+1^{1}V^{q_{u}}v^{u})V^{p_{S}}v^{s}v^{t}=01^{1}t^{1}$

From the terms involving $v^{1}$ we get

$V^{q_{r}}=\delta^{q}1^{1}$ $V^{1}q_{t}=01$

and from the only one term involving $v^{p}v^{q}v^{r}$ we get

$V_{r}^{1}=01^{1}$

Then making use of (20) and the result just obtained, we get by collecting
the terms involving $v^{p}v^{q}v^{t}$

$-V_{t}^{1}1-vV^{\nu_{t}}+v=01y1^{1}t$

The remaining terms are
$-v^{q}V_{u}^{p}v^{u}V_{v}^{t}v^{v}t^{1}1^{1}$

from which we get

$V^{p_{x}}V_{y}^{t}+V^{p_{y}}V_{x}^{t}=0t^{1}1^{1}t^{1}1^{1}$

This is already fulfilled if $n_{1}\leqq n-3$ as we have (14).

The results obtained are arranged as follows.
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(21) $\left\{\begin{array}{l}V^{1_{\lambda_{1}}}.=\delta_{1}^{\lambda}1 V_{p}^{1_{\lambda}}=\delta_{p}^{\lambda}1\\V_{\mu}^{q}=\delta_{\beta}^{q}11\\V_{x}^{1}=v-vV_{x}^{t}11\\1 x t1\\V_{x}^{2}V_{y}^{t}+V_{y}^{2}V_{x}^{t}=0t^{1}1^{1}t^{1}1^{1}\end{array}\right.$ $(n_{1}^{1}\leqq n-2)(n_{1}\leqq n-2)(n^{1}=n-2)(n\leqq n-2).$

’

3) If we effect a transformation of the base of $R^{n}$ ,

$\hat{S}=AS$ , $e_{\lambda}\sim=A_{\lambda}^{\alpha}e_{a}$

where
$A_{\mu}^{\lambda}=\delta_{\mu}^{\lambda}-\delta_{1}^{\lambda}v\delta_{\mu}^{x}x$

$(A^{-I})^{\lambda_{\mu}}=\delta_{\mu}^{\lambda}+\delta_{1}^{\lambda}v\delta_{\mu}^{x}x$

then the components of $v_{1}$ remain unchanged, for $ e_{1}=e_{1}\sim$ . Each matrix $V$ of
$\mathfrak{V}$ is transformed into

$\tilde{V}=A^{-1}$ VA
and we write

$\tilde{\mathfrak{V}}=A^{-1}\mathfrak{V}A$ .
Then we can understand easily that the matrices

$V^{\prime}=A^{-1}VA1^{1}1^{1}$ $x^{1}x^{1}x1^{1}V^{\prime}=A^{-1}VA-vA^{-1}VA$

of $\tilde{\mathfrak{V}}$ are such that

(7) $V^{1}.=\delta_{1}^{r}1^{\prime}\lambda_{1}$ $V^{1}\prime v_{p}=01$

(8) $V_{1}^{\prime^{\lambda}}=\delta_{x}^{\lambda}x^{1}$ $x^{1}V^{\prime y_{p}}=0$ .
Consequently we get relations quite similar to (20), (21), but, as we have

$V^{\prime q_{p}}=0z^{1}$

now, the quantities $v^{\prime}$ which correspond to $v$ of (20), (21) must vanish.
$z$ $z$

This shows that, if we take a suitable base $S$ in $R^{n}$ , then we get (20),

(21) with vanishing
$v_{z}$

. Thus we obtain

If $n_{1}\leqq n-3$ ,

(22) $\left\{\begin{array}{l}V_{1}^{\lambda}=\delta_{z}^{\lambda}1 V_{p}^{1}=0\lambda V_{\mu}^{1}i=0,\\z z z\\V_{j}^{\lambda}=\delta_{j}^{\lambda}1^{1} V_{\mu}^{i}=\delta_{\mu}^{i}1^{1}\end{array}\right.$
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If $n_{1}=n-2$,

(23) $\left\{\begin{array}{l}V_{1}^{\lambda}=\delta_{z}^{\lambda}1\\z\\V_{j}^{\lambda}=\delta_{j}^{\lambda}1^{1}\end{array}\right.$ $V_{\mu}^{i}=\delta_{\mu}V_{2}^{\lambda}=0_{i}1^{1}z^{1}$

$V_{\mu}^{1}=0z^{l}$

(24) $\left\{\begin{array}{l}V_{x}^{2}V_{y}^{t}+V_{y}^{2}V_{x}^{t}=0t^{1}z^{1}t^{1}z^{1}\\V_{x}^{2}V_{y}^{t}+V_{y}^{2}V_{x}^{t}=0t^{1}1^{1}t^{1}1^{1}\\V_{y}^{2}+V_{x}^{2}=011\\x y\end{array}\right.$

In the following we use only such bases S.
4) Let us consider the matrices $V$ of $\mathfrak{V}_{\hat{1}}$ .
Then we get

$v^{1}v^{p}V_{\alpha}^{q}v^{a}-v^{p}v^{q}V_{\alpha}^{1}v^{\alpha}-v^{q}V^{p_{\alpha}}v^{a}V_{\beta}^{t}v^{\beta}+t^{1}V_{\alpha}^{q}v^{\alpha}Vt^{1}$ ’: $\beta^{v^{\beta}v^{t}=0}$ ,

and, as we have $V_{1}^{\lambda}=0,$ $v^{1}v^{p}V_{a}^{q}v^{\alpha}$ are the only terms involving $v^{1}$ . Hence
we get $V_{\mu}^{q}=0$ , and from the remaining terms we obtain

