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Additive prime number theory in
an algebraic number field.

By Tikao TATUZAWA

(Received Nov. 15, 1955)

Thanks to the remarkable work of Vinogradov [7], we know that
every sufficiently large odd integer can be expressed as a sum of
three primes. Less attention has been paid to the problem of re-
presenting numbers in an algebraic number field as a sum of primes.
Rademacher [4] carried over the Hardy-Littlewood formula in the
rational case to a real quadratic number field on a certain hypothesis
concerning the distribution of the zeros of Hecke’s &(s,A) funcfions.

Let K be an algebraic number field of degree n with #», real
conjugates K® (l=1,2,..-,7,) and 7, pairs of conjugate complex con-
jugates Km KMt (m=y +1, 7, +2,-.-,7,+7,) so that », +2r»,=n. Let
a, b be positive and g,» be in K. For convenience, we use the
symbol ‘

allp||<b]|v]|
in the sense that
a|p@d|<b|v?| (t=1,2,---,m).

For example, ||¢||<b means |p®|<b. Let a be any principal ideal
in K. By the theory of units, there exist a positive constant ¢,
depending only on K and at least one v in K such that

1) a=@) and |[[¢||<c /' N@).

In what follows we fix this constant ¢,, We use a letter ¢ to denote
a positive constant depending only on K, not necessarily the same
each time it occurs. The symbol

Y=0(X)
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for positive X means that there exists ¢ satisfying
1Y|<cX

in the full domain under consideration. For example, the number of
v in (1) generating the same principal ideal a is O(1).

Let I and I be the integral domains consisting of all rational
integers and all algebraic integers in K respectively. An algebraic
integer in the field is called a prime when the principal ideal gene-
rated by it is a prime ideal. In Siegel considered the generalized
Waring problem in an algebraic number field. He constructed the
ring J, generated by m-th powers of all integers in the field. Using
the generalized circle method, he proved that all totally positive
integers in J, with sufficiently large norms are sums of (27! +n)mn +1
integral m-th powers of totally positive numbers. Moreover he
noticed that J, is an order in I, but not always equal to I, showing
some theorems and some examples. Modeled on his idea, we const-
ruct the I'-module J generated by all primes in K. By means of
Brun’s sieve method, Hecke’s prime ideal theorem, and Schnirelmann’s
density theorem, we will prove without any hypothesis that J is of
finite index in the additive group I and every element in J can be
expressed as at most ¢ sums of primes.

§1. On the number of representing integers
in K as a sum of two primes.

Let b, b,.--,b, be representatives from ideal classes of K. Then
any ideal a in K can be expressed in the form

a=(»)b,

for some v&K with (1) and b, Let B8, B, -, B3, be an ideal basis
Of Bl (l=1, 2,“‘, h). If we put a]-zyﬂl] (j:]., 2,"', n), then

a= (C_‘l’ ooy &)
and

() ”aj”:“:”BMISC{me cvV'Nb,<c{Na.
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Let & be in I with

(3) 1€ [|< e, ¥/ N(E&)
where
4) c,=6¢cr.

Let a=(«,, a,,-+, @) be an integral ideal in K and BcI. If we de-
note by P(a,&) the number of integers ¢ in K subject to the condi-
tions

¢=pg (mod. a), ||¢[l=cliCll, lIE—Ell=cllgll,

then P(a,¢) is the number of lattice points (x,, xz,-/--,xn‘) in the #»
dimensional euclidean space S which lie in the domain

|5, @9 4, oo 43, P4 B9] e, 5O,

®) 1%, D+, A+ %, @D +BD D | <L ¢, |E9P].

We change the variables as follows

Uy =2%, AP+ %, oD + e +x, D+ B,
=25, R() + 2, R(@P) +--- + 2, R(a?) + REB™)
U sy =%y (@ 70) 42, F(@f79) 2o 42, F(7) 4 F (B )

The domain (5) is now described by

PAEAICIE Ju,— P < ¢, |£@|
Ut Ul SCHEM P, (s, — REM)) 4 (28— SEmT))P Z 3 E ]2
Since

