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Minimal complexs of fibre spaces.

By Tokusi NAKAMURA

(Received Nov. 10, 1956)

In this note we shall give the algebraic. description of several
fibre spaces introduced by H. Cartan and J.P. Serre. Our general
idea may be characterized as follows. Let (E,p, B, F') be a fibre space
in the sense of Serre, and let its homotopy exact sequence be as fol-
lows

0 0 0 0
el e
N\ 7N
= 741(B)=7, (F)—— 7, (E)—n,(B)—>r, (F)—
NS N/
P,E) P,(B)
7N 7N
0 0 0 0

If we denote the minimal complex of E,B and F with K(E),
K(B) and K(F). Then we have an expression of the form

entl B+l
K(F) --xKP,E),n) xKP,/F),nxK®P, (E),n—1)x--
MK(E)~ xc= Xurrt  frrl o xentt gntl X X e

KB) --xKP,E),n+1)xKP,(B), n)xKP, (E),n) X--
knte en+l

where K(z,n) denotes the Eilenberg-McLane complex and the meanings
of notations w*!, c»*, kr+!, etc. are to be explained later (cf. §3).

K(F)>2K(B) may be considered as a fibre bundle with the fibre

kn+2 en+l1
K(B)E XK(Pn(E)) n+1) XK(Pn(B)’ n) X K(Pn——l(E)y n) Xoeen
over the base
entl Zn+1

KF)= - xKPE),n) xKP,F),n)xK®P, (E)n—1)x--
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but it may be also decomposed vertically at an arbitrary place, i.e.
it may be considered e. g. as a fibre bundle with fibre

K(P,(E), n)
>< un'l-l
K(P,(E), n+1)
over the base
K(P,(F), n) inI?(Pn_l(E), B—T1) X eers
X pntl gntt X un

K(P,B),n)xK(P,_(E),n) X«

These fibre bundle structures give rise to corresponding spectral
sequences (cf. Proposition 2.9), by means of which we can reproduce
among other things the result of Cartan-Serre [2] The expansion
(*) is constructed from three kinds of ¢ products”, on which we have
Propositions 2.2, 2.3 and 2.4 respectively which in turn are direct
consequences of [Proposition 2.1. This last Proposition is the same as
Théoréme 1 in Exposé 21 in Séminaire de H. Cartan 1955. We had
access to the mimeographed note of this Séninaire after we had first
written up the bulk of this paper. We notice that there are not a
few overlapping parts between our paper and this seminar note, but
we allow ourselves to publish this paper in original form for the
sake of completenese. Throughout this paper, we assume for sim-
plicity that the fundamental groups of all the spaces to be considered
operate trivially on the homotopy groups. The auther wishes to
express his thanks to Prof. Iyanaga and also.to Mr. N. Yoneda, Mr.
T. Yamanosita and Mr. Akio Hattori for their valuable suggestions
during the preparation of this paper.

1. Preliminaries.

In this paper we use the following terminologies due to S. Eilen-
berg and S. MacLane. A complete semi-simplicial complex K—abbre-
viated as c.s.s.c. in the sequel—is an aggregate of g-th chain groups
C,/K)(g=0), i-th face operators F; and i-th degeneracy operators D,
with the following properties

i) C/K) is a free abelian group with generators called g-dimen-
sional cells
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if) We have F;: C(K)—C,_(K) and D;: C(K)—C,,(K). F(0=<
1< q) maps each g-cell into a (g—1)-cell (which is a face of the origi-
nal g-cell) D(0<i<q) maps each g-cell into a (g-+1)-cell (of which
the original g-cell is a face). The following relations are satisfied;

F,F;=F; F; 1<y
D,D;=D,,.D, 1<y
F.D,=D, F; 1<<j
F.D,=F.D, ,=id.

F.D,=DF; i—1>j

An F-D map f of a c.s.s.c. K into another c.s.s.c. L is an
aggregate of homomorphisms f, ; C (K)—C (L) satisfying F;f =fF;
and D;f,=f,D;(0=<:<q) and transforming g-cells into g-cells.