$-v^{p}v^{q}V_{\gamma}^{1}v^{r}-v^{p}v^{q}V:_{t}v^{t}-v^{q}V_{u}^{p}v^{u}(V_{r}^{t}v^{r}+t^{1}V_{v}^{t}v^{v})=0$

by virtue of (22) or (23). Since we have $V_{r}^{t}=0$ as stated in \S 2, we get, if
$n_{1}=n-2$ ,

$V_{r}^{1}=0$ , $V_{x}^{2}V_{y}^{t}+t^{1}V_{y}^{2}V_{x}^{t}=0t^{1}$ $V_{x}^{1}=0$

and, if $n_{1}\leqq n-3$ ,

$V_{r}^{1}=0$ , $V_{x}^{1}=0$ .
We can summarize the result as

(25) $V_{\mu}^{\lambda}=\delta_{y}^{\lambda}V^{u_{x}}\delta_{\mu}^{x}$ $(n_{1}\leqq n-2)$ ,

(26) $t^{1}V_{x}^{2}V_{y}^{t}+V?_{y}V_{x}^{t}=0t^{1}$ $(n_{1}=n-2)$ .

5) Thus we find that for all matrices $V$ in $\mathfrak{V}$ we have $V_{2}^{1}=0$ as long
as $n_{1}\leqq n-2$ . Hence the matrix

$K_{\mu}^{\lambda}=\delta_{2}^{\lambda}\delta_{\mu}^{1}$

lies in 9, and, as we get

$[K, x^{2}x^{2}x^{2}xx^{1}V]^{\lambda_{\mu}}=\delta_{2}^{\lambda}V_{\mu}^{1}-V_{2}^{\lambda}\delta_{\mu}^{1}=-\delta_{2}^{\lambda^{1}}V_{\mu}^{2}+(\delta_{1}^{\lambda}V_{2}^{2}-\delta_{x}^{\lambda})\delta_{\mu}^{1}$

and
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$V_{2}^{2}=0x^{1}$

the matrix
$\delta_{x}^{\lambda}\delta_{\mu}^{1}+\delta_{2}^{\lambda}V_{\mu}^{2}x^{1}$

lies in $\mathfrak{V}$ . We can choose this for $V^{1}x$

$V^{\lambda_{/1}}=\delta_{x}^{\lambda}\delta_{\mu}^{1}+\delta^{\underline{\lambda_{)}}}KV_{\mu}^{2}x^{1}x^{1}$

If $n_{1}\leqq n-3$ , we get

$x^{1}V^{\lambda_{/J}}=\delta_{x}^{\lambda}\delta_{\rho x}^{1}$ .

6) If $n_{1}=n-1$ , such deduction fails.

\S 5. Bases of the third order, resum\’e of the first step.

In foregoing paragraphs we obtained a base $S(v_{1}, e_{2},\cdots, e_{n})$ of $R^{n}$ such
that $n_{1}(n-n_{\rfloor})$ or $n_{1}(n-n_{\rfloor})+1$ matrices with special property compose a base
$M_{1}$ of $\mathfrak{V}_{1}$ and $m-n_{1}(n-n_{1})$ or $m-n_{1}(n-n_{1})-1$ matrices with the property

$V_{\mu}^{\lambda}=\delta_{v}^{\lambda}V_{x}^{y}\delta_{\mu}^{x}$

compose a base $M_{\hat{1}}$ of $\mathfrak{V}_{\hat{1}}$ , by assuming that $v_{1}$ satisfies the inequality
$n_{1}(v_{1})\geqq n_{1}(v)$ for all vectors $v$ of $R^{n}$ . The only one exceptional case is the
case of $n_{1}=n-1$ .

The results obtained are resumed as follows.
We can find a base $(S, M)$ such that $M$ is composed of the base $M_{1}$ of $\mathfrak{V}_{1}$

and the base $M_{\hat{1}}$ of $\mathfrak{V}_{\hat{1}}$ mentioned below.
(i) case 1, $n_{1}=n-1$

$M_{1}$ : $x^{1}V_{\mu}^{\lambda}=\delta_{x}^{\lambda}\delta_{\mu}^{1}$ ,

$M_{1}^{A}$ $\left\{\begin{array}{l}M_{\hat{1}}^{\prime}. somematricesVwiththeproperty\\V_{J}^{\lambda}=\delta_{y}^{\lambda}V_{x}^{y}\delta_{\mu\prime}^{x}\\M_{\hat{1}^{\prime\prime}}\cdot. somematricesVwiththeproperty\end{array}\right.$

$V_{\mu}^{\lambda}=\delta_{1}^{\lambda}V_{x}^{1}\delta_{\mu}^{x}$ ,
(ii) case 1, $n_{1}\leqq n-2$

$M_{1}$ : $x^{i}V_{\mu}^{\lambda}=\delta_{x}^{\lambda}\delta_{\mu}^{i}$ ,

$M_{\hat{1}}$ : some matrices $V$ with the property
$V^{\lambda_{/J}}=\delta_{y}^{\lambda}V_{x}^{y}\delta_{\mu}^{x}$ ,
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(iii) case 2, $n_{1}=n-1$

