On the radial order of a certain regular function in a unit circle.

By Masatsugu Tsuji

(Received April 29, 1954)

1. Seidel and Walsh¹⁾ proved the following theorem.

THEOREM 1. Let w=f(z) be regular and univalent in |z| < 1. Then there exists a null set E on |z|=1, such that if $e^{i\theta}$ does not belong to E, then

$$f'(z) = o\left(\frac{1}{1/|z-e^{i\theta}|}\right)$$
 uniformly for a fixed θ ,

when $z \rightarrow e^{i\theta}$ from the inside of any Stolz domain, whose vertex is at $e^{i\theta}$.

We shall give a simple proof as follows.

PROOF. Let D be the image of |z| < 1 on the w-plane. Then since by an elementary transformation, we can map D on a finite domain, we may assume that D is a finite domain, so that

$$\int_0^{2\pi}\!\int_0^1\!|f'(re^{i heta})|^2rdrd heta<\infty$$
 ,

hence for almost all θ in $[0, 2\pi]$,

$$\int_0^1 |f'(re^{i\theta})|^2 dr < \infty . \tag{1}$$

Let (1) hold for $\theta=0$ and we shall prove that

$$f'(z) = o\left(\frac{1}{\sqrt{|z-1|}}\right)$$
 uniformly, (2)

¹⁾ W. Seidel and J. L. Walsh: On the derivatives of functions analytic in the unit circle and their raddii of univalence and of p-valence. Trans. Amer. Math. Soc. 52 (1942). F. Ferrand: C. R. Acad. des Sci. du 10 novembre 1941 and Thèse du 12 janvier 1942. J. Wolf: Inégalités remplies par derivées des fonctions holomorphes, univalentes et bornées dans un demi-plan. Commentarii Math. Helvetici. 45 (1952-53).

when $z \to 1$ from the inside of a Stolz domain, whose vertex at z=1. For any $\varepsilon > 0$, let the set of r(0 < r < 1), such that

$$|f'(r)| > \frac{\varepsilon}{\sqrt{1-r}} \tag{3}$$

consist of open intervals $I_{\nu}=(r_{\nu}, r_{\nu}') (\nu=1, 2, \cdots)$, where

$$0 < r_1 < r_1' < r_2 < r_2' < \cdots < r_{\nu} < r_{\nu}' < 1, \tag{4}$$

$$|f'(r_{\nu})| = \frac{\varepsilon}{\sqrt{1-r_{\nu}}}, \quad |f'(r'_{\nu})| = \frac{\varepsilon}{\sqrt{1-r'_{\nu}}}.$$

Then

$$\int_{r_{\nu}}^{r_{\nu}'} |f'(r)|^2 dr > \varepsilon^2 \int_{r_{\nu}}^{r_{\nu}'} \frac{dr}{1-r} = \varepsilon^2 \log \frac{1-r_{\nu}}{1-r_{\nu}'}.$$
 (5)

Since $\int_0^1 |f'(r)|^2 dr < \infty$, we take ν_0 so large that $\int_{r_{\nu_0}}^1 |f'(r)|^2 dr < \varepsilon^3$, then by (5), $\log \frac{1-r_{\nu}}{1-r'_{\nu}} < \varepsilon$, or

$$0 < \frac{r_{\nu}' - r_{\nu}}{1 - r_{\nu}} < 1 - e^{-\varepsilon} < \varepsilon \qquad (\nu \ge \nu_0). \tag{6}$$

If we apply Koebe's distortion theorem for

$$F(\zeta) = \frac{f(z) - f(r_{\nu})}{(1 - r_{\nu})f'(r_{\nu})} \zeta + \cdots, \quad \zeta = \frac{z - r_{\nu}}{1 - r_{\nu}}, \quad |\zeta| < 1,$$

then we have

$$|f'(z)| \leq \frac{1+|\zeta|}{(1-|\zeta|)^3} |f'(r_{\nu})|.$$

If $r_{\nu} \leq r \leq r'_{\nu}$, then $|\zeta| = \left| \frac{r - r_{\nu}}{1 - r_{\nu}} \right| < \varepsilon$ by (6), so that if ε is small,

$$|f'(r)| \leq 2|f'(r_{\nu})| = \frac{2\varepsilon}{\sqrt{1-r_{\nu}}} \leq \frac{2\varepsilon}{\sqrt{1-r}}.$$

Hence

$$|f'(r)| \leq \frac{2\varepsilon}{\sqrt{1-r}} \qquad (r_{\nu_0} \leq r < 1). \tag{7}$$

338 M. Tsuji

Let

$$\Delta: |z| < 1, \quad |\arg(z-1)| \leq \varphi_0 < \frac{\pi}{2}$$
 (8)

be a Stolz domain, whose vertex is at z=1 and z be any point of Δ and suppose that $\Im z \ge 0$. Through z we draw a perpendicular L to the part of the boundary of Δ , which lies in the upper half-plane and let z=r be the intersection of L with the real axis, then

$$|z-r| \leq (1-r)\sin\varphi_0, \qquad |z-1| \leq 1-r. \tag{9}$$

If we apply Koebe's distortion theorem for the disc: $|\zeta-r| < 1-r$, then by (7), (9),

$$|f'(z)| \leq K|f'(r)| \leq \frac{2K\varepsilon}{\sqrt{1-r}} \leq \frac{2K\varepsilon}{\sqrt{|z-1|}}, \quad K = \frac{1+\sin\varphi_0}{(1-\sin\varphi_0)^2}.$$

Since $\varepsilon > 0$ is arbitrary, we have

$$f'(z) = o\left(\frac{1}{\sqrt{|z-1|}}\right)$$
 uniformly, (10)

when $z \rightarrow 1$ from the inside of Δ .

