A remark on the unique factorization theorem.

By Masayoshi NAGATA

(Received July 11, 1956)

It is well known that the ring $K[x_1, x_2, \dots, x_n]/(\sum_{i=1}^n x_i^2)$ is a unique factorization ring if K is a field of characteristic different from 2 and if $n \ge 5^{*}$. But it seems to the writer that the known proofs are not so simple. Theorems 1 and 2 in the present note cover the fact and our proof is simpler than the known proofs.

LEMMA 1. Let x be a non-zero element of a Noetherian integral domain \mathfrak{o} . If x \mathfrak{o} is a prime ideal and if $\mathfrak{o}[1/x]$ is a unique factorization ring, then \mathfrak{o} is also a unique factorization ring.

PROOF. We have only to show that every prime ideal \mathfrak{p} of rank 1 in \mathfrak{o} is principal. If $x \in \mathfrak{p}$, then $\mathfrak{p} = x\mathfrak{o}$ and we assume that $x \in \mathfrak{p}$. Let f be an element of \mathfrak{p} such that $f\mathfrak{o}[1/x] = \mathfrak{p}\mathfrak{o}[1/x]$. Since $x \in \mathfrak{p}$, we may assume that $f \in x\mathfrak{o}$. Let p be an element of \mathfrak{p} . Let r be the smallest integer such that $x^r p \in f\mathfrak{o}$. If r is positive, then the element $y \in \mathfrak{o}$ such that $x^r p = fy$ must be in $x\mathfrak{o}$ (because $x\mathfrak{o}$ is a prime ideal) and $x^{r-1}p \in f\mathfrak{o}$, which is a contradiction. Thus we have $p \in f\mathfrak{o}$ and $\mathfrak{p} = f\mathfrak{o}$, which proves the assertion.

THEOREM 1. Let K be a Noetherian unique factorization ring and let x_1, \dots, x_n be indeterminates. If g_0, g_1, \dots, g_r are in $K[x_3, \dots, x_n]$ and if g_0 is irreducible, then the ring $\mathfrak{o} = K[x_1, \dots, x_n]/(x_1^3 x_2 - \sum_{i=0}^r g_i x_1^i)$ is a unique factorization ring.

PROOF. $o/x_1 o = K[x_2, \dots, x_n]/(g_0)$ and g_0 is irreducible, which shows that $x_1 o$ is a prime ideal. $o[1/x_1] = K[x_1, 1/x_1, x_3, x_4, \dots, x_n]$, which is a ring of quotients of the polynomial ring $K[x_1, x_3, \dots, x_n]$ and is a unique factorization ring. Thus o is a unique factorization ring by Lemma 1.

If a field K is not of characteristic 2 and if $\sqrt{-1} \in K$, then $K[x_1, \dots, x_n]/(\sum x_i^3) \cong K[x_1, \dots, x_n]/(x_1 x_2 - \sum_{i=3}^n x_i^3)$. Therefore in order to prove the unique factorization in the ring $K[x_1, \dots, x_n]/(\sum x_i^2)$ $(n \ge 5)$, it will be sufficient to prove the following

^{*)} See, for example, van der Waerden, Einführung in die algebraische Geometrie, Berlin, 1939.

M. NAGATA

THEOREM 2. Let K be a field and let x_1, \dots, x_n be indeterminates. Let a be a homogeneous ideal of $K[x_1, \dots, x_n]$. If there exists a field L containing K such that $L[x_1, \dots, x_n]/(a)$ is a unique factorization ring, then $K[x_1, \dots, x_n]/a$ is also a unique factorization ring.

PROOF. Let \mathfrak{p} be a prime ideal of rank 1 in $K[x_1, \dots, x_n]/\mathfrak{a}$. Then $\mathfrak{p}L[x_1, \dots, x_n]/(\mathfrak{a})$ has no imbedded prime divisor and is purely of rank 1, hence it is a principal ideal. Let $\sum_{i=0}^{m} p_i a_i$ be a generator of $\mathfrak{p}L[x_1, \dots, x_n]/(\mathfrak{a})$, where $p_i \in \mathfrak{p}$ and a_0, \dots, a_m are linearly independent over K. Let f_i be the element such that $p_i = (\sum p_j a_j)f_i$. Since \mathfrak{a} is homogeneous, deg $p_i = \deg(\sum p_j a_j) + \deg f_i$. Since a_0, \dots, a_m are linearly independent over K, deg $(\sum p_j a_j) \geq \max(\deg p_j)$. Therefore deg $f_i = 0$, i.e., $f_i \in L$. Therefore $p_i/p_j \in L$ for every pair (i, j). Hence $p_i/p_j \in L$ and p_0 generates $\mathfrak{p}L[x_1, \dots, x_n]/(\mathfrak{a})$. It follows that \mathfrak{p} is generated by p_0 .