'-6(“1, Ugye++y un) — '_légl_Na
a(xu Xgy=**s xn) 272

where d is the discriminant of K, taking a basis of a as in (2), we
obtain - ~
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ot a
= ((errn 2" e du. du,,
,,,55, S,,,”,)e;/"N o

where L, L) are line segments with lengths

(2c,—1)[£D |+ 0@ Na)
and C,, C,, are common domains surrounded by two circles having
radii ¢,]¢™ |+ O Na) and central distances |¢£| so that with areas

2 Q3 -1 —1‘"“ ? m) |2 m
(2c, sin ~/1—M462 Je ) [£o |2 1 O(| £ | Na + ¥ Na)?) .
From (8), we can eaéily deduce

po- N0 1o ([ 40] 1),

This is a slight extention of Rademacher’s work [5]
Let p, p,ye-+, p, be prime ideals in K. We denote by P(a,¢;p,
P+, P,) the number of integers in K satisfying

£=B (mod.a), |[Eli=clICll, |IE-¢ll=c]iC]]

Z‘GEPS’ C-Eeg‘ps (S=1, 27”': k)'
If we define v,=2 if {Ep, and v,=1 if {cp, then

, P(a) C ;pu pz""’ pk)‘_—P(ar : ’ pn pz"": pk«l) —v, P(apk’ ; ) pu pz’“" pkal) .
By iteration, |

P(a,&; 9, poees p)=Pla, &) — 20 Uy P(aPe, £5 9,5 Doy ey D)

1=s1=k

=P(a, &) — 2 vsl P(Gbgl, &)+ Z vs; v, P(GPS,D 22 &3 Po Paseees Ps,—1) -

1=51=k 1=s9<s1=

Consequently, making use of Brun’s method and taking a=1, we get
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P(I, C ’ pn pz!"': pk)§P(I; é’) +§§(_1)q Z vsl Ugg"'vsqp(pgl Ps,,"'Psq; g) .

s1smTs,
where s,(¢g=1,2,---,2t) runs over
| 0<<s,, <TSyy <T-+-<T$, <5,
Sq=Kig—ns
for suitably chosen
M 0=k, <<k,_,<<---<<k <k,=E.

By the aid of (6), therefore, we obtain

51582,

®) PULE; Py b b= O(NOZ (- 17 33 0, 7,

+0 (N(C) = 1 2,

r==0

with the abbreviation y,=v /Np,.
Now we assume

Obviously

4 9
9 2w <1,
9 B < 7= 7

First we set k,=k. Next we choose &, in (7) such that

L < 11 a-v (r=1,2,,1),
5 k, <ssk,_,

(10) | |
T A—w)<- (r=1,2,,t-1).
kSs=k,_ 5

Denoting by T, the right hand side of the first inequality in (10)
and using Theorem 79 of [3], we obtain

2t .
2 (1)
g=0 sq<'

Sq =k[(g—1)/2]

Vs1 Vsa™* ”)'sq '

<5251
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Inserting this in (8), we get

A1) PUEive b9 =O( NOTIT,] +0 (Ney=»T1@k)).
For brevity we write
k 1
Q=11 (1~ |-

On account of (9) and (10),

ky 1\~ 1 .= 1 138 /7
(12) 1] (1“Np;)) ot 1L (I—Nps) =5V 117,

13 /)~ 1 1 1 \~
<o /H_é(l—vj) < (1--5) =01 t-1).

Let #(x) be the number of all prime ideals having norms not exceed-
ing x. It is well known that

(13) T(x)<c- %
log x
and
14 €~ (1__},_) €,
(14) log x NDE_S_x Np = log x

Now we take all prime ideals p satisfying 11 <Np<<y/N(&) as p,
Py P Where ¢, is decided later. By [13),

Np
15 < 7 (IVj _ s .
(15) S ( ps)<c log Z\rp <CN‘p.s

s

From and [(I5), with the help of the second inequality of [14),
we have

log 2k < € (1—1 )'.
g% <o 135

If follows from this that
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[l @k)<exp( <],

=0 Q
whereas, employing the first inequality, we have
1 1 -1 R
L 1 (1 —*—)) < log =/ N(§)
Q H=NP=C2/N() N; b

Hence, by suitably chosen c¢,, we obtain

(16) 1 @ky <N@)» .
On the other hand,
I s
=L (1= ) - ) =QL =)
1=Np=2/N()
opl- Bl o n

c 1
“log*Nie) & Na’
by the second inequality of [(I4). Inserting and in [11), we
get '

* . 2 I(C) 1
1 P 9 19 ey = -— —_— -
a8) P L5 ¥ P =0 log *N(&) § Na)

Let P() be the number of solutions of
19) E=A+p, |IMI=cllll,  ll#ll=ellgll
where N and p# are primes with
(20) M6V N, Ikl e NOY) .