$M_{1}$ : $n$ matrices $ V^{1}\kappa$ with the property

$V_{1}^{\lambda}=\delta_{\kappa}^{\lambda}\kappa^{1}$

$M_{\hat{1}}$ : some matrices $V$ with the property
$V_{1}^{\lambda}=0$ ,

(iv) case 2, $n_{1}=n-2$

$M_{1}$ : a matrix $V1^{1}$ with the property

$V_{j}^{\lambda}=\delta_{j}^{\lambda}11$ $V_{\mu}^{i}=\delta_{\mu}^{i}11$

$n_{1}$ matrices $x^{1}V$ with the property

$V_{j}^{\lambda}=\delta_{x}^{\lambda}\delta_{j}^{1}x^{1}$ $V_{y}^{\lambda}=\delta_{2}^{\lambda}V_{y}^{2}x^{1}x^{1}$

$n_{1}$ matrices $x^{2}V$ with the property

$x^{2}V_{j}^{\lambda}=\delta_{x}^{\lambda}\delta_{j}^{2}$ , $x^{2}x^{1}V_{y}^{\lambda}=-\delta_{1}^{\lambda}V_{y}^{2}$ ,

$M_{\hat{1}}$ : some matrices $V$ with the property
$V_{\mu}^{\lambda}=\delta_{y}^{\lambda}V^{y_{x}}\delta_{\mu}^{x}$ ,

where
$x^{1}y^{1}V_{y}^{2}+V_{x}^{2}=0$ ,

$V_{x}^{2}V_{y}^{t}+V_{y}^{2}V_{x}^{t}=0t^{1}1^{1}t^{1}1^{1}$

$V_{x}^{2}V_{y}^{t}+V_{y}^{2}V_{x}^{t}=0t^{1}t^{1}$

(v) case 2, $n_{1}\leqq n-3$

$M_{1}$ : a matrix $V^{1}1$ with the property

$V_{j}^{\lambda}=\delta_{j}^{\lambda}1^{1}$ $V_{\mu}^{i}=\delta_{\mu}^{i}11$

matrices $x^{i}V_{\mu}^{\lambda}=\delta_{x}^{\lambda}\delta_{\mu}^{i}$ ,

$M_{\hat{1}}$ : some matrices $V$ with the property
$V_{\mu}^{\lambda}=\delta_{y}^{\lambda}V_{x}^{y}\delta_{\mu}^{x}$ .

Now let us assume that we have bases $M_{1}$ and $M_{\hat{1}}$ with the property
just mentioned without assuming $n_{1}(v_{1})\geqq n_{1}(v)$ . The matrices obtained by

arranging the vectors $v^{\lambda}$ and $AV_{\alpha}^{\lambda}v^{\alpha}$ in columns are as follows where $n_{1}$

denotes $n_{1}(v_{1})$ .
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$(i)^{\prime}$ $n-1$ columns
$\leftrightarrow$

$v^{1}$ $0$ $0$
$B^{\prime}V_{t}^{1}v^{t}$

$v^{y}$ $\delta_{x}^{y}v^{1}$

$BV^{y_{t}}\nu^{t}$
$0$ $\}$ $n-1$ rows

(ii)‘ $n_{1}(n-n_{1})$ columns
$v^{k}$

$\infty_{0}$
$0$ $\}$ $n-n_{1}$ rows

$v^{y}$ $\delta_{x}^{y}v^{i}$

$BV^{y_{t}}v^{t}$
$\}$ $n_{1}$ rows

(iv)’ $ n-2\infty$columns
$\leftrightarrow^{n-21}$

columns

$v^{1}$ $v^{1}$ $0$
$-V_{t}^{2}v^{t}v$

$0$

$v^{2}$ $v^{2}$ $V_{t}^{2}v^{t}u^{1}$ $0$ $0$

$v^{y}$ $V^{y_{t}}v^{t}1^{1}$ $\delta_{u}^{y}v^{1}$ $\delta_{v}^{y}v^{2}$

$BV^{y_{t}},v^{t}$
$\}$ $n-2$ rows

$(v)^{\prime}$ $n_{1}(n-n_{1})$ columns

$v^{1}$ $v^{1}$

$\leftrightarrow^{0}$
$0$

$v^{q}$ $v^{q}$ $0$ $0$ $\}$ $n-n_{1}-1$ rows

$v^{y}$ $V^{y_{t}}v^{t}11$ $\delta_{x}^{y}v^{i}$

$BV^{y_{t}}v^{t}$
$\}$

$n_{1}$ rows

The matrix (iii)’ for case 2, $n_{1}=n-1$ is not described as it is needless.
Then we find that the rank $R$ is at most $n_{1}+1$ for any of them. For

$(i)^{\prime}$ and (iii)i this is due to $n_{1}+1=n$ . For (ii)’ and $(v)^{\prime}$ this is found easily
by inspection. For (iv)’ this is proved as follows.

If we put

$a_{1}=v^{2}$ , $a_{2}=-v^{1}$ , $a_{x}=V_{t}^{2}v^{t}x^{1}$

then we can verify that the column vectors $v^{\lambda},V_{a}^{\lambda}v^{a}A$ of (iv)’ satisfy

$a_{\beta}v^{\beta}=0$ , $a_{\beta_{A}}V^{\beta_{a}}v^{a}=0$

by making use of (24) and (26). If the vector $a_{\mu}$ is not zero, this proves
that $R\leqq n-1$ , hence $R\leqq n_{1}+1$ . If $a_{\mu}=0$ , the matrix (iv)’ becomes

$0$ $0$ $0$ $0$ $0$

$0$ $0$ $0$ $0$ $0$

$v^{y}$ $V^{y_{t}}\nu^{t}1^{1}$ $0$ $0$
$BV^{y_{t}}v^{t}$ ,
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hence we get $R<n_{1}+1$ .
Since $n_{1}(v)=R-1$ , we get the following result.
If a base $(S, M)$ of the first order is such that $M$ is composed of $M_{1}$ and