2. We shall prove the following theorem, which is related to Theorem 1.

THEOREM 2. Let w=f(z) be regular in |z| < 1 and

$$\iint_{|z|<1} |f(z)|^p dxdy < \infty, \quad p>0, \quad z=x+iy.$$

Then there exists a null set E on |z|=1, such that if $e^{i\theta}$ does not belong to E, then

(i) if p is a positive integer,

$$f(z)=O\left(\frac{1}{|z-e^{i\theta}|^{\frac{1}{p}}}\right),$$

(ii) if p is not a positive integer, for any $\delta > 0$,

$$f(z) = O\left(\frac{1}{|z - e^{i\theta}|^{\frac{1+\delta}{p}}}\right)$$

uniformly, when $z \rightarrow e^{i\theta}$ from the inside of any Stolz domain, whose vertex is at $z=e^{i\theta}$.

First we shall prove a lemma.

LEMMA. Let w=f(z) be regular in |z| < 1 and

$$\iint_{|z|<1} |f(z)|^p dxdy < \infty , \quad p>0.$$

We put

$$A(r,\theta) = \iint_{|z-re^{i\theta}|<1-r} |f(z)|^p dxdy.$$

Then there exists a null set E on |z|=1, such that if $e^{i\theta}$ does not belong to E, then for any $\delta > 0$,

$$A(r,\theta) = O((1-r)^{1-\delta}), \qquad r \rightarrow 1.$$

Proof. We put

$$B(r,\theta) = \int_0^{1-r} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} |f(re^{i\theta} + \rho e^{i(\theta+\varphi)})|^p \rho d\rho d\varphi. \tag{1}$$

Then since $\rho \leq 1-r$,

$$\int_{0}^{2\pi} B(r,\theta) d\theta \leq (1-r) \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} d\varphi \int_{0}^{1-r} \int_{0}^{2\pi} |f(re^{i\theta} + \rho e^{i(\theta + \varphi)})|^{p} d\rho d\theta . \tag{2}$$

If we put $re^{i\theta} + \rho e^{i(\theta+\varphi)} = Re^{i\Theta}$, then

$$R = \sqrt{r^2 + \rho^2 + 2r\rho\cos\varphi} , \quad \Theta = \theta + \tan^{-1}\frac{\rho\sin\varphi}{r + \rho\cos\varphi}.$$
 (3)

We change variables from (ρ, θ) to (R, θ) in (2), then since

$$dR \ d\theta = \frac{\partial(R,\theta)}{\partial(\rho,\theta)} \ d\rho d\theta = \frac{r\cos\varphi + \rho}{\sqrt{r^2 + \rho^2 + 2r\rho\cos\varphi}} \ d\rho d\theta$$

$$\geq \frac{r\cos\varphi + \rho}{r + \rho} \ d\rho d\theta \geq \cos\varphi d\rho d\theta$$

$$\geq \cos\frac{\pi}{4} \ d\rho d\theta = \frac{1}{\sqrt{2}} \ d\rho d\theta ,$$

we have

$$\int_{0}^{2\pi} B(r,\theta) d\theta \leq \sqrt{2} (1-r) \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} d\varphi \int_{r}^{1} \int_{0}^{2\pi} |f(Re^{i\Theta})|^{p} dR d\Theta$$

$$= \frac{\pi}{\sqrt{2}} (1-r) \int_{r}^{1} \int_{0}^{2\pi} |f(Re^{i\theta})|^{p} dR d\Theta$$

$$\leq K(1-r), \tag{4}$$

where

$$K = \frac{\pi}{\sqrt{2}} \int_0^1 \int_0^{2\pi} |f(Re^{i\Theta})|^p dRd\Theta . \tag{5}$$

Let $r_{\nu}=1-\frac{1}{2^{\nu}}$ ($\nu=1, 2, \cdots$), then

$$\int_0^{2\pi} B(r_{\nu}, \theta) d\theta \leq K(1 - r_{\nu}). \tag{6}$$

Let $\delta > 0$ and e_{ν} be the set of θ , such that

$$B(r_{\nu},\theta) > (1-r_{\nu})^{1-\delta}, \qquad (7)$$

then by (6),

$$me_{\nu} < K(1-r_{\nu})^{\delta} = \frac{K}{2^{\nu\delta}}$$
.

