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Invariant tensors under the real representation of unitary
group and their applications.

By Tetsuzo FUKAMI

(Received July 17, 1957)

N.H. Kuiper and K. Yano [3]" determined all tensors of certain kinds
interesting in differential geometry, which are invariant under the proper
orthogonal group of the n-dimensional vector space. They also studied
tensors invariant under the group of proper orthogonal transformations
fixing a unit vector in the z-dimensional vector space and gave some ap-
plicétions of the results. The purpose of this paper is to determine all
tensors of the types they studied, which are invariant under the real
representation of unitary group. We obtain some theorems in differential
geometry by applying the results.

1. Let C* be the n-dimensional complex Cartesian space and R? be
the 2n-dimensional real Cartesian space. We assign to (z!,--, 2") of C* (x1,---,
") of R, where z*=x*+1v'—1 x***9, Then to every linear transformation
o of C* corresponds a linear transformation ¢’ of R*™ If A,-+v—1 A, with
real matrices A,, A, of degree » is the matrix of g, then

4 [41 —‘flg )
la
is the matrix of o’. A real matrix A of degree 2x corresponds to a com-

plex matrix of degree » in this way if and only if it commutes with J,,

AJ.=J.A, where
0 —FE,
]n'_“ ),
E, 0

E, being the unit matrix of degree n. Let (x!,---,2*") and (y,---, ™) of R
correspond to (2,---,2") and (w!,---,w™) of C™ respectively. Then we have

2n .. e m
Zuw?=73 x'y'+1/—1 21 (x%y"rE — g AY®)
a=

a=1 i=1

1) Numbers in brackets refer to the bibliography at the end of the paper.
2) Throughout the paper Greck indices a, 8,-- run over the range 1,2,---,# and
Latin indices #,4,j, &,--- over the range 1,---, 2%.
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It follows that to a unitary transformation of C® corresponds a linear
transformation of R?® which leaves two bilinear forms }; x%* and X (x%y"**
i @

— ™% invariant, and vice versa. In this way the unitary group of C" is
represented as a subgroup of special orthogonal group of R*. We call
this subgroup the wunitary group of R*" and its element a wunitary transfor-
mation of R™ for brevity. The bilinear forms 3 #%* and % (%t — g EAY)

will be denoted by g4y’ and by ¢4’y respectively relative to any base of
R*. The linear transformation corresponding to the matrix J, will be
denoted by J and the components of the tensor J by ¢, J is a unitary
transformation of R*. We have

¢ch¢ji= ”5ki ’ ¢zh:¢ikg1cn: — Qi -

The natural base of R* can be denoted as {0, -, 0n JO0,,--, /0. Let o
be a unitary transformation of R*™ If we have o0d,=e, then we see d/0,
=Jod,=Je,. Therefore ¢ transforms the natural base of R*™ to an ortho-
normal base {e,, -, e, Je,,-+, Jen}. Conversely, if a base {e,,, en, Je,, +,Jen} 1S
orthonormal, then the linear transformation ¢ of R** such that we have
00,=e,, 0J0,=Je, is unitary.

Let us suppose that {e;, **, em J€1,"**, Jem €m+1} 1S an orthonormal set of
vectors in R?*. Then so is the set {e,, ", em Je1,**, JOm €msr» Joms}.  In fact,
denoting by e,* (¢=1,---,m) the components of the vector ¢,, we have, since
J is unitary,

gij((bk:ie;cn+1>(¢lje£n+l):glclel;b+1e7ln+1:1 ’

gz‘j@fnﬂ((ﬁkje’ﬁzﬂ):qskiefnﬂefnﬂ:O ’

gijeaj(¢hje’;t+l):grs¢i¢¢jseai¢hje%+l = _‘grs(d)ireai)e"lgn%-l =0,

grs(q5i79ai)(¢jsef;z+1):gijeaiefruq=O (@=1,++,m).
It follows from this that for any unit vector e of R?" there exists an
orthonormal base {e,-,en Je, -+, Je,} such that we have e=e,. In other
words for any unit vector e there exists a unitary transformation ¢ such
that we have od,=e.