If Nn) and N(p)>“//N() in [19), then neither A nor g is divided

by any prime ideal satisfying 11 <Np=<“y/N({). By [A8), the num-
ber of solutions in this case is
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N©) - 1
0 (log N©) & Na)
On the other hand, in the case of N(A) or N(p)<“)/N(), the num-
ber of solutions is
o N N)
(o) Ni =0 .~
=V N§Y) =0 | ZN@))
in virtue of and c,>1.

Collecting these results, we get
THEOREM 1. Let ¢ be an algebraic integer in K with

< e, V' NE©) -
Let P() be the number of solutions of
E=n+u,
where N and p are primes fulfilling the conditions
IMI<e, VN, ¢ gl lell<ec, VN, clit]l.
Then

—of N(C)F 1
P(;)—O 2N(é,‘) Cea NC!

§ 2. On the density of the set consisting of integers
in K represented by a sum of two primes.

From [Theorem 1, we obtain

N 1 1
NO= (N(Zy log ‘N(&) cw 'Na Cezb Nb)

zo(_w_y?m (E 1 51 ))
log*y N(czéy ¢a Na 5 Nb

2 1
Ol ey
log * yNaZ<y Na Nb N(;y
Nvsy Ce{ab}
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where {a,b} is the least common multiple of a and b, so that
vV NaNb<N{a,b}. Since

ol )= lyakn)
NO=y N{a, b} 1/ Na Nb
ce{ab}

we obtain

3
21 jo =o(~ y.) 2<y).
(21) o, PO=0(, 7 2=y
Now we consider the sets
1 2

L= (g )y =N

0

é)ny, M=, NV, A prime}

0

P
and

MZ{M:(‘GC:Ml')nygN(M)g (’36017”1 )ny’ el < e, ' Ny, w prime]

for 2.6"c»*Y<y. If we put

E=N+p,
then
=l +rll<c, NQ) + 7 N))
22) | <c (2 v+ L Vwy =iy
3¢, 3¢, 7!
and
(23) No<y.
It is easy to see
c’}“l VN < |

whence follows
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Ay L Lay o1 sy

6cy 2, 3cpt!

¥ N(w)
(24)

S IIM=N#I=1E]] .
By and (24),

- ; el = 61> vy <V N©

or

(25) ¢l <e, V' N(©)
by (4). Because of (24),

1 2 a4 1 g
———D *1/ R
4cn IRYIES 400 = e s, V7 = 66511/3' =gl

whence follows
(26) IMNI=c gl
by (4). Moreover, by (24),

1 a5

M‘”p.”g co So /Ny < 0. l/y—‘—*** vy <ligll

- 2 3 pntl
so that
(27) lell=c lIE]l.

We see that the conditions in are satisfied by [25), (26) and
(27). In view of [23), we can deduce that

(28) the number of (A +p: NEL, pcM} < ; P®).
NQ)=y
Let #r(x, H) be the number of principal prime ideals whose norms do
not exceed x. Then the left hand side of is greater than
0(77'(033’: H) —m(c,y, H)) (77‘((,‘5}1, H) _W(cey’ H) )

with abbreviations

I aeld ) emle el
Cs (300 » G 2c,!’ 7 363“‘)’ * \6cpt ) ”
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If we use Hecke’s prime ideal theorem [2], then

o= > 18N iy Hy m(c,y, H)) 1986
CLY=Nv=cgy Np

4
veH

and

o= > 18M oy Hy mic,y, H)) 1086
cey=Np=csy N,p
e H

whence follows

6

(29) -V < > P@) 26103 D < y)
logiy NO=»

by (28).
Now we denote by U(y) the number of
(80)  {¢: NG =y;t=nr-+p;Np primes;|[E]|<c, V' NE);
IMNI< e NN, e gl llsll=c Ny, cligll).
Then, by and [29),

y4 2 ) ‘ - y3
c Tog 'y <(N(éyp(§)) §U(J’)N(§§yp &) <Uy)c Tog 7y

This gives

(31) cy<<U(y)

for sufficiently large y.
We write

A(x)=the number of {&:||¢]|<x;¢<1)
(32)
E(x)=the number of {&:[|¢||<x;&=N+4; N\, » primes;
xS Hell<c, %} .