ExamMpLE 1. We denote by 4(p) the c.s.s.c. whose g-cells are
non-decreasing subsequences a={a, a, -, a,} of 4,={0,1,-.,p} (p=0)
and F, D, are given as follows Fya,--,a,)=(@y, @y, a,) and Da,
sory @) =(@pye+ey @y Ajyr++y @)  The mapping i—a,(0<¢=¢q) induces in an
obvious way an F-D map from 4(q) into 4(p) which will be denoted
by a&. .

EXAMPLE 2. If o is any g-cell in a c.s.s.c. K, then we define an
F-D map 6 of 4(q) into K as the one satisfying 6(a)=(6.&) (0,1,--+,7)
for any r-cell a of 4(q). & is called the characteristic map associated
with o.

The boundary operator 3,: C(K)—C,_(K) are defined by 9,=

zq}(—l)"Fi. Notions such as g-cycles, Z, g-cochains, (7 and g-cocycles,
2=0

Z1, ete. are defined accordingly.
Let ¢ be an arbitrary g-cell in a c.s.s.c. K, then we define the
non-degeneracy of o as the minimum of dimensions of cells p for which

we have a relation aszl--'qu_p.o,q>v,>--->vq_p20. We call o

degenerate if the non-degeneracy of ¢ is smaller than the dimension
of 0. All the degenerate cells of K form a subcomplex called the
degenerate subcomplex of K and denoted by D(K). The relative com-
plex K/D(K) is called the normalized complex of K and is denoted
by Ky.
Now, let = denote an abelian group and » be an integer >0.
The Eilenberg-MacLane complex K(z,#n) is a c. s.s. c. defined by
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i) C,(K(r, n)) (which will be abbreviated as K (=, #) in the sequel)
is a free agelian groug whose generators are all cocycleso &= Z7(4(q) y; 7)

i) Fo=oe, where : (0, g—1)—(0y--, s, q)

D,U:G??,- where N+ (0?"" Q+1)_>(O,"', i) i}"" Q)

For two g-cells o,,0, in K(r, n) i.e. for o, 0,&2Z"(4(q)y; 7), 0, +0,
is defined as an element of Z#(4(q)y; 7). Furthermore we define a
g-cell 1, by 0&Z7(4(q)y; =). Then Kz, n) has a ring structure with
unit 1, and with properties F(o,+0,) =F0,+Fi0, and D,(6,+0,)=Do,+ D p,.
This is called the R-complex structure of K(z,n) (see [6]). (In this
paper the product notation instead of the additive notation sometimes
will be used also in C?(4(q)y; ) when no confusion is likely to occur.)

The suspension operator S: K,_,(z, n)—K (7, n+1) is defined by the
formula

. . 0(i1“1;"’; in+1~1) O:io<i1<"'<in+1_g_q
(SU) (zo""’ Zn+1) = . . .
0<e, <, <P, =¢
where o= K, ,(r,n) and So< K, (r,n+1) are identified with corre-
sponding elements in Z7(4(g—1)y; =) and Z7*'(4(q)y; =) respectively.
Now we can easily prove that the map
¥ Ky (z, ) QK (=, n‘i‘l)"Kq(”, n+1)

defined by

Y(0,.:Q8)=So,,+D§  for &K, (m,n+1)

gives an isomorphism between K, (=, n)QK, ,(z,n+1) and K (7, n+1).
If we denote (o, ,@%) by <<o,_,, 0>, then by repetition of ! we
obtain the isomorphism

Kq(”’ n+1)2K —1(m, n)®Kq—2(7r7 n)@ . -®K0(7r, n).

This isomorphism of K (z,7-+1) onto K, (7, n)&)---QK,(r, n) will
be denoted by w. We shall write w™'(0,,Q- - ®0,) by <o, yy:++, 7>,
Expansion of every element of in the form of <<o, -+, 0,> will be
called the W-decomposition of the element.

Let G be an arbitrary abelian group. The #-th cochain group
C(K(z,n); G) and cocycle group Z’(K(z,n); G) of the Kilenberg-
MacLane complex K(z,n) with the coefficient group G are denoted by
Cr(z,n; G), Z"(z, n; G) respectively.