The two-dimensional subspace spanned by two vectors x and Jx is called

holomorphic section determined by x [1] Any unitary transformation

leaving invariant a holomorphic section induces unitary transformations
in the holomorphic section and in its orthogonal complement.

2. We now state the following
TueoreMm 1. Let the tensors Vi }li]’, Thq;j and Rhi]‘k‘:" Rhik]‘ be invariant
under the unitary group of R*™. Then

(1.3) I)iZO,
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(1.b) lzii:/fgij+;§ ®ij s
(l.C Thij:() N
(1.d Rhijk:f (5khgij—6jhgilc)+g ((bkhgij’—quhgik)

"H; (5Ich¢ij”5jh¢zlc)+§ <¢Ich¢ij_(/)jh¢ik)
"|‘g 6ih¢jk+g ¢ih¢jk for n>1,
(1.d") hajk:f/ (6khérij_6jhgik)+62/ (" gi— 0, ")  Jor n=1,

where R’s and c’s are constants.
If moreover R";;,;=0, then we have in (1.d)

(1.e) 2c¢c+c=0, 2¢c+c¢=0.
3 5 4 6
If aiR%ji+8naR% =0, then we have in (1.d)
(1.1) c+c¢c=0, c=0 for n>1,
2 3 5
and in (1.d")
(1.7 ¢’'=0 for n=1.
If $:%R"0ju—da"R%ju=0, then we have in (1.d)
(l.g) c—c=0, c¢+c=0.
2 3 1 4

Proor. (l.a) No non-zero vector is invariant under the unitary group
of R*".

(1.b) If &, is invariant under a group of linear transformations, then
so are the symmetric part 4q; and the anti-symmetric part /%;; of ;. We
study two cases.

In case %;; is symmetric, we consider a constant % such that, for one
particular unit vector e, 1

hijeoieoj:f;' .
The tensor hi,-—lfgij is invariant under the unitary group. For any unit

vector e, those unitary transformations which send ¢, to e transform
(hi;—kgiee’ which is equal to zero to (4;—kgi)e'e’. Hence (h;;—kgie'e’=0
1 1 1
for any unit vector e. This implies
/lij:]fgijo

In case #4;; is anti-symmetric, we consider the tensor f;;=¢*4;. The
tensor f;; is invariant under the unitary group and symmetric. In fact,
since J is a unitary transformation, we have

F1=070" F1ro=07$:" b3 " hi=— " hir ;= hy=F3; .

Hence there exists a constant %2 such that we have f;;=kg;;. From this we
2
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get
kij: Qbikflcj :éeqsikglcj _-—”I;“lsij .

Since the tensor 4;; is the sum of its symmetric part and antisymmetric
part, (1.b) is proved.

(lc) Let T*; be invariant under the unitary group. Since the linear
transformation —4g,;* is a unitary transformation, we have

Ty =(—)(— 68 )(— 5;’)]\1%/],, =—T";,
and hence
TIL“_:O .

3. To prove (1.d) and (1.d") we prove two lemmas, and this section is
devoted to the proof of the lemmas. Let R"j=-—R"4; be invariant under
the unitary group. The tensor R%, is determined by the bilinear mapping

(Ui’ J jk) — Rhij/cvlfjk ’
in short

(0, f)— R, 1)

of pairs of a vector and a bivector, to vectors. Since the tensor R" is
invariant under the unitary group, the vector R(v, f) is invariant under
unitary transformations leaving invariant the vector » and the bivector f.

We take an orthonormal base {e, e Je, ,Je.} and consider in the
proof of the lemmas and of (1.d) and (i.d’) components of tensors with
respect to this base. We denote a+» by @ and Je, by e;. We say that «
and & belong to the same class. The numbers from 1 to 2% separate into
n classes.

Lemma 1. The component R";j, vanishes unless h,i, j, k belong to the same
class or two of them belong to a class and others do to anoilher one.