$M_{\hat{1}}$ formed by matrices stated in (i), (ii), (iii), (iv) or (v), then we get $n_{1}(v_{1})\geqq n_{1}(v)$ .
Such a base $(S, M)$ will be called a base of the third order. Decomposi-

tion of $\mathfrak{V}$ into $\mathfrak{V}_{1}$ and $\mathfrak{V}_{\hat{1}}$ now becomes significant.
If $n_{1}=n-1$ , it may happen that we get, for some $v$ satisfying $n_{1}(v)=n-1$ ,

$v\in L(\mathfrak{g}, v)$ when $v_{1}\not\in L(\mathfrak{g}, v_{1})$ . This is easily found from $(i)^{\prime}$ , and this means
that for $n_{1}=n-1$ it is not an intrinsic property of $\mathfrak{g}$ whether we get case 1
or case 2. On the contrary this is an intrinsic property of $\mathfrak{g}$ if $n_{1}\leqq n-2$ ,
for we find from (ii)’ that we get $v\not\in L(\{;, v)$ as long as we have $n_{1}(v)=n_{1}$ .

Thus we obtain the
LEMMA 2. When a subalgebra $\mathfrak{g}$ of a general linear Lie algebra $\mathfrak{g}l(R^{n})$ is

given, we can always find a base $(S, M)$ of the third order which is characterized
by (i), (ii), (iii), (iv) or (v). Especially, if we get (ii), (iv), or (v), this is an
intrinsic property of $\mathfrak{g}$ .

\S 6. Bases of order 4, complete decomposition of $\mathfrak{V}$ .

1) Let us begin the second step.
We have found that, if $(S, M)$ is a base of the third order, then the

elements in the first $n-n_{1}$ columns of the matrices in $\mathfrak{V}_{\hat{1}}$ are all zero,
while any non-zero linear combination of matrices of $M_{1}$ has at least one
non-zero element in the first $n-n_{1}$ columns. As we only use bases of the
third order hereafter, we can consider that this property characterizes $\mathfrak{V}_{\hat{1}}$ .

Now, if we take a transformation of $S$

(27) $\left\{\begin{array}{ll}e_{\lambda}\sim=A_{\lambda}^{a}e & ,\\A_{j}^{\lambda}=\delta_{j}^{\lambda}, & A_{\mu}^{i}=\delta_{\mu}^{\dot{\tau}},\end{array}\right.$

the elements in the first $n-n_{1}$ columns of the matrices in $A^{-1}\mathfrak{V}_{\hat{1}}A$ are all
zero. On the other hand, the matrices

(28) $\tilde{M}_{1}(A^{-1}V^{1}A1A_{x}^{z}A^{-1}V^{i}A)z$

in $A^{-1}\mathfrak{V}_{1}A$ have the same form as the matrices $M_{1}(V1^{1}x^{i}V)$ in $\mathfrak{B}_{1}$ , hence (28)

plays the same role in $A^{-1}\mathfrak{V}_{1}A$ as $M_{1}(V^{1}1xV^{i})$ does in $\mathfrak{V}_{1}$ . Consequently a base

of the third order $(\tilde{S,}\tilde{M})$ is obtained for $\tilde{S}=AS$ when $\tilde{M}$ is constructed of
(28) and some base $\tilde{M}_{\hat{1}}$ of $A^{-1}\mathfrak{V}_{\hat{1}}A$ .
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If we take a suitable transformation (27) and choose $\tilde{M}_{\hat{1}}$ suitably, the
matrices2) of degree $n_{1}$ constructed of the elements $V^{y_{x}}$ of the matrices $(V^{\lambda_{/J}})$

of $\tilde{M}_{\hat{1}}$ take special forms. This implies that, if we take a suitable base
$(S, M)$ of the third order, the $n_{1}$ -submatrices of $M_{\hat{1}}$ take special forms. This
is obtained in a quite similar manner as in the first step with the use of
the following lemma.

LEMMA 3. If a matrix $(K^{y_{x}})$ of degree $n_{1}$ satisfies
$K^{y_{x}}V_{y}^{x}=0$

for all matrices $V$ of $\mathfrak{V}_{\hat{1}}$ , then there is a matrix $(K_{\mu}^{\lambda})$ of $\theta$ such that its $ n_{1}\rightarrow$

submatrix is the matrix $(K^{y_{x}})$ given above and moreover such that

$K^{y_{j}}=0$ .
PROOF. We only need to find a matrix

$K^{\lambda_{/J}}=\delta_{y}^{\lambda}K^{y_{x}}\delta_{\mu}^{x}+\delta_{i}^{\lambda}K_{/J}^{i}$

such that $K_{\mu}^{\lambda}V_{\lambda}^{\rho}=0$ for all matrices $V$ of $\mathfrak{V}_{\hat{1}}$ and for

$V=V11Vxi$

If $V$ lines in $\mathfrak{V}_{\hat{1}}$ , we get

$K_{\mu}^{\lambda}V^{\prime x_{\lambda}}=K^{y_{/J}}V_{y}^{\mu}=K_{x}^{y}V_{y}^{x}=0$ .
If $V=Vz^{k}$ we get

$K_{\mu}^{\lambda}V_{\lambda}^{\mu}=\delta_{y}^{\lambda}K_{x}^{y}\delta_{\mu}^{x}V_{\lambda}^{\mu}+\delta_{i}^{\lambda}K_{\mu}^{i}V_{\lambda}^{\mu}z^{k}z^{k}z^{k}$

