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On the radial order of a certain regular
function in a unit circle.

By Masatsugu Tsuiji

(Received April 29, 1954)

1. Seidel and Walsh? proved the following theorem.

THEOREM 1. Let w=fz) be regular and wunivalent in |z|<1.
Then there exists a null set E on |z|=1, such that if ¢® does not
belong to E, then

fl(2)= 0<Wi—éi—ol—> uniformly for a fixed 6,

when z2— e from the inside of any Stolz domain, whose vertex is at
‘ea’oo

We shall give a simple proof as follows.

PROOF. Let D be the image of |z]<<1 on the w-plane. Then
since by an elementary transformation, we can map D on a finite
domain, we may assume that D is a finite domain, so that

[ [1roenerarde <<,

hence for almost all 8 in [0, 2],

|1 7emypar <o &)
Let (1) hold for §=0 and we shall prove that
fl(2)= 0(——1/lz1—1| ) uniformly, (2)

1) W. Seidel and J.L. Walsh: On the derivatives of functions analytic in the unit
circle and their raddii of univalence and of p-valence. Trans. Amer. Math. Soc. 52 (1942).
F. Ferrand: C.R. Acad. des Sci. du 10 novembre 1941 and Thése du 12 janvier 1942.
J. Wolf: 1Inégalités remplies par derivées des fonctions holomorphes, univalentes et bornées
dans un demi-plan. Commentarii Math. Helvetici. 45 (1952-53).
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when z—1 from the inside of a Stolz domain, whose vertex at z=1.
For any ¢>0, let the set of »(0<{»<(1), such that

(N> ———

iy @)

consist of open intervals I,=(»,7#)(»=1,2,---), where

0<n< AL <A< - <n <AL, @)
) - e 1OV A e
| f(n)|= Vi’ [ f(7)]= T/‘_f:}—;-
Then
Jlropar>e [ 22 =c g 122 ®)

. 1
Since §1| () Ifdr < 0, we take », so large that s | f(r)|2dr <e%, then

by (5), log =7 <¢, or
1—7

v

0< B0 (et le (2w (©)
If we apply Koebe’s. distortion theorem for
F(&)= f(z) f(rv) — R~V , 1’
(é‘) =707 ) &+ 4 1= 1¢]1<<

then we have

, 1+1¢] | 4
rens—His o3 1 F(rl.

—

If n<r<s,, then |¢|= -’1”.‘—””_‘<e by (6), so that if e is small,
|

N2 ()=

1/1— = 1/1—

Hence

FAIS 22— (r=<r<D). (7)
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Let
4: |2]<1, 'Iarg(z—1)1§¢o<-72'~ (8)

be a Stolz domain, whose vertex is at z=1 and z be any point of 4
and suppose that 3z=0. Through z we draw a perpendicular L to
the part of the boundary of 4, which lies in the upper half-plane and
let z=7 be the intersection of L with the real axis, then

|z—7| < (1—7)sin @4, [z2—11 < 1—7. 9)

If we apply Koebe’s distortion theorem for the disc: |¢—7»|<1—7,
then by (7), (9),

2Ke 2Ke 14 sin @
FRIZK|f(NIK< ——=—-< , K= o__
|7 (=) 7l V1i—r = V]z—1] (1— sin @)

Since ¢_>0 is arbitrary, we have

F@= o=

__Iz_::_ﬁ> uniformly, (10)

when z—1 from the inside of 4.
2. We shall prove the following theorem, which is related to

THEOREM 2. Let w=f(2) be regular in |z| <1 and

||1f@raray <o, p>0, z=x+iy.

12I<1

Then there exists a null set E on |z|=1, such that if ¢*® does not be-

long to E, then
(i) #f p is a positive integer,

fiz)= 0(——1*—),

|z—ei [

(i) if p is not a positive integer, for any >0,

f2)= O(———l"iTr)

|z—e?] ?
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uniformly, when z— e® from the inside of any Stolz domain, whose ver-
tex is at z=e®. :

First we shall prove a lemma.

LEMMA. Let w=f(2) be regular in 2| <1 and

JIf@paray <, p>0.
12i<1

We put ’
A, 0= || 1£@)1dxay .

fz—rewf(l—r
Then there exists a null set E on |z|=1, such that if ¢*® does not be-
long to E, then for any >0,
A(r,0)=0((1—»'"%), r—1.