Proor. We distinguish two cases A and B.

Case A. j and %k are in the same class.

Subcase 1. i,j and %2 are in the same class. The vector R(e;,e;Aex)
=R"xen, 1s the sum of two orthogonal component vectors in the holomorphic
section determined by ¢; and in its orthogonal complement. R(e;e;jAey) is
invariant under those unitary transformations which induce the identity
transformation’in the holomorphic section. Therefore the vector Rle;, e;Aex)
coincides with its component vector in the holomorphic section. It follows
from this that, if the class of % is different from that of i, we have R"; %=0.

Subcase 2. The class of ¢ is different from that of j. Then the vector
R(e;, e;N\ey) is invariant under those unitary transformations which fix the
vector ¢; and leave invariant the holomorphic section determined by e;.
Thus we have R";;,=0 unless the class of 4 is that of i.
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Case B. j and %k are in different classes.

Subcase 1. The class of ¢ is either that of j or that of k. Unitary
transformations leaving fixed e; and ¢, induce unitary transformations in
the orthogonal complement to the subspace spanned by the set of vectors
{e; Jej, ex, Jer}. From this we see R"; ;=0 if the class of /% is different from
those of ;7 and %k That is, the vector Rle; e;Ae;) is the sum of two com-
ponent vectors in the holomorphic section determined by e; and in the
holomorphic section determined by e¢. Without loss of generality we
assume the class of i to be that of ;. Apply to R(e,e;Ne;) those unitary
transformations which send e; to e; and ¢, to —e;. Then the component
vector of R(e;,e;Ae) in the holomorphic section determined by e¢; remains
fixed, but the component vector in the holomorphic section determined by
e; reverses its direction. On the other hand R(e;e;Ae;) transforms into
—Rlei, ejNey). It follows from this that the component vector in the holo-
morphic section determined by e; is zero, i.e. R";=0 if the class of % is
that of i

Subcase 2. The class of i is neither that of j nor that of k2 The
vector Rle;,e;Ae;) is invariant under unitary transformations leaving in-
variant e; and e;Ae;,. We see that R(e;,e;/A\ey) is in the holomorphic section
determined by ¢;, We next apply to R(e;, e;/A\er) any unitary transformation
sending e; to —e;,e; to —e; and e, to e. Then the component vector of
Rle;, e;N\ey) in the holomorphic section determined by e; reverses its direc-
tion, while the vector Rle;, e;/A\e,) remains fixed. Hence we have R(e;,e;Aex)
=(0. This completes the proof of Lemma Il

LemMma 2. We have (repeated indices being not summed)

RYin=R"\in » R%u=—R%z=R%u ,

Rhmjh.: -Rhamh=Rh;wo7/n/ ’ Rﬁwaﬁ:' _R'Edwﬂ:' —Rﬁmdﬁ-
:RBME:‘RE;WBI ’

thaa:Rh;z’a'd' ’ R5a85= - Rmdﬁﬁ:Rﬁ;'B/ﬁ/ ,

R% yua=— Rlses=R’wurar R uaa =R%:ia=R e war for any n,

and
R yea=— R‘B-maﬂ - Rﬁwdﬁ“‘“ waﬁﬁ ’

Rdwaﬁd=RBwa‘:ﬁ—Rl§ad‘B+R&mﬁﬁ for' n>1,

where different letters in the indices of components of the temsor belong to
differvent classes.