$=K_{x}^{y}V_{y}^{x}+K_{\mu}^{i}V_{i}^{\prime 1}\iota zkk$

$=K^{y_{x}}V_{y}^{x}+K_{z}^{k}z^{k}$

while, if $V=V^{1}1$ we get

$K_{\mu}^{\lambda}V_{\lambda}^{\prime J}=K^{y_{x}}V_{y}^{x}+K_{\mu}^{i}V_{i}^{\mu}1^{1}1^{1}1^{1}$

$=K^{y}V^{x}+K_{i}^{i}$ .
Hence $ K\in\Omega$ is satisfied if we put

in case 1

(29) $K_{z}^{k}=-K^{\prime}y_{x}^{k}V_{y}^{x}=0z$

2) In the following such matrices are called $n_{1}$ -submatrices for short,
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in case 2

(30) $\left\{\begin{array}{l}K_{z}^{k}=-K^{y_{x}}V_{y}^{x},\\z\\1\\K_{i}^{i}=-K_{x_{1}}^{y}V_{y}^{x}.\end{array}\right.$

This proves the lemma.
Conversely, if a matrix $K$ of $\Omega$ satisfies $K^{y_{j}}=0$ , then it satisfies $K^{y_{x}}V_{y}^{x}$

$=0$ for all $V$ in $\mathfrak{V}_{\hat{1}}$ .
Consequently the subspace $\Omega_{1}$ of :RP spanned by such matrices $(K^{\lambda_{/J}})$ can

be considered to be an isomorphic representation of a subalgebra $\mathfrak{g}_{1}$ of the
Lie algebra $\mathfrak{g}$ . The $n_{1}$ -submatrices $(K_{x}^{y})$ of the matrices $(K^{\lambda_{/1}})$ in $9_{1}$ span
a linear subspace $f?(1)$ in an $n_{1}^{2}$-dimensional linear space spanned by all
matrices of degree $n_{1}$ . $\theta_{(1)}$ can be considered to be an isomorphic repre-
sentation of a Lie algebra $g_{(i)}$ which is isomorphic or homomorphic to $\mathfrak{g}_{1}$ .
As $\theta$ determined $\mathfrak{V}$ , so $\theta_{(1)}$ determines $\mathfrak{V}_{(1)}$ . But any matrix of $\mathfrak{V}_{(1)}$ is the
$n_{1}$ -submatrix $(V_{x}^{y})$ of a matrix $(V_{\mu}^{\lambda})$ in $\mathfrak{V}_{\hat{1}}$ , and the $n_{1}$ -submatrix of any
matrix $V$ in $\mathfrak{V}_{\hat{1}}$ is a matrix of $\mathfrak{V}_{(1)}$ . This is easily understood as St(1) is
spanned by the matrices $(K^{y_{x}})$ satisfying $K^{y_{x}}V_{y}^{x}=0$ for all matrices $V$ in

$\mathfrak{V}_{\hat{1}}$ , and the $n_{1}$ -submatrices of matrices in $\mathfrak{V}_{\hat{1}}$ span $\mathfrak{V}_{(1)}$ . As $(g) is an
invariant of $\mathfrak{g}$ , so $t(\mathfrak{g}_{(1)})$ is an invariant of $\mathfrak{g}_{(1)}$ .

Now, an element of $\mathfrak{g}_{()}1$ can be considered as a transformation of an $n_{1}-$

dimensional space $R_{(1)}$ which is spanned by the vectors $e_{x}(x=n-n_{1}+1,\cdots, n)$

in a base $(S, M)$ of the third order. Let the base of $R_{(1)}$ formed by these
vectors be denoted by $S_{(1)}$ . If $S$ is transformed into $\tilde{S}=AS$ by means of (27),

then $S_{(1)}$ is transformed into $\tilde{S}_{(1)}=A_{(1)}S_{(1)}$ which is composed of the vectors
$e_{x}\sim=A^{y_{x}}e_{y}$ . The matrix $A_{()}1$ is the $n_{1}$ -submatrix $(A^{y_{x}})$ of $A$ . If a base $\tilde{M}$ of
$A^{-1}\mathfrak{V}A$ is chosen suitably, then the base $(\tilde{S,}\tilde{M})$ becomes a base of the third
order, and, as we have seen, the portion (28) of $\tilde{M}$ has the same form as $M_{1}$ .
On the other hand, as for $R_{(\iota)},$ $\mathfrak{g}_{()}1$

’ we can construct a base of the third
order $(S_{(1)},\tilde{M}_{(1)})\sim$ by choosing $A_{(1)}$ and the base $\tilde{M}_{(1)}$ of $A_{(1)}^{-1}\mathfrak{V}_{(1)}A_{(1)}$ suitably.

Thus we find that we can choose a base $(S, M)$ of the third order for
the given $(R^{n}, l(\mathfrak{g}))$ in such a way that the corresponding base $(S_{()}1’ M_{()}1)$ of
$(R_{(1)}, l(\mathfrak{g}_{(1)}))$ is also a base of the third order. From this fact we see that

If we take a particular base of the third order, then the base $M_{\hat{1}}$ of $\mathfrak{V}_{\hat{1}}$

decomposes into $tuo$ portions $M_{2}$ and $M_{\hat{2}}$ such that the $n_{1}$ -submatrices of $lhe$

matrices of $M_{2},$ $M_{\hat{2}}$ are quite similar in form to the matrices of $M_{1},$ $M_{\hat{1}}$ stated
in \S 5 respectively, with the understanding that the numbers $n_{1},$ $n_{2}$ play the parts

of $n,$ $n_{1}$ .
$M_{2}$ contains just $n_{2}(n_{1}-n_{2})$ or $n_{2}(n_{1}-n_{2})+11inearly$ independent matrices,
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The two cases are distinguished by writing $2\in C1$ or $2\in C2$ as we are now
in the second step. The linear spaces spanned by $M_{2},$ $M_{\hat{2}}$ are denoted by
$\mathfrak{V}_{2},$ $\mathfrak{V}_{\hat{2}}$ respectively.