Let L be a c.s.s.c. and k**' be an element of Z#*(Ly;z). Then
the complex K(L, k"*!, =) is defined as follows. Let ¢ be any g-cell of
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L and 6 be the characteristic map of 4(q) into L corresponding to o.
Now we set for simplicity Fk#t'(o)=¢%%"*'< Z"*(4(q);x). Then K(L,
k**',z) is the c.s.s.c. whose g-cells are by all the pairs (v,0) of
v=C"(4(q)y; 7) and o = L, satisfying dv—Fk**'(0)=0. Now we define
Fo=ve;, Fy(v, 0)=(F, Fio) and Dp=vz, D(v, 0)=(Dp, D).

Then we can define recursively K(z,d, k=%, n,d, -7, ,d,_,
i, w,,d,) by K(K(z,d,'kR®"", my,dy--, 7, ,d, ), 'kin*, 7)) for
given abelian groups =, 7., z, and k%' <= 24 (K(z, d,, k", x,, d,,
vy iy &)y ) 1=2,8,---,m.  When a infinite sequence of abelian
groups =, m,-++, and a corresponding sequence of 'k%*! Ifdtl... gre
given, then the direct limit of K(r,d, 'k%*, n, d,---, 7, d,) is denoted
by K(z,d, k%", d,---). If d;=i we denote K(x,1, 'k’ x, 2,--) by
K,k =,--) and similar abbreviation will be used sometimes in the
sequel e.g. K(n, &, -, w,), K(z,,d",z,) etc. As well known
these complexes can be determined uniquely within isomorphism by
7;, d; and the cohomology classes of —k4*' (-2, 3,.--).

As shown by Eilenberg or Postnikov a minimal complex
of the space with the i-th homotopy group =, and (¢—1)-th Postnikov’s
invariant k! is isomorphic to K(r,,k®, m,e-).

In the sequel we consider always sequences =, m,--- and &’ k...
as given once for all and denote K(z, &’ x,---) by K and K(=, k*, x,,

., m,) by K(#). These notations will be used also the complexes of
type K(z, B 7w,y k® wy+).  If m;=0,iFm,n(m<mn) it can be verified
that K(";)22K(x,,m) and K~K(z,, k**', z,), where k**'<Zn+(K("5") s
z,) is identified with the corresponding element in Z#*!(z,,m ;=) in
terms of above isomorphism.

2. Representation of minimal complexes
by means of K(r, n)

Let L be a c.s.s.c. and k»*' is a cocycle in Z#*(Ly;=). Then
we construct a complex K=K(L, k**',z) as before and its g-cells are
all pairs (v, o) of

ve C(4(@)y; ™)
and o< L, satisfying the coboundary relation

v —Fkn+i(g) =0 1)
Clearly the g-simplex 4(q) is acyclic
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$iEose++3 8,) = (0, 2gye+, 2,) 0<i<gq
defines a chain deformation s,: C,(4(q)) — C,..(4(q)) satisfying
083+ 8,0 =1d — ¢
where id=identity, e=augmentation and »=inverse of ¢ (cf. Ex-
posé 2) and, the dual of s;=s*: C*(4(q)y)—C"(4(q)y) satisfies
%0 -+ ost =id — 'yt
Since
Ostkn+!(g) = 0st6thr+! =5tkn ! — stk =kt (o)
the standard q-cell (s*k"*'(0), 0) & K, furthermore it is apparent that
0(v —stkr*(06)) =0 (2)
or equivalently
r=v~sk"*(0) C ZM(4(@)y; ™) (2')

If we identify each r& Z”(4(q)y; =) with the corresponding gener-
ator of K (r,n) we have the following isomorphism"

¢t K, o2 K (m, n)QL, (3)

defined by ¢(v, 0)=t®o. This suggests us that K has a fibre bundle
structure with the fibre complex K(r,#) over the base complex L.
In fact we have

PrOPOSITION 2.1.

kn+1
K(L, k**', )2 K(m, 1) X L
bn+l
where K(z,n)xL is. a c.s.s.c. with the q-dimensional generalors

txXo(=1Q0), 0 and t being g-cells in L and K(z,n) respectively, and
F-D operators are defined as follows

Fy(txo)=kt_(0) FyrxXFyo

with kn+i(o)=<<kr_,(0), k2_y(0), -+, k(o) >
F(txo)=FzxFpo 0<i<gq
Dj(txo)=D;rxX Do

PrROOF. If we identify r,0 ete. with the corresponding cells in
K, (z,n), L, etc., then the formula (2’) is replaced by