Proor. To prove the equations of the type R";=R";;, We consider
the vector Rie,e;/\er)=R"uen+ R¥jfen, Where R%j; denotes —R%j; if h=a.
Unitary transformation which sends e; to e;,e; to e;,e; to e, and e, to en
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transforms the vector Rle;e;Ae) into R(es, e Nep)=R", ;en~+ R%, ju Jen, and
R"jxen+R% i Je, into R™jien+ R Jen. Hence we get R ;=R"} -

We consider the relation R(e;,e;Aey)=R%;.0+R%inea. Those unitary
transformations which send e; to e;e, to e, and hence e, to —e, transform
the vector Rle;,e;Ne,) to the vector Rle;, e;Aer)=R%izeqst R%ize; and the
vector R%i.e.+ R%q.e. to the vector R%;.e;— R%... From this we obtain
R&iiw"‘: —R%;4

We next consider the vector Rle, e¢s/A\e,) which is equal to R"uanen
+ R,z Jen. Those unitary transformations which send e, to eg ez to —eq
and e, to e, transform Rle, ez/Aen) to — Rleg, exAen)=—R"zunen— R¥sunten
which on the other hand is equal to R*,men+ R¥wanfen. This implies Ry
- "Rhamh, R‘gm&@:‘ —Rﬂ-aaﬁv Rﬁaa;§= "Rﬁamﬁ-

From the relation R(e,, es\ep)=R",pp¢,+ R*upses together with a unitary
transformation which sends eg to es e, to e, and hence e, to —e,, we find
the equation R%,g5=—R"ssp.

From the relation Rle,, e,/ es)=R*wetut R¥wastz together with such
unitary transformation which sends e, to e, and hence ¢, to —e, we get
the equation R%,,;=—R%se and R*,,;=R*:za

We now assume that #>1 and consider the relation Rle,, e,Ney)=R*z:€n
+ R%,0z¢2- Let us apply to the above relation those unitary transformations

. 1
which send e, to ﬁ(ecﬂ—eg) and e; to ;/—121 (ez—ep). Then R®,u.6,+ R%ynsa

transforms into 1712; (R®ywalat R% yaalat R sastp~ R uuaep), and Rie,, esAeg) into

1 1
/5 Rie,+ep, (ew+e‘g)/\(ea+e,§))~wé—f (Rleg, ex/Nes)+ Rley exNeg)+ Rleq, eg/\eg)

+R(e,, egNes)+ Rieg, euNez)+ Rleg, exNeg)+ Rleg, eaNeg)+Rleg, egNep).  Taking
up the coefficients of ¢, and of ¢, and remembering results of lemma 1, we

find Rmarx&=v‘]?:A (Rmmda+RquE+ Rwﬁaﬁ‘{_Rwﬂﬁa) and Rdmafﬁ:";‘ (Rdwad+RHaﬁf§+RdBw5

+R%04). Equalities already obtained yield the announced equations

mead:‘ - Rﬁwmﬁ - Rﬁa&ﬁ+ waﬁﬁ
and

Rdaaa:RBmwﬁ*RﬁaaB'{_Rdwgﬁ for n>1.

This completes the proof of lemma 2.

4. On the basis of the results of lemmas 1 and 2 we now proceed to
the proof of (1.d) and (1.d"). We define six tensors R";=—R"y; (@=1,--,6)

invariant under the unitary group as follows

h — X h s~ h h i h. . [/
R j=0,"g:;—0;"&ux R =01"Sii— 05 Lir »
1
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I??hijkzakhqsij_athsik s ]fhijk:¢kh¢ij'¢jh¢ik s

h __sh o AR
153 ijk'—ai ¢jk7 5 z]k’_'¢z ¢jlc'

The components of tensors gi;, ¢;; and ¢,/ with respect to the orthonor-
mal base {e,, -, en, €1,---, ¢;} under consideration are the elements of i-th row
and j-th column of the following three matrices respectively

E, 0 0 E, 0 —F,
( 0 E) (——En 0 ) (E 0 )
We see immediately
R =1, 52“2=0 for a=#1, {821]2=1, 5im=0 for a#2,

1
52112#1, ﬁezmzo for a+3, ]5?112:1, 15?112:0 for a+4,
é?l]ﬂ:l, .51122:0 for a#5, {filfgzl, J;?ilgg———o for a#6.

If we define the tensor T =—T"u; for n>>1 as follows

ThiﬂcZRhiﬂc"Rznszhijk—Rilwf;hijk—RZliz{fhm
“‘Rilhlfhiﬂc_R1112§hijk_kiizi§hijk )
then the tensor is invariant under the unitary group and we have
TzuzzTﬁnz:‘T?liz:T§112:T11222T1122:O .