2) We can proceed in this way step by step. Let us assume that we
have completed the P-th step. If we have $n_{P+1}\neq 0$ , then the $P+1$ -th step is
carried out as follows.

By assumption $\mathfrak{V}$ is decomposed in the form
$\mathfrak{V}=\mathfrak{V}_{I}+\cdots+\mathfrak{V}_{T-1}+\mathfrak{V}_{(T-1)}^{\wedge}$ $(T\leqq P)$ .

We also have
$\mathfrak{V}_{(T-1)}\wedge=\mathfrak{V}_{T}+\mathfrak{V}_{\Phi}$ ,

where the matrices $V$ of $\mathfrak{V}p$ satisfy $V_{\mu}^{\lambda}=0$ for
$\lambda=1,\cdots,$ $n$ ; $\mu=1,\cdots,$ $n-n_{1}$ ,

$\lambda=n-n_{1}+1,\cdots,$ $n$ ; $\mu=n-n_{1}+1,\cdots,$ $n-n_{2}$ ,

$\lambda=n-n_{T-1}+1,\cdots,$ $n$ ; $\mu=n-n_{T-1}+1,\cdots,$ $n-n_{T}$ ,

and a base $M_{T}$ of $\mathfrak{V}_{T}$ is such that the $n_{T-1}$-submatrices
$V_{\mu}^{\lambda}(\lambda, \mu=n-n_{T-1}+1,\cdots, n)$

of the matrices of $M_{T}$ have the same forms as the matrices of $M_{I}$ written
in \S 5, with the understanding that the numbers $n_{T-1},$ $n_{T}$ play the parts of
$n,$ $n_{1}$ . Moreover, the $n_{T-I}$ -submatrices of the matrices in $\mathfrak{V}_{\Phi}$ also have the
same form as the matrices in $\mathfrak{V}_{\hat{1}}$ . This fact becomes significant when
$n_{T-1}-n_{T}\geqq 2$ .

If we effect a transformation of $S$ where

(31) $A_{j}^{\lambda}=\delta_{j}^{\lambda}$ , $A_{\mu}^{i}=\delta_{\mu}^{i}$

$(\lambda, \mu=1,\cdots, n;i,j=1,\cdots, n-n_{P})$ ,

then the spaces $A^{-1}\mathfrak{V}_{T}A,$ $A^{-1}\mathfrak{V}_{\Phi}A$ keep the properties mentioned above.

Now let us consider t\S . If $(K_{x}^{y})$ where $x,$ $y=n-n_{P}+1,\cdots,$ $n$ is a matrix of
degree $n_{P}$ satisfying

(32) $K_{x}^{y}V_{y}^{x}=0$

for all matrices $V$ in $\mathfrak{V}_{\hat{P}}$ , then we can find a matrix $(K_{\mu}^{\lambda})$ of St containing
this $(K^{y_{x}})$ as the $n_{P}$-submatrix and such that $K_{\mu}^{\lambda}=0$ for

$\lambda=n-n_{1}+1,\cdots,$ $n$ ; $\mu=1,\cdots,$ $n-n_{1}$ ,

$\lambda=n-n_{2}+1,\cdots,$ $n$ ; $\mu=n-n_{1}+1,\cdots,$ $n-n_{2}$ ,

$\lambda=n-n_{P}+1,\cdots,$ $n$ ; $\mu=n-n_{P-1}+1,\cdots,$ $n-n_{P}$ .
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This is an extension of Lemma 3 and is proved as follows.
We put

(33) $K_{\mu}^{\lambda}=\delta_{y^{\backslash }}^{\prime}K^{y_{x}}\delta_{\mu}^{x}+\delta_{i_{1}}^{\lambda}K_{\mu}^{i_{1}}+\cdots+\delta_{r_{P}}^{\lambda}l\sigma_{\mu}^{i_{P}}$

$(i_{1}=1,\cdots, n-n_{1};\cdots ; i_{P}=n-n_{P-1}+1,\cdots, n-n_{P})$ ,

where
$x_{T}$

(34) $K_{j_{T}}=0$

$(T=1,\cdots, P;x_{T}=n-n_{T}+1,\cdots, n)$ ,

and determine $K_{l}^{i_{1}},\cdots,$
$K_{\mu}^{i_{P}}$ so as to get $(K_{\mu}^{\lambda})\in P$ . If $V\in \mathfrak{V}_{\Phi}$ , we get from

(35) $\left\{\begin{array}{l}V_{\lambda}^{fJ}=\delta_{i_{1}}^{/t}V_{\lambda}^{i_{l}}+\cdots+\delta_{i_{T}}^{/J}V_{\lambda^{T}}^{i}+\delta_{x_{T}}^{ft}V_{\lambda}^{x_{T}},\\V_{/l}^{i_{S}}=0,\cdots,V_{j_{S}}^{i_{S}}=0 (S=1,\cdots,T),\\V_{j_{1}}^{x_{T}}=0,\cdots,V_{J_{T}}^{x_{T}}=0\end{array}\right.$

and (34)

$K_{\mu}^{\lambda}V_{\lambda}^{\prime\prime}=K_{x_{T}}^{y_{T}}V_{y_{T}}^{x_{T}}$ ,

hence, if $V\in \mathfrak{V}_{T+1}(T<P)$ , the equation $K_{\mu}^{\lambda}V_{\lambda}^{\mu}=0$ becomes simply