Hence if we put $E_{\nu}=e_{\nu}+e_{\nu+1}+\cdots$, $E=\lim_{\nu}E_{\nu}$, then

$$mE=0$$
. (8)

It is sufficient to prove that if z=1 does not belong to E, then

$$A(r,0) = O((1-r)^{1-\delta}), \qquad r \to 1.$$
 (9)

Since z=1 does not belong to E, z=1 does not belong to a certain E_{ν_0} , so that by (7),

$$\int_{0}^{1-r_{\nu}} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} |f(r_{\nu}+\rho e^{i\varphi})|^{p} \rho d\rho d\varphi = B(r_{\nu},0) \leq (1-r_{\nu})^{1-\delta} \quad (\nu \geq \nu_{0}). \tag{10}$$

Let

$$D_{\nu}: |z-r_{\nu}| < 1-r_{\nu}, |arg(z-r_{\nu})| < \frac{\pi}{4}$$
 (11)

and

$$\Delta_{\nu}: \qquad |z-\rho_{\nu}| < 1-\rho_{\nu} \qquad (\rho_{\nu} > 0) \tag{12}$$

be a circular disc, which is contained in D_{ν} and touches the boundary of D_{ν} , then by a simple calculation, we have

$$1 - \rho_{\nu} = \frac{1 - r_{\nu}}{1 + \sqrt{2}} , \qquad (13)$$

so that

$$A(\rho_{\nu}, 0) = \iint_{\mathcal{A}_{\nu}} |f(z)|^{p} dx dy \leq \iint_{D_{\nu}} |f(z)|^{p} dx dy = B(r_{\nu}, 0) \leq (1 - r_{\nu})^{1 - \delta}$$

$$= K_{1} (1 - \rho_{\nu})^{1 - \delta}, \quad K_{1} = (1 + \sqrt{2})^{1 - \delta} \quad (\nu \geq \nu_{0}). \tag{14}$$

Let $\rho_{\nu} \leq \rho \leq \rho_{\nu+1}$, then $1-\rho_{\nu+1} = \frac{1}{2} (1-\rho_{\nu}) \leq 1-\rho \leq 1-\rho_{\nu}$, so that

$$A(\rho, 0) \leq A(\rho_{\nu}, 0) \leq K_1(1-\rho_{\nu})^{1-\delta} = K_2(1-\rho)^{1-\delta}, \quad K_2 = 2^{1-\delta}K_1,$$
 (15)

or

$$A(\rho,0) = O((1-\rho)^{1-\delta}), \qquad \rho \to 1.$$

Hence (9) is proved.

 $E=E(\delta)$ depends on $\delta>0$. If we take $\delta_1>\delta_2>\cdots>\delta_{\nu}\to 0$ and put $E=\sum_{\nu=1}^{\infty}E(\delta_{\nu})$, then E satisfies the condition of the lemma.

3. Proof of Theorem 2.

Since the first part (i) can be proved similarly as Seidel and Walsh, we assume that p is not a positive integer and we shall prove (ii). Let E be the null set on |z|=1, which satisfies the condition of the lemma. It is sufficient to prove that if z=1 does not belong to E, then

$$f(z) = O\left(\frac{1}{|z-1|^{\frac{1+\delta}{p}}}\right) \quad \text{uniformly,} \tag{1}$$

when $z\rightarrow 1$ from the inside of a Stolz domain Δ , whose vertex is at z=1.

Since z=1 does not belong to E, for any $\delta > 0$,

$$A(r,0) \leq K(1-r)^{1-\delta}, \quad r_0 \leq r < 1.$$
 (2)

Let Δ be defined by (8) of the proof of Theorem 1 and z be any point of Δ and suppose that $\Im z \ge 0$. Through z we draw a perpendicular

342 M. Tsuji

L to the part of the boundary of Δ , which lies in the upper half-plane and let z=r be the intersection of L with the real axis, then since $|z-r| \leq (1-r) \sin \varphi_0$, we have

$$1-r-|z-r| \ge (1-\sin \varphi_0)(1-r) = \rho$$
,

so that a disc: $|\zeta-z| < \rho$ is contained in a disc: $|\zeta-r| < 1-r$. Since $|f(z)|^p (p>0)$ is subharmonic,

$$\pi \rho^2 |f(z)|^p \leq \iint\limits_{|\zeta-z| < \rho} |f(\zeta)|^p dx dy \leq \iint\limits_{|\zeta-z| < 1-r} |f(\zeta)|^p dx dy = A(r,0) \leq K(1-r)^{1-\delta},$$

or

$$|f(z)| \le \frac{K_1}{(1-r)^{\frac{1+\delta}{D}}} \le \frac{K_1}{|z-1|^{\frac{1+\delta}{D}}}, \quad K_1 = \left(\frac{K}{\pi(1-\sin\varphi_0)^2}\right)^{1/D}.$$
 (3)

Hence

$$f(z) = O\left(\frac{1}{|z-1|^{\frac{1+\delta}{p}}}\right) \quad \text{uniformly,} \tag{4}$$

when $z\rightarrow 1$ from the inside of Δ , q. e. d.

Mathematical Institute, Tokyo University.