1) Ky(w,n) and L, denote C,(K(r, 7)) and C,;(L) respectively.
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r=v.stkn*!(0)! (2")

making use of the R-complex notation (cf. §1). Assume now that (v, o)
corresponds to rXxo by the isomorphism ¢ in (3) then it is clear that
Fo and Dp correspond to Fu.s'k#*'(F0)"' X Fo and Dy.s*k"*(D,0)"!
x D,o respectively (0=<i<q). This permits us to define F-D operators
in the free group zj()Kq(n, n)QL, by formulas

q=

F(txo)=Fu:stkn*'(F0)'x Fo
(4)
Di(f X 0') :DiU . s#k’”'l(DiO')“l X D,’U

kn+1
where ¢(v,0)=7xo0, and we denote by K(r,n)x L the complex thus ob-

tained. Then the isomorphism ¢ in (3) becomes a F-D isomorphism

knti

t: Ko K(myn) x L
Next, operating F; on both side of (2), we have
Fir=Fup.Fstkr(o)"! ®)

On the other hand we know that po=Sp,_ D F,0 for any p=<p, ,
p>c K (m,n+1), so that we have the following formulas

Fsto=Fs'Sp, «FS*D Fo=p, +s*F (6,)
since Fis*S=id and Fs*D,=s*. From (5) and (6,) we obtain
Foe=Fup -kt (o) «stF k(o) ' =kt_ (o)™« Fo« stk (F o)
or equivalently
kr_(0)Fyt X Fio=Fp k" (F o)™ X Fio =F(t X 0)
In case F;(rxo)(0<<i<gq) replacing (6,) by
| Fs'p=sFyp 6)
we have
Fir=Fu.stFk (o) =Fp stk (F0)
and consequently
Fiox Fo=F(rxoa).
Similarly we have
D;tx D,6=D,(tr X o) 0<i<gq
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From this proposition follows immediately
PROPOSITION 2.2. We have

kn+1

K(=,, k**!, n,) 2 K(x,, n) x K(x,,, m)

Let us denote by #**' the fundamental cocycle in Kz, #-+1) so
that u"*'(<<o,.,,0,_5+, 0,>>) can be identified with <<o,_,, 0, 5+ 0,>
(The notation #»*' for the fundamental cocycle of K(z,#n-+1) will be
used throughout this paper). Then we have

PropPOSITION 2.8. The c.s.s.c.

ynt+l

K(r, un*', r) 2 K(r, n) X K(7, n+1)
with F-D operators
Fiy(0,X <<O4myy Oggyrry 0,>>) =0, Flo, X F <0, 1,0, 4y 0y >
=0, Fo, X <0, g5y 0>
Fy0,X <0415 0gmgyrsey 0,>) =F,0,% Fi<a;1_1, Ogmgyt*y Og = 0<i<gq
=Fi0, X <F;_ 10, 130y Fi0, 41
Foo'q_ioo'q_‘._l,..., 0, >
Di(0,X <<0yoyy 0gany s+ 0,>>)=D;0, X D; <01, 0, 4500+, 0y > 0<i<q
=D;0, X <D 1041y DOgiy Ofjogyrssy 0y
is acyclic and its chain deformation D is given as follows
D0, X <0415 Oggyreey 0,=>) =1 1 X <0y Og_pyreey 0,
PROPOSITION 2.4. Let

o
0O—>a—>z—>a"—>0

be an exact sequence of abelian groups and k**'Zn*(x'',n;n') the
(n—1)-fold suspension of the Eilenberg invariant with the opposite sign
(cf. [38], I) of this sequence. Then we have
kn+1
Kz, n)2 K(=', n) x K(z'", n) .

PrROOF. Since the complex of the right-hand side is isomorphic
to K(K(='", n), k**', z’) by the Proposition 2.1., we have only to establish
an isomorphism between this complex and K(z,n). Let p be any g-
cell of K(r, n), o can be identified with an element of Z#(4(q)y; 7). On
the other hand, any g-cell of K(K(z', n), k**',z’) can be identified with
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a pair (v,0) of an element v of C*(4(g)y; =) and o= Z7(4(q)y; =)
satisfying ov—k"*'(c) =0 or equivalently (v, o) satisfying r=v—s'k"*!(0)
for some o= Z**'(4(q)y; 7"") and &= Z7(4(q)y; *').