$y_{T}$ $x_{T}$

(36) $K_{x_{T}}V_{\nu_{T}}=0$ .
But $\mathfrak{V}_{T+1}$ is spanned by the base $M_{T+1}$ composed of

(37) $V_{T+1}^{T+1}z^{k}$

or

(38)
$\tau+V_{1}$

, $V_{T}^{\tau_{+^{1}1^{1}}}zk$

where the $n_{T+1}(n_{T}-n_{T+1})$ or $n_{T+1}(n_{T}-n_{T+1})+1$ matrices are such that their
$n_{T}$-submatrices have the same form as the matrices of $M_{1}$ stated in \S 5,

with the numbers $n_{T},$ $n_{T+1}$ playing the parts of $n,$ $n_{1}$ . Hence, for $T+1=P$,

that is, in regard to the condition that $K_{l}^{\lambda}V_{\lambda}^{\mu}=0$ for all matrices $V$ in $\mathfrak{V}_{P}$ ,
we get, just as we obtained (29) or (30) in the second step,

(39) $K_{z_{P}}=-K_{x_{P}}V_{y_{P}}=0k_{P}y_{p^{k}}Px_{P}z_{P}$ $(P\in C1)$

or

$K_{7,}^{k_{P}}P=-K_{x_{P}}^{y_{P}^{k}}V_{y_{P}}^{x_{P}}z_{P}^{P}$

(40)
$i_{P}$ $y_{P}$ $x_{P}$

$(P\in C2)$ .
$K_{i_{P}}=-K_{x_{P}}V_{y_{P}}P$
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$P\in C1$ or C2 means that the dimension of $\mathfrak{V}_{P}$ is $n_{P}(n_{P-1}-n_{P})$ or $n_{P}(n_{P-1}-n_{P})$

$+1$ respectively. Similarly we get for an arbitrary $T(1\leqq T\leqq P)(39)_{T}$ or (40)

according as $T\in C1$ or $T\in C2$ , and all these together are a necessary and
sufficient condition that the matrix $(K^{\lambda_{/J}})$ given above lie in se.

We determine $K_{l}^{i_{P}}$ at first by means of (39) or (40) , and then $K_{\mu}^{i_{P-1}}$ by
means of (39) or (40) and so on. It will be seen that, if $T\in C1$ , we can

choose the matrix $(K_{j_{T}}^{i_{T}})$ of degree $n_{T-1}-n_{T}$ arbitrarily, while, if $T\in C2$ ,

only the trace of $(K_{j_{T}}^{i_{T}})$ is given by the second equation of (40) . This fact
will become important later.

By virtue of the fact that we can find such matrices $K$ of $\Phi$ and that
the spaces $A^{-1}\mathfrak{V}_{T}A,$ $A^{-1}\mathfrak{V}_{\Phi}A$ obtained from $\mathfrak{V}_{T},$ $\mathfrak{V}_{\Phi}$ by a transformation of $S$

satisfying (31) have the same property as $\mathfrak{V}_{T\prime}\mathfrak{V}_{\Phi}$ , it will be understood that
the $P+1$ -th step is completed in the same manner as the former ones.

Such process can be continued until we get $n_{P+1}=0$ . Then the P-th
step is the last step and we can not decompose $\mathfrak{V}_{\hat{P}}$ further in a similar
manner. The $n_{P}$-submatrices of the matrices in $\mathfrak{V}_{\hat{P}}$ are scalar matrices,
and, if these are all zero, we write $P-\vdash 1\in C1$ . If some are not zero, we
write $P+1\in C2$, and in this case we can find just one linearly independent
matrix $P+V_{\iota}$ in $\mathfrak{V}_{\hat{P}}$ such that the $n_{P}$-submatrix is a unit matrix. If $\mathfrak{V}_{P+1}^{\prime}$

denotes a subspace of $\mathfrak{V}_{\overline{P}}$ spanned by the matrices whose $n_{P}$-submatrices
are zero, then we have

$\mathfrak{V}_{\hat{P}}=\mathfrak{V}_{P+1}^{\prime}$ $(P+1\in C1)$ ,
$\mathfrak{V}_{\hat{P}}=_{P+1}V+\mathfrak{V}_{P+1}^{\prime}$ $(P+1\in C2)$ .

It may happen that $\mathfrak{V}_{\hat{P}}$ is an empty set.
We thus obtain the
THEOREM 1. Let $\mathfrak{g}$ be an r-dimensional subalgebra of a general linear Lie

algebra {$;I(R^{n})$ operating on an n-dimensional linear space $R^{n}$ over the field of
real numbers. An isomorphic representation of $\mathfrak{g}$ is taken in an $n^{2}$ -dimensional
linear space spanned by all matrices of degree $n$ and is denoted by $ff(\mathfrak{g}, S)$ where
$S$ is a base of $R^{n}$ . The matrices $(V^{\lambda_{/J}})$ which satisfy

$K_{\mu}^{\lambda}V_{\lambda}^{\prime J}=0$

for all matrices $K$ of $\Omega$ span a subspace $\mathfrak{V}(\mathfrak{g}, S)$ of dimension $m=n^{2}-r$ in an
$n^{2}$ -dimensional linear space spanned by all matrices of degree $n$ . Then we can
choose $S$ such that $\mathfrak{V}$ is decomposed as follows
(41) $\mathfrak{V}=\mathfrak{V}_{1}+\cdots+\mathfrak{V}_{T}+\mathfrak{V}_{\mathfrak{H}}$ $(1\leqq T\leqq P)$ ,

