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On the uniform continuity of Wiener process

By Tunekiti SIRAO

(Received March 9, 1954)

It is the purpose of this note to ameliorate L\’evy’s result concerