A remark on the unique factorization theorem.

By Masayoshi Nagata

(Received July 11, 1956)

It is well known that the ring $K\left[x_{1}, x_{2}, \cdots, x_{n}\right] /\left(\sum_{i=1}^{n} x_{i}^{2}\right)$ is a unique factorization ring if K is a field of characteristic different from 2 and if $n \geqq 5^{*}$. But it seems to the writer that the known proofs are not so simple. Theorems 1 and 2 in the present note cover the fact and our proof is simpler than the known proofs.

Lemma 1. Let x be a non-zero element of a Noetherian integral domain \mathfrak{o}. If xo is a prime ideal and if $\mathfrak{o}[1 / x]$ is a unique factorization ring, then \mathfrak{o} is also a unique factorization ring.

Proof. We have only to show that every prime ideal \mathfrak{p} of rank 1 in \mathfrak{o} is principal. If $x \in \mathfrak{p}$, then $\mathfrak{p}=x \mathfrak{o}$ and we assume that $x \notin \mathfrak{p}$. Let f be an element of \mathfrak{p} such that $f_{0}[1 / x]=\mathfrak{p o}[1 / x]$. Since $x \notin \mathfrak{p}$, we may assume that $f \notin x$. Let p be an element of \mathfrak{p}. Let r be the smallest integer such that $x^{r} p \in f_{0}$. If r is positive, then the element $y \in \mathfrak{o}$ such that $x^{r} p=f y$ must be in $x 0$ (because $x 0$ is a prime ideal) and $x^{r-1} p \in f \mathfrak{o}$, which is a contradiction. Thus we have $p \in f_{0}$ and $\mathfrak{p}=f_{\mathfrak{v}}$, which proves the assertion.

Theorem 1. Let K be a Noetherian unique factorization ring and let x_{1}, \cdots, x_{n} be indeterminates. If $g_{0}, g_{1} \cdots, g_{r}$ are in $K\left[x_{3}, \cdots, x_{n}\right]$ and if g_{0} is irreducible, then the ring $\mathfrak{v}=K\left[x_{1}, \cdots, x_{n}\right] /\left(x_{1} x_{2}-\sum_{i=0}^{r} g_{i} x_{1}^{i}\right)$ is a unique factorization ring.

Proof. $\mathfrak{v} / x_{1} \mathfrak{v}=K\left[x_{2}, \cdots, x_{n}\right] /\left(g_{0}\right)$ and g_{0} is irreducible, which shows that $x_{1} \mathfrak{v}$ is a prime ideal. $\mathfrak{o}\left[1 / x_{1}\right]=K\left[x_{1}, 1 / x_{1}, x_{3}, x_{4}, \cdots, x_{n}\right]$, which is a ring of quotients of the polynomial ring $K\left[x_{1}, x_{3}, \cdots, x_{n}\right]$ and is a unique factorization ring. Thus'o is a unique factorization ring by Lemma 1.

If a field K is not of characteristic 2 and if $\sqrt{-1} \in K$, then $K\left[x_{1}, \cdots, x_{n}\right] /\left(\sum x_{i}\right) \cong K\left[x_{1}, \cdots, x_{n}\right] /\left(x_{1} x_{2}-\sum_{i=3}^{n} x_{i}\right)$. Therefore in order to prove the unique factorization in the ring $K\left[x_{1}, \cdots, x_{n}\right] /\left(\sum x_{i}^{2}\right)(n \geqq 5)$, it will be sufficient to prove the following

[^0]Theorem 2. Let K be a field and let x_{1}, \cdots, x_{n} be indeterminates. Let \mathfrak{a} be a homogeneous ideal of $K\left[x_{1}, \cdots, x_{n}\right]$. If there exists a field L containing K such that $L\left[x_{1}, \cdots, x_{n}\right] /(\mathfrak{a})$ is a unique factorization ring, then $K\left[x_{1}, \cdots, x_{n}\right] / \mathfrak{a}$ is also a unique factorization ring.

Proof. Let \mathfrak{p} be a prime ideal of rank 1 in $K\left[x_{1}, \cdots, x_{n}\right] / \mathfrak{a}$. Then $\mathfrak{p} L\left[x_{1}, \cdots, x_{n}\right] /(\mathfrak{a})$ has no imbedded prime divisor and is purely of rank 1 , hence it is a principal ideal. Let $\sum_{i=0}^{m} p_{i} a_{i}$ be a generator of $\mathfrak{p} L\left[x_{1}, \cdots, x_{n}\right] /(\mathfrak{a})$, where $p_{i} \in \mathfrak{p}$ and a_{0}, \cdots, a_{m} are linearly independent over K. Let f_{i} be the element such that $p_{i}=\left(\sum p_{j} a_{j}\right) f_{i}$. Since \mathfrak{a} is homogeneous, $\operatorname{deg} p_{i}=\operatorname{deg}\left(\sum p_{j} a_{j}\right)+\operatorname{deg} f_{i}$. Since a_{0}, \cdots, a_{m} are linearly independent over K, $\operatorname{deg}\left(\sum p_{j} a_{j}\right) \geqq \max \left(\operatorname{deg} p_{j}\right)$. Therefore $\operatorname{deg} f_{i}=0$, i. e., $f_{i} \in L$. Therefore $p_{i} \mid p_{j} \in L$ for every pair (i, j). Hence $p_{i} \mid p_{j} \in L$ and p_{0} generates $\mathfrak{p} L\left[x_{1}, \cdots, x_{n}\right] /(\mathfrak{a})$. It follows that \mathfrak{p} is generated by p_{0}.