This together with lemmas 1 and 2 shows 7",;=0 for n>1, i.e. there
exist six constants ¢, c,--, ¢ such that
1 2 8

R’z-jk=1cllﬁ%hijk+2c§hm+~-+gIee'zj,c for n>1.
From the deﬁniti_on of ll?hijk and JZR?”U,C we see immediately
Riy=0, Riy=—1, Ri;=1, R.;=0.
If we define T" for n=1 as follows
Thijk:Rhiﬂc_Ri1}i{€hijk+Rl11i§hijk,
then we get 7%,;=0 from lemma 2, i.e. there exist two constants ¢/, ¢/ such

that
Rhiﬂc:C/Rhijk“{‘ ¢’ R .
11 2 2
This completes the proof of (1.d) and (1.d").
(l.e) By alternation we obtain from (1.d)

SRh[ijk] = (2§+ g)(akh¢ij+ 51h¢ki + 5ih¢j7c)
+ (2f+g)(¢kh¢ij+ & " brit ¢ih¢jk) .
Since the tensors 0,"¢;;+0,"¢y+0"¢;, and ¢, "¢i+d; "¢+ b by are linearly
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independent, the condition R"p;;=0 implies 2§+§=0 and 2§+§=O.
(1.f) From the relation (1.d) we get
Zai Rt LnaRu=(C+ ) (buigns — b &t Bungis— S n&u) + 2¢ Zuibic -
The tensors ¢xgn;— ikt bingii— Qi and gnip;; are linearly independent.
Therefore the condition gu;R%,j+gnaR%x=0 implies c+c=0 and c=0.
(1.f") From the relation (1.d") we have o 5
ZaiR%n it &nal" =/ (Briui— Pis Gt ban &y~ S &ie) -

The condition guR%u+ g% ;=0 yields 62"-:0.
(.g) From the relation (1.d) we obtain
¢iaRha,jIc - ¢ahRaijk=(g - g)(akhgij_“ 5jhgik+ ¢Ich¢ij_ ¢jh¢ilc)
- <f+f)<¢khgij_ ¢jhgik_ 6kh¢ij+ 5jh¢ik) .
Hence the condition ¢,°R",;;—¢.,"R% ;=0 implies c¢—c¢=0, c+c¢=0, which
2 3 1 4
proves (1.g).
This completes the proof of all the assertion of theorem 1.
If a tensor R";;=—R";; which is invariant under the unitary group

satisfies the conditions R";jx;=0, gaiR%x+&raR% =0 and ¢;*R",;1—da"R% =0,
then theorem 1 shows that the tensor has the form

R =61'(5khgij - 6jhgilc - ¢lch¢ij+ ¢jh¢z‘k+ 2¢ih¢jk‘) for n>1.

5. As an application of (1.d) we consider the tensor
ehz:jk=1/§ Enijk
for 2ux=4, where g is the determinant of g;; and e, is equal to 1, ~1,0
according as kijk is an even, odd or no permutation of 1,2, 3,4 respectively.
If we set
R j=8" ey,
then R*;=—R"; is invariant under the unitary group. We have with
respect to an orthonormal base {e,e,, Je;, Je,}
R?1,=0, R?“z:(), R?3,=0, Réliz:%m:l,
R'5=0, Rls=ej.s=1.
From this we have
ghrerijk=¢kh¢ij—¢jh¢ik+¢ih¢jk ’
and hence ([4], Chap. VI)
nije=Penbiit+ Pinbrit binbjr -
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Examining the proof of (l.c), we find the following

Lemma 3. Let M be a differentiable manifold and T be a tensor field on
M of type (m,n). We assume that the value of the tensor field at a point of
M is invariant undeyv the linear transformation —0; of the tangent space at the
point. Then the value of T at the point is zero provided m—+mn is an odd number.