Let o, , -+, w, be an integral basis of K. Then A(x) is the number
of lattice points (x,, x,,---, x,) in S satisfying

| %, @ + %, @) -4 +-x, wﬁf)l_é_x ) (t=1,2,--,m),
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x,cIr J=12,-,m).
Hence we can deduce as in (6) that

(33) Ax)~cxn.

Replacing y by *" in (30), we see
cn

1

(34) | U ( i‘i) <E().

ct
From [(31), and (34), we have

cA(x) <E(x)
for sufficiently large x.

Hence we have
THEOREM 2. If we define A(x) and E(x) as in (32), then

cA(x) < E(x)
for sufficiently large x.

§3. On a density theorem in an algebraic number field.
For the sets U, B,.-- which consist of elements in I, we define
A+B={y:vy=a,B ora+B; ac, BB},
—B={-B:68B},
A-—B=A+(—B).
Now we take
A=1,
E={&:&=N+p; N\, » primes},
and write
Ax]= (& LU, 1Ll =%},
Clx]={£: €6, Il =% M m]l =€, %} -
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Then the number of elements of A[x] and E[x] are A[x] and Efx] in
(32). Moreover, we define

Blx]={{: & =x0,+ X0, + - + X0, —CX=x=cx x,1}
such that
(35) ' Alx] = B[]

by taking ¢, sufficiently large. Since the number of elements of
B[x], say B[x], is of order cx”, we obtain, for sufficiently large x

(36) ¢B(x) < E(x)
by and whereas

(87) Clx] B[]
by [(35).

From [36) and [87), we know that more than cx* elements in
the form

xlwl +x2(02+"‘ +kak+xk+1a)k+1+"' "'—xnwn ’
_C7x§xj§07x, ijI’ (j=1,2,"':k)’

for suitably fixed «,,, %,,, -, %, are contained in E[x] for every k
(k=1,2,-.-,n). Hence, & - € contains more than cx* elements in the

form
Vi@ + Y@yt or + Y@y

(38)
v, &1, —20x=y,,=2c%
for every k. Consequently; if we write

Colx] = {pp: Y, + Y0y + o+ + 90, EC€—-C, |y, | <2},

C,(x) =the number of elements of G,[x],
then
(39) cx<<Cy(%)

for every k, if x is sufficiently large.
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Since € —E is contained in J, J contains elements in the form

(38). In view of [(39), we denote by a,, the smallest positive integer
¥, sSuch that

V@ + Yo, o+ Yo, &S, yueEL,
and write such an element in J which satisfies y,,=a,, as follows.
$r=040 +Qpw,+ -+ Ao, a1

Then we can easily deduce that ¢, ,---, ¢, form a basis of the ad-
ditive group J, and

[I: ]] =0Q,@yy -,

is finite.
The elements in (38) can be expressed in the form

Vi@ + Y@yt r e+ Yo, = 25,8+ 25,8, + - + 2,8,
with

—CX =2, = CX z2p, &I
If we write

Dulx]l= {21 |21 = %}

D, (x)=the number of elerﬁents of D[],
then
(38) cx<<D,(x)

for every k, if x is sufficiently large. Let & be the set consisting of

all elements in €—€ and +¢,, +&,,---, +&,. Then ¥ is a subset of J.
Now consider all elements in § such form as

Tl i+ Fulat o+ fuls mer.

If we write

Fulxl= {Fur: | frel =%}

F,(x)=the number of elements of ,[x]
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then, by [(38),

cx<<F,(x)

for every k and 1<x. Hence, by the density theorem of Schnirel-
mann [1], we can deduce that a finite sums of & contains such an
element as

=+ Qs+ +qulss q,;,=1T

for any given ¢q,,=1I'. Hence, every element & in J can be expressed
in the form

£:§’1+§2+"'+‘£’n'

Hence we get the desired result.
THEOREM 8. [ is of finite index in I and every element in J can
be expressed as at most ¢ sums of primes.

Gakushuin University.
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