(42) $\{$

$\mathfrak{V}_{\hat{P}}=\mathfrak{V}_{P+1}^{\prime}$ $(P+1\in C1)$ ,

$\mathfrak{V}_{\hat{P}}=_{P}V_{I}+\mathfrak{V}_{P+1}^{\prime}+$ $(P+1\in C2)$ ,
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where the matrices $V$ of $\mathfrak{V}_{F}$ satisfy (35) and

$V_{\mu}^{i_{T}}=0$ if $n_{T-1}-n_{T}\geqq 2$ ,

while $\mathfrak{V}_{T}(1\leqq T\leqq P)$ is spanned by (37) or (38) according as $T\in C1$ or $T\in C2$ .
Especially the matrices of $\mathfrak{V}_{P+1}^{\prime}$ are such that their $n_{P}$-submatrices are zero, and
the $n_{P}$-submatrix $afVP+1$ is a unit matrix.

The base $M_{T}$ of $\mathfrak{V}_{T}$ as given by (37) or (38) for each $T(1\leqq T\leqq P),VP+1$ if

$P+1\in C2$ , and an arbitrary base $M_{P^{\prime}+1}$ of $\mathfrak{V}_{P+1}^{\prime}$ together compose a base $M$ of
$\mathfrak{V}$ . Such a base $(S, M)$ will be called a base of the fourth order.

\S 7. The $d$ series and the dimension of $\mathfrak{g}$ .

Let us put $n_{0}=n$ and

(43) $d_{T}=n_{T-1}-n_{T}$ , $d_{P+1}=n_{P}$ $(1\leqq T\leqq P)$ .
Then we get

(44) $n=d_{1}+\cdots+d_{P+1}$

and the space $\mathfrak{V}_{T}$ is spanned by $d_{T}(n-d_{1}-\cdots-d_{T})$ or $d_{T}(n-d_{1}-\cdots-d_{T})+1$

linearly independent matrices according as $T\in C1$ or $T\in C2$ . Thus we obtain
the

THEOREM 2. Let $\mathfrak{V}$ decompose in the form stated in Theorem 1. Then its
dimension $m=n^{2}-r$ satisfies the inequality

(45) $m\geqq d_{1}(n-d_{1})+\cdots+d_{P}(n-d_{1}-\cdots-d_{P})+c$ ,

hence

(46) $ m\geqq\sum_{- ,=1}d_{s}d_{T}+c1\leqq s<\tau\leq P\dashv$

where $c$ is the number of limes $T$ satisfies $T\in C2$ when il takes the values from
1 to $P+1$ ,

$c=\sum_{T\in C2}1$ .
The ordered set of numbers $d_{1},\cdots,$ $d_{P+1}$ will be called the $d$ series of $\mathfrak{g}$ .
The exact value of $m$ is obtained by the addition of the dimension of

$\mathfrak{V}_{P+1}^{\prime}$ to the right hand member of (46). It is evident that

$\dim \mathfrak{V}_{P+1}^{\prime}\leqq\sum_{1\leqq s<\tau\leqq P+1}d_{s}d_{T}$ .

But according to \S 5 the matrices $V$ of $\mathfrak{V}_{P+1}^{\prime}$ satisfy, besides
$i_{T}$

(47) $V_{j_{S}}=0$ $(1\leqq S\leqq T\leqq P+1)$ ,

the equations
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$i_{T}$

(48) $V_{j_{S}}=0$ $(1\leqq S, T\leqq P+1;d_{T}\geqq 2)$

if $d_{T}\geqq 2$ . If $T^{*}$ denotes $T$ such that $d_{T}=1$ , then we get

$\dim \mathfrak{V}_{P+1}^{\prime}\leqq\sum_{\tau*}(\sum_{\tau>\tau*}d_{T})$ ,

hence the
THEOREM 3. If $\gamma$ is the dimension of $\mathfrak{g}$ , the number $m=n^{2}-r$ satisfies

(49) $\sum_{\tau*}(\sum_{\tau>\tau*}d_{T})+\sum_{<1s}d_{s}d_{T}+c\geqq m\geqq\sum_{=}d_{s}d_{T}+c1\leqq s<\tau\leq P+1$

EXAMPLE. According to Theorem 3 we can obtain in principle all pos-
sible $d$ series for any given value of $\gamma$. This is especially easy for suffi-
ciently large $r$. For example, if $r\geqq n^{2}-3n+9$ , that is, if $m\leqq 3n-9$ , the possible
$d$ series and the corresponding values of $m$ are as follows. Of course some
of them must be omitted.

$P$ $d$ series $m$

$0$ $n$ $0,1$

1 1, $n-1$ $n-1,\cdots,$ $2n$

2, $n-2$ $2(n-2)$ , $2(n-2)-|- 1$ , $2(n-2)+2$

3, $n-3$ $3(n-3)$ , $3(n-3)+1$ , $3(n-3)+2$

$n-3,3$ $3(n-3)$ , $3(n-3)+1$ , $3(n-3)+2$

$n-2$ , 2 $2(n-2)$ , $2(n-2)+1$ , $2(n-2)+2$

$n-1$ , 1 $n-1,$ $n,$ $n+1$

2 1, 1, $n-2$ $2n-3,\cdots,$ $4n-3$

1, $n-2$ , 1 $2n-3,\cdots,$ $3n-1$

$n-2$ , 1, 1 $2n-3,2n-2,2n-1,2n,$ $2n+1$ .
Some of the values of $m$ must be omitted not because of $m>3n-9$ but

because of the property of $\mathfrak{g}$ . Its study will be continued.

Mathematical Institute,
Yokohama National University.
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