TuroreMm 2. Let M be a 2n-dimensional almost complex manifold and ¢ be
the tensor field defining the almost complex structure (¢*=—identity). Let G be
a transitive Lie group of transformations of M leaving the almost complex
structure invaviant. If at a point p of M and hence at every point of M the
linear isotvopy group contains the linear transformation —9oj, then the manifold
M is complex analytic. Theve exists at most one linear conmnection on M
mvariant under the group G.

Proor. Since the tensor field ¢ is invariant under the group G, so is
Nijenhuis’ tensor field N*%; of ¢. From lemma 3 we find N";=0. The
manifold M is real analytic as a homogeneous space of Lie group. Hence
the manifold M is complex analytic. Let I';; and I'’;"; be two linear con-
nections on M invariant under the group G. The tensor T7",;=I",—I"/; is
invariant under the group G. Consequently we have 7%;=0. Hence
theorem 2 is proved.

Tarorem 3. Let M be a connected 2n-dimensional almost Hermitian space.
Let G be an (n*+2n)-dimensional effective group of automoyphisms of M. Then
G is transitive on M and a linear connection on M invariant wunder the group
G is Levi-Civita’s connection. The manifold M is a Kaehlevian manifold of
constant holomorphic curvature.

The linear group of isotropy at any point coincides with the unitary
group of the tangent space at the point. Since Levi-Civita’s connection is
invariant under the group G, theorem 2 shows that a linear connection
invariant under the group G is Levi-Civita’s connection. Other parts of
the theorem were already proved by S. Ishihara [2].

The curvature tensor of the manifold has the form

ha‘jk:*f% (alchgij_ 5jhgz'1c - ¢kh¢ij+ ¢jh¢m+2¢ih¢jlc) ,

where the scalar k£ is an absolute constant.

Turorem 4. Let M be an almost Hermitian manifold and I';*; be a linear
connection in which the almost complex structure ¢;° has null covariant deviva-
tive. If the manifold M admits a group of affine transformations and the
isotropy group in the tangent Space at amy point contains the unitary group,
then the torsion temsor is zervo and the cuvvature temsor field has the form

R"y= (f&zh + g¢ah)(5kagij —0,°Guc— D" bij+ D it 20D jx)
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with scalars ¢ and c.
1 2

Proor. The value of the torsion tensor field at any point is invariant
under the linear isotropy group at the point which contains the unitary
group. It follows from theorem 1 (l.c) that the torsion tensor is zero. We
see from (l.e) and (1.g) that the curvature tensor field has the form

Rhiﬂc =61‘(5khgij - 51hgik - ¢kh¢ij+ ¢jh¢ik+ 2¢ih¢jk)
+ g(gélchgij - ¢jhgik+ 6kh¢ij - 6jh¢ik - 25ih¢jk)
= (€5ah+ g¢ah)(5kagz‘j - 5jagik - ¢ka¢ij+ ¢ja¢ik+ 2¢z‘a¢jk)

with scalars ¢ and c.
1 2

Tueorem 5. Let M be a Kaehlerian manifold with Levi-Civita’s connection.
We assume that the homogeneous holonomy group of M at a point p of M is
the unitary group. If the cuvvature temsor field has null covaviant devivative,
then the manifold is of constant holomorphic curvature.

Proor. Since the curvature tensor field has null covariant derivative,
the wvalue of the tensor field at the point p is invariant under the homo-
geneous holonomy group which is the unitary group. It follows from
theorem 1 (l.e), (1.f) and (1.g) that the curvature tensor field has the form

hajk:C@khgij*‘ajhgz’k*¢kh¢ij+¢jh¢ik+2¢ih¢jk) for n>1
at any point of the manifold. Since the tensor field in the parentheses is

parallel, the scalar ¢ is absolute constant, i.e. the manifold is of constant
holomorphic curvature. Hence the theorem is proved.

The author wishes to express here his gratitude to Dr. S. Ishihara and
Mr. M. Obata for their valuable criticisms.

Tokyo Metropolitan University.
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