Remark. We have proved here that if $\mathfrak{p l}\left[x_{1}, \cdots, x_{n}\right] /(\mathfrak{a})$ is principal, then \mathfrak{p} is principal, without assuming that \mathfrak{p} is prime or that $L\left[x_{1}, \cdots, x_{n}\right] /(\mathfrak{a})$ is a unique factorization ring (but assumed that $L\left[x_{1}, \cdots, x_{n}\right] /(\mathfrak{a})$ is an integral domain).

By the way we shall give a remark that Lemma 1 stated above can be generalized as follows (by a similar proof):

Lemma 2. Let S be a multiplicatively closed subset of a Noetherian integral domain \mathfrak{o}. If every element of S is the product of a finite number of prime elements (=generators of principal prime ideals) and if \mathfrak{o}_{S} is a unique factorization ring, then \mathfrak{v} is also a unique factorization ring.

If we apply the above Lemma 2 then Theorem 2 can be generalized as follows:

Let K be a Noetherian integral domain and let x_{1}, \cdots, x_{n} be indeterminates. Let \mathfrak{a} be a homogeneous prime ideal in $K\left[x_{1}, \cdots, x_{n}\right]$ and let L be a field containing K. Set $\mathfrak{v}=K\left[x_{1}, \cdots, x_{n}\right] / \mathfrak{a}$ and $\mathfrak{v}^{\prime}=L\left[x_{1}, \cdots, x_{n}\right] /(\mathfrak{a})$. If every prime ideal \mathfrak{p} of rank 1 in \mathfrak{o} containing elements of K is principal and if \mathfrak{v}^{\prime} is a unique factorization ring, then \mathfrak{v} is also a unique factorization ring.

We shall give another remark that the assumption that \mathfrak{a} is homogeneous in Theorem 2 is important.

For example, let K be the field of real numbers and let C be the field of complex numbers. Set $\mathfrak{v}=K[x, y] /\left(y^{2}+x^{2}-x\right), \mathfrak{v}^{\prime}=C[x, y] /\left(y^{2}+x^{2}\right.$ $-x$). Then
\mathfrak{o}^{\prime} is a unique factorization ring. But \mathfrak{v} is not a unique factorization"ring.

Proof. Set $x^{\prime}=x+\sqrt{-1} y, \quad y^{\prime}=x-\sqrt{-1} y$. Then $\mathfrak{o}^{\prime}=C\left[x^{\prime}, y^{\prime}\right] /$ ($2 x^{\prime} y^{\prime}-x^{\prime}-y^{\prime}$). Let \mathfrak{p}^{\prime} be a maximal ideal of \mathfrak{o}^{\prime}. Then there exists a $c \in C$ such that $x^{\prime}-c \in \mathfrak{p}^{\prime} . \mathfrak{o}^{\prime} /\left(x^{\prime}-c\right)=L\left[y^{\prime}\right] /\left((2 c-1) y^{\prime}-c\right)$, which shows that \mathfrak{p}^{\prime} is generated by $x^{\prime}-c$. Thus \mathfrak{p}^{\prime} is a unique factorization ring. Next we show that \mathfrak{o} is not a unique factorization ring. (This is obvious if we make use of geometric intuition; for, $x^{2}+y^{2}=x$ defines a circle going through the origin. If a curve goes through the origin and if it intersects with the circle transversally, then there must be another common point.) The ideal $\mathfrak{p}=x \mathfrak{0}+y \mathfrak{v}$ is a prime ideal of rank 1. We shall show that \mathfrak{p} is not principal. Assume the contrary. Then $\mathfrak{p}=f_{0}$ with an $f \in \mathfrak{o}$. Every element of \mathfrak{v} is expressed as $f_{1}(x)+$ $f_{2}(x) y$ and therefore we assume that $f=f_{1}^{\prime}+f_{2} y\left(f_{1}^{\prime}, f_{2} \in K[x]\right)$. Since $f \in \mathfrak{p}$, $y \in \mathfrak{p}$ we see that $f_{1}^{\prime} \in \mathfrak{p}$ and therefore $f_{1}^{\prime}=f_{1} x$ with $f_{1} \in K[x]$. Let v be a valuation whose valuation ring is \mathfrak{o}_{p}. Then $v(y)$ may be assumed to be 1. Then $v(x)=2$. Then $v(f)=1$ and $f_{2}(0) \neq 0$. Since $x \in \mathfrak{p}$, there must be a relation such that

$$
x=\left(f_{1} x+f_{2} y\right)(h+k y) \quad(h, k \in K[x]) .
$$

Then $x=f_{1} h x+k f_{2} x(1-x), h f_{2}+k f_{1} x=0$ because $1, y$ are linearly independent over $K[x]$. We have

$$
\begin{equation*}
1=h f_{1}+(1-x) k f_{2} \tag{1}
\end{equation*}
$$

Therefore f_{1} and f_{2} have no common factors and there exists $g \in K[x]$ such that

$$
h=g f_{1} x, \quad k=-g f_{2}
$$

(because $h f_{2}=-k x f_{1}$ and $f_{2}(0) \neq 0$.)
Therefore (1) shows that

$$
\begin{equation*}
1=g\left(f_{1}^{2} x+(x-1) f_{2}^{2}\right) \tag{2}
\end{equation*}
$$

Therefore g must be a non-zero element of K.
Setting $x=0$, we have from (2) that
$1=-g f_{2}(0)^{2}$ and therefore g is a negative number.
Setting $x=1$, we have from (2) that
$1=g f_{1}(0)^{2}$ and therefore g is a positive number.
Thus we have a contradiction and \mathfrak{p} cannot be a principal ideal.
Department of Mathematics
Kyoto University.

[^0]: *) See, for example, van der Waerden, Einführung in die algebraische Geometrie, Berlin, 1939.