Now let f be a map from =/ into = such that p.f=id and define
f7 the element of C*(z”,nm;z) by f(0):(@y: -, a,)=(*") (@y - a,)=
(fo)(@ay--+,a,) for 0<a,<<---<a,<¢q, Furthermore we define are
ZM(zyn; ") and prZ (7', n; ) by «a*=Hom(id, a)u", 5 =Hom(id, B)u"
or equivalently by «*(r)=Hom(id, ), p*(0)=Hom(id, f)p for &
ZMA(q)y; '), p=ZM(4(q) s ©). Notice that Hom(id, ) is a monomor-
phism from C#(4(q)y; =') into C*(4(q)y; 7).

Now put ¢=p8"(p), then o—f7(c) is clearly the Hom(id, a)-image
of an element v of C#(4(q);«’). The correspondence p—s(v, o) establishes
obviously the desired isomorphism. ‘

REMARK. For n=1, this proposition can be generalized with
slightly different form to the case of extension of non-abelian groups
and we can reproduce the theory of Eilenberg-MacLane [3] and
Hochshcild-Serre

PROPOSITION 2.5. Let

(04
0—>a > > '’ >0

be an exact sequence of abelian groups and
ar*'=Hom(id, q)yu** = Z**(«',n+1;x) i.e.
ar+l(o) =gtar+' =Hom(id, a)o & Z"*(4(q) y ; ©)
for o Z7*'(4(q)y; ')

then we have

antl

K(a", n)=2K(z, n) x K(z', n+-1)
PrROOF. See § 3.
PROPOSITION 2.6. Let

a
0—r—r—n"—>0

be an exact sequence of abelian groups and
pr»=Hom(id, B)u* — Z"(z,n; ='") i.e.
B*(0) =5*p" =Hom(id, f)o & Z"(4(q)n; =)
Jor o= Z7(4(q)y; )
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we have

K(=',n)=K(='",n—1) ﬁnK(n, n)

PROOF. See § 3.
un+1
COROLLARY 2.7. K(0, n)y~>~ K{(r, n) x K(r, n+1)
un+1

REMARK K(z,n) <X K(z,n-+1) was shown to be acyclic in the Pro-
position 2.2, Corollary 2. clarifies the meaning of this acyclicity.

PROPOSITION 2.8. Let L be any c.s.s.c. and k< Zn+(Ly, ).
Define a map

T(k*): L— K(r,n+1)

by T (k"*yo=kr*\ (o) for o=L. If o is a g-cell, k**'(0) is in Z"*(4(q)y;
m) by the definition and can be identified with a q-cell of K(r,n-+1).
Then

bn+t untl

td < T(k"*") : K(z, n) x L — K(z, n) X K(r, n+1)

kn+1
s @ F-D map. In other words k(z,n)x Lo2K(L,k"*',z) can be con-

un+l1
sideved as the fibve bundle induced from K(r,n)x K(z,n+1) by the map
T(kr+).
Proof is done by the straightforward computation.

bn+!

As shown in [Proposition 2.1., K(zx,n)xL has the fibre bundle

structure with the fibre K(r,#) over the base L. Now we introduce
n+l

a filtration in M= K(x, n)l§<L by subcomplexes F,(M) (0<p=oc0) of M
as follows a g-cell txo of M belongs to F, (M) if and only if the
non-degeneracy of ¢<"p. Then, denoting for brevity C(F,(M)) by A,
and C(M) by A,{A,} defines a filtration on the differential module
A and :

Co=A,Nd(A,.)  .C,=A,nd"(0)
B,=A,Nd(A,.)  .B,=A,NdA)

defines a spectral sequence ,E,=,C,/(,-,.C,U,_.B,).
PROPOSITION 2.9. Under these conventions we have

2Ep = Hp(L; H(z, n))
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PrOOF. Let p be any non-degenerate p-cell in L. Then we define
kn+1
a c.s.s.c. M, as an isomorphic copy of K(z,n) x 4(p). We shall
kn+1(

denote with the ¢, the isomorphic map of M, onto Kz, n) x 4(p),
(¢d < b)ot, is then an F-D map of M, into M. We put ¢,=(idxp)-i,:
M,—M. We can introduce a ﬁltratwn {A, (M)}, {Az,(xM)} on C(M)

and C(><M ) respectively just as the above ﬁltratlon {A,} on C(M).

Then We can see easily that
p=Xg,: ><M — M

induces an isomorphism
Dy - H(Ap( >p< Mp)/Ap—1( >§ Mp)) gH(Aﬁ/Ab—l)

bn+1

On the other hand k*+(¢) ~0 in 4(p) and we have M, K(z,n) X 4(p)
o K(z, n) x 4(p). Since H(Ap(XM)/Ap I(XM))_E H(A,M,))|A,_(M,))

and H(A,(M)/A,- (M, ))_H(n, n) by the theorem of Kinneth [7], we
obtain an isomorphism

Pp s 1Ep o2 H(z, n)®cp(LN)

Direct computation shows that the following diagram is commutative

1%
E, —>Hiz, m)QCyLy)
ldl lz’d@'a
Pp-1
1Ep—1'——>H(75: n) ®Cp—1(LN)
Hence we have the required result

E, o0 Hy(Ly, H(z,m)) a2 H(L, Hz, n)) .
kn+l
REMARK 1. It can be easily verified that K(r,n)xL is a DGA-
module over the DGA-algebra K(r,n) in the sense of Cartan [1].
2. Making use of the Propositions and 2.9., we can construct
the equivalence map between the ¢ W-construction” and the ¢ bar-
construction” (cf. [6], [1].



12 T. NakaMURA

3. Minimal complexes of loop space?

We shall define now the c.s.s.c. 2K for our complex K=K(z,
R, 7?-.)." QK is the direct limit of (2K)(?) which are defined succes-
sively together with the suspension operators S: (2K) (3),—K("§")g+:
successively as follows,

0) (2K) (})=K(r,, 0) and S coincides with the suspension operator
previously defined on K(=,, 0)

n—1) (2K)(*5°) and S: (2K) (*;9),—K(*;"),,, being determined, we
define the (#—1)-th group of (2K)(*;') to be z,, n-th invariant (wk)”
by the formulas

S(wk)"e =Fk"*'(So)
for o= (2K)("7%), and (2K)(*;") to be K((2K)("5?), (0k)", 7))

(wk)n .
K(r,, n—1) x (2K) (*;%). Furthermore S: (2K) (*;"),—K(?),., is defined
by
S(t % 6) =D (wk)"(c)*+ St X So
Thus we have

(wk)%+1 (wk)? (wk)?-1  (wk)?
K= ... X K(r,n—1) x K(x,.,n—2) X - x K(r,0)
for
B2 Bn+1 En k3
KE eee X K(n‘n, n) X K(ﬂ'n_l, n““l) X s X K(n'ly 1)

REMARK. It is proved without difficulty that 2K thus defined is
a minimal complex of 2K i.e. the loop space over K, if ;=0 and K
is realized by a topological space K. More generally if K is realized
by K and X has the universal covering space X, 2K has the minimal
complex

In+1 In—t 3

PK= -« X K(z,n— 1)><K(7cn_1,n 2) X -+ x Kz, 1)
where [”=(wk)") with the natural injection
v oK— 02K.

Notice that X has the minimal complex

2) cf. Remak 1. §3.
3) From the the following identity is almost trivial K(=z;, k3, 7a,++)
Ent2 o kn B3
Z e X K(mtyy ) X K(7wy—1, n—1) X -« X K(7y, 1).
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_ pone2 Jin+1 Bn R
K= ... x K(z,,n) X K(z,_,, n—1) X -+- X K(x,, 2)

where h"*'=Pk"*'9 with the natural injection
o:K—>K
and above /* coincides with (wh)".

Let K;; be given semi-simplicial complexes, then the matrix (K)
will denote a graded free module whose g¢-dimensional component ig
generated by all matrices (0;)), 0;; being g-cells in K;. We often make
use of c.s.s.c. whose chain groups are (K;). The F-D operators of
these c. s.s.c. will be indicated each time appropriately. The expres-
sion in Propositions 2.1, 2.2, 2.3, are examples of such complexes
for 1-rowed matrix.

Now we consider 2x2 matrix

(K(n,,, n—1) K, m—1>)

K(z,, n) K(z,,, m)
with the generic element
T o )
( T g

and introduce the following F-D operators, where Fk2(o)=<<k;;' (o),
«or, B2 (0) >, where o=<g,0>

) <kg;11—1(0)—1 *Tom B g1 F"E)

ho>!
_——
a1
Q!

T o ky_(o)Fz Fyo
T &\ (F7 Fgz
LD e
z g Fr Fg
7 s\ /D7 Dj
Di( )‘——( \) 0<i<gq
z g Dz Do/

The c. s. s.c. thus obtained will be denoted as

(wk)n
2K Kz, n—1) x K(z,,m—1)
XU = Xur X u”
K K(z,n) X K(”m: m)
bntl

u
The same complex will be denoted by QK xK. This complex has
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clearly the fibre bundle structure not only with the fibre 2K over
un
the base K but also with the fibre K(z,,n—1)x K(z

K(r

m?

.» 1) over the base

um
m—1) x K{(r,,, m). Hence we can introduce a filtration on this

u
complex just we have done on M=C(2KxK), in the Proposition 2.9.
and define a spectral sequence ,E,, ,E;,. And we have just as there

£, H (K, H2K))

B oo H (K(x,, m—1) % K(x,, m), HEK(z,, n—1) % Kz, )))
Since K(nm,mwl)z;mK(zrm, m) and K(rcn,n~1);t<nK(7rn, n) are acyclic we
see instantly that 2K imK is acyclic. Thus we have
PrROPOSITION 38.1. The c.s.s.c. 2K ?<K s acyclic.

u
REMARK 1. The chain deformation D for 2K x K is given by

D( T o ):( 1q+1 ’ 1q+1 )
z g Dkr*t <5, 0> <7, 1>, <6, 0>

2. To study the relationship between the W-construction and

U
2K x K in [Proposition 3.1, it is convenient to introduce the following
notation

<LTXG, tXo>=D k' <<5,0>""e <7, 1> X <7,0>

8. The invariant k7*' determines the operation of =, on 2K ;K
for m=1 and the multiplicative structure of 2K for m>1.

4. The following Propositions and Corollaries 8.2.—8.10 are all
proved by the same technique as the proof of [Proposition 3.1 by
introducing appropriate fibre bundle structures.

DEFINITION 3.2. Let us denote Kz, k? «, k®, x,,---) by K. Then
we define the c.s.s.c. K(,2%,) as follows

hntl  pm+3
K(, ) =K(r,, n) X - X K(my,.;, m+1) n=m+1>0

where hi(c) =ki(yo) and + is the natural injection
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Furthermore, in the case =,=0, we define the c.s.s.c. K'(,%,) as fol-
lows

(2K) (")
K(n1)= Xu

K(nn) n)

(wk)m  (wk)!
K(z,,m—1)x --- X K(m, 0)

= X um u'
K(”n’ n)X e XK(”mH: m+1) x K(n'my m)x .- XK(”p 1)
km+2 k2

Entl s Em+
PRroOPOSITION 38.3. The natural injection
| ¢ K(,n) — K'(,21,)
induces a chain equivalence and
K'(,)/(2K) () = K(7)

that is to say K'(,%,) has a fibve bundle structure with the fibre
(2K) (') over the base K(»). Consequently K(,”,) has the same homo-
logical structure as the fibre bundle with the fibve (2K)(™;') over the
base K(7).

Since 2(K(;2))=(2K) (";") and K(;1)) (1) =K(,4) (0=I=<m), we
have

COROLLARY 3.4.

K(a)EGn) Gty KGY Ga)|(2K) () =K(n)  0<I<m=<wn
COROLLARY 38.5.

K(mc-:l)L\—IK,(m:l)’ K,(m:-ol)/K(n'm7 m - 1) :K(;[) 0 ._g_ m
DEFINITION 3.6. We set

(2K) (*7")
(LK) (") = Xu

K(m;-/lrl)

(wk)n (@)m+2 (wk)m+t (ok)m (wk)?
Kz, m—1)x - xK(z,,,,, m)x K(z,, m—1)x . X K(,, 0)
= Xu" Xym!
Kz, n)x -+ X K(x,,.,, m+1)
hknt+l km+3

COROLLARY 8.7. We have



16 T. NakaMura

(LK) ("7 22 (KN (%)

(KGN (5 HI(2K) ("7 = K(,,%) 0<l<m=<n
COROLLARY 3.8.
(2K) (") 22 @Km(m) - 0Km(n ) [(2K) () = KTy m+1)  0<m

Define K™(m;') for general K just as (2K)"(7;!) for 2K, then we have
COROLLARY 3.9.