Proor. We put
e, S
B(7, 6) =j.o rj * ) | f(7e®® + pei®* ) |2 pdpdep . (1)
-7
Then since p<1—7,

21 e 1-7 (22 .
[ B, ode <(1—n|"_dgp | | 1 fireo+peie ) ?dpdo @)
= '
If we put 7e+pe®*¥=Rei®, then.
R= 2 , ©=0+tan-l_PSIDP 3
V 7+ p+27p cos @ an % p COS 3 3)

‘We change variables from (p, 8) to (R, ®) in (2), then since

_ R, 0) _ 7 COs @+ p
= -NHT) = dpdb
dk d a(p, 6) dpdb V 72+ p%+27p COS @ P

> J--@_:LL’L dpdf = cos pdpdb

> cos ~'—Z~— dpdo= dpds ,

- 1 -
V2

we have
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2x V:‘ 12 ) 3
j Blr, )0 < v/2 (1-7) g _dgp j L | f{Re®) |?dRdO
..;4\ r
1

= 7 -7 ["1f(Re")12aRa0
Vg :

< K1-—»), 4)
where
K= _T_ jl ﬁ f(Rei®) [?dRd6 (5)
/2 JoJo :
Let n=1— ;’v (»=1,2,---), then
S:‘B(r,,, 0)do < K(1—7.). 6)

Let 8>0 and e, be the set of 8, such that

B(7., 9)>(1 -8, (7)
then by (6),

- me, < K(1—7) = 2—1“{8 .

Hence if we put Ev=e,+e,,,+ ---, E=1im E,, then
mE=0. (8)

It is sufficient to prove that if z=1 does not belong to E, then
A, 0)=0((1—»'?), r—1. 9)

Since z=1 does not belong to E, z=1 does not belong to a certain
E,, so that by (7),

=

Lf | v+ pei®) (Ppdpdp=B(r, 0) < (1—7)~" (v 2w0).

Let ‘

D,: lz—n|<<l—n, |arg(z—2) <% (11)
and

4,: lz—p| 1=p»  (pv >0) (12)
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.be a circular disc, which is contained in D, and touches the boundary
of D,, then by a simple calculation, we have

— 1_7’\4_

so that .
Alpn, 0= || fl2) edxdy < ([ |f(2) 12dxdy=B(r,, 0) < (1—r)-*

=K(1-p)%, K=1+vV2)° (v=w). (14)
Let po<p=<pv.1, then 1—p, 1= %(l—pv)él—pgl—pw so that

Alp, 0)< A(py, VS K(1—pu )P =Ky(1—p)~%, K,=2'K;,  (15)
or
Alp, 0)=0((1—p)}%), p—1.

Hence (9) is proved.
E=E(3) depends on 8 >0. If we take §;_>8, >:-->8,—0 and put

E= il E(5,), then E satisfies the condition of the lemma.

3. Proofr of THEOREM 2.

Since the first part (i) can be proved similarly as Seidel and Walsh,,
we assume that p is not a positive integer and we shall prove (ii).
Let E be the null set on |z]=1, which satisfies the condition of the
lemma. It is sufficient to prove that if z=1 does not belong to E,
then

S S
2—1'%"

f2)=0 ( ) uniformly, (1)

when z—1 from the inside of a Stolz domain 4, whose vertex is at
z=1. '
Since z=1 does not belong to E, for any 8 >0,

A7, ) ZK(A—-n2, rn=<r<l. (2)

Let 4 be defined by (8) of the proof of and z be any point
of 4 and suppose that 3z=0. Through z we draw a perpendicular
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L to the part of the boundary of 4, which lies in the upper half-plane
and let z=» be the intersection of L with the real axis, then since
lz—7| Z(1—7»)sin ¢, we have

1—7—|z—7] = (1— sin @)(1—7)=p,

so that a disc: |¢—z] <p is contained inadisc: [{—7r|<1—7. Since
1f(2)|? ($>0) is subharmonic, .

A2 < (1 A) 10axdy < (1 70 1oaxdy = A6, O < KA1,

ig~2zI<p 1~-2|<1~-»
or _
K K : K v
IS s B () ©
Hence
1 .
f(z2)=0 ( 2—1] L2 ) uniformly, (4)

when z—1 from the inside of 4, q.e.d.

Mathematical Institute, Tokyo University.
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