REMARK. We have proved here that if $\mathfrak{p}L[x_1,\dots,x_n]/(\mathfrak{a})$ is principal, then \mathfrak{p} is principal, without assuming that \mathfrak{p} is prime or that $L[x_1,\dots,x_n]/(\mathfrak{a})$ is a unique factorization ring (but assumed that $L[x_1,\dots,x_n]/(\mathfrak{a})$ is an integral domain).

By the way we shall give a remark that Lemma 1 stated above can be generalized as follows (by a similar proof):

LEMMA 2. Let S be a multiplicatively closed subset of a Noetherian integral domain \mathfrak{o} . If every element of S is the product of a finite number of prime elements (=generators of principal prime ideals) and if \mathfrak{o}_S is a unique factorization ring, then \mathfrak{o} is also a unique factorization ring.

If we apply the above Lemma 2 then Theorem 2 can be generalized as follows:

Let K be a Noetherian integral domain and let x_1, \dots, x_n be indeterminates. Let α be a homogeneous prime ideal in $K[x_1, \dots, x_n]$ and let L be a field containing K. Set $\circ = K[x_1, \dots, x_n]/\alpha$ and $\circ' = L[x_1, \dots, x_n]/(\alpha)$. If every prime ideal \circ of rank 1 in \circ containing elements of K is principal and if \circ' is a unique factorization ring, then \circ is also a unique factorization ring.

We shall give another remark that the assumption that \mathfrak{a} is homogeneous in Theorem 2 is important.

For example, let K be the field of real numbers and let C be the field of complex numbers. Set $o = K[x, y]/(y^2 + x^2 - x)$, $o' = C[x, y]/(y^2 + x^2 - x)$. Then

o' is a unique factorization ring. But o is not a unique factorization ring.

Set $x' = x + \sqrt{-1} y$, $y' = x - \sqrt{-1} y$. PROOF. Then v' = C[x', y']/(2x'y'-x'-y'). Let p' be a maximal ideal of o'. Then there exists a $c \in C$ such that $x' - c \in \mathfrak{p}'$. $\mathfrak{o}'/(x'-c) = L[y']/((2c-1)y'-c)$, which shows that \mathfrak{p}' is generated by x'-c. Thus o' is a unique factorization ring. Next we show that v is not a unique factorization ring. (This is obvious if we make use of geometric intuition; for, $x^2 + y^2 = x$ defines a circle going through the origin. If a curve goes through the origin and if it intersects with the circle transversally, then there must be another common point.) The ideal $\mathfrak{p} = x\mathfrak{o} + y\mathfrak{o}$ is a prime ideal of rank 1. We shall show that \mathfrak{p} is not principal. Assume the contrary. Then $\mathfrak{p} = f\mathfrak{o}$ with an $f \in \mathfrak{o}$. Every element of \mathfrak{o} is expressed as $f_1(x) + \mathfrak{o}$ $f_2(x)y$ and therefore we assume that $f=f'_1+f_2y$ ($f'_1, f_2 \in K[x]$). Since $f \in \mathfrak{p}$, $y \in \mathfrak{p}$ we see that $f'_1 \in \mathfrak{p}$ and therefore $f'_1 = f_1 x$ with $f_1 \in K[x]$. Let v be a valuation whose valuation ring is o_{y} . Then v(y) may be assumed to be 1. Then v(x)=2. Then v(f)=1 and $f_2(0) \neq 0$. Since $x \in \mathfrak{p}$, there must be a relation such that

$$x = (f_1 x + f_2 y) (h + ky) (h, k \in K[x]).$$

Then $x=f_1hx+kf_2x(1-x)$, $hf_2+kf_1x=0$ because 1, y are linearly independent over K[x]. We have

(1)
$$1 = hf_1 + (1-x)kf_2$$

Therefore f_1 and f_2 have no common factors and there exists $g \in K[x]$ such that

 $h=gf_1x$, $k=-gf_2$

(because $hf_2 = -kxf_1$ and $f_2(0) \neq 0$.) Therefore (1) shows that

(2)
$$1 = g(f_1^2 x + (x-1)f_2^2)$$

Therefore g must be a non-zero element of K. Setting x=0, we have from (2) that

 $1 = -gf_2(0)^2$ and therefore g is a negative number.

Setting x=1, we have from (2) that

 $1 = gf_1(0)^2$ and therefore g is a positive number.

Thus we have a contradiction and p cannot be a principal ideal.

Department of Mathematics Kyoto University.