K)o Kty Koy )[K(p) =K, m+1)
COROLLARY 38.10. Let

O—n—or—>n"—>0

be an exact sequence of abelian groups, then we have
bn+l
K(z', n) x K(z", n)
K(z", n) o2 K~ (", n) = Xyt
K(#',n+1)
knt+i
K= (", n)[K(', n) x K(z", n) = K(x', n.+1)
and
K", n—1)
K(z',n)>=K_,(«',n)= X
K, n) x K(z'",n)
kn+l

bn+i

K.z, m)|K(=", n—1)=K(, n) x K(z",n)

Since
bn+1
K{(z, n)2K(«', n) x K(z'",n)

we can conclude that

i) K(z",n) has the same homological structure as a fibre bundle
with the fibre K(r, n) over the base K(',n+1),

iiy K(',n) has the same homological structure as a fibre bundle
with the fibre K(z'',n—1) over the base K(r, n).

REMARK 1. All above the Propositions can be considered as
special cases of a general proposition given below.

Let E be a fibre space in the sense of Serre [12] with the fibre
F over the base B and let the exact sequence of homotopy groups of
this fibre space be given as follows:
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0 0 0 0
pe{  pE|
7N 7N
—)zn+1(B)-)”n(F)___)nn(E)—)nn(B)-—)nn—I(F)'—)
NS NS
P(E) P,(B)

7N 7N
00 0 0 0

17

For any arcwise connected topological space X let K(X) denote the
minimal complex of X. Then K(B) and K(F') can be expressed in the

form
Ii”‘LZ _n+1
K(B)= eee X K(Pn(E): n+1) XK(R;(B)’ n);K(Pn—I(E% n) Xoeee
n+t En+l

K(F)= -+ xK(P/(E),n) XxK(P,/F),n)xK®P, (E),n—1)x-.

Now we define the c. s. s.c. denoted by

P
K(z,n) x K(',n)
|k X c X k|
K(#'",n") x K(=z*,n*)
k

where
ke Zm\(, ' ; n) |k Zr+ (', 0 ; )
EEZn'u—l(n*, n* ; n!l) kl EZn’+l(n.*’ n* ; nl)
K(”I, nl)
c=Z"( xk| ; n)
K(n*, n*)
satisfying c,_,(5,1,)=Fk,_,(3).
The F-D operator of this complex are given as follows
F( G G Co-1(0, 0)* | Ry () Fy T kly-i(0)-Fio
0 ) ( k, ,(9)F Fy )
Fi Fio
) =< ) 0<i<q
g Fr Fo
o

T =

o) e
3 o/ \Dz  Dg
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Then we have
PRrROPOSITION 8.12. Let E be a fibve space with the fibre F over
the base B. The situation being as above, we have

en+l FEn+l
K(F) -xKP,E\n <KP,F),n)xKP, (E),n—1)x -
K(E)z2 xc = Xuntt o frrt et ent! X u*
K(B) ---xK(P,/E),n+1)xK(P,(B),n)xK(~P,_(E),n) x--
Bn+2 en+1

Proof is performed by a straightforward method. We shall omitt
here the detail which is somewhat long and cumbersome.

Moreover we can prove

PrROPOSITION 8.18. If the bundle E is acyclic, then the fibre F has
the same singular homotopy type as the loop space 2B over the base B.

REMARK 2. In virtue of the above proposition we can introduce

a filtration of the K(F)xK(B) by the non-degeneracy of the K(B)-
component. The we obtain the spectral sequence {,E, } such that
E, , is isomorphic to H(B,H/(F)) and .E,, gives the filtration of
H,,,/(E). This spectral sequence is naturally embedded isomorphically
into the spectral sequence introduced by Serre [12].

REMARK 8. In this above proposition c¢**! may be considered as
generalizations of characteristic classes of fibre bundles.

REMARK 4. By the same method as in the Proposition 8.3. and
Corollary 8.11., we can reproduce the “ Cartan-Leray’s spectral sequ-

ence ” concerning the covering spaces of arcwise-connected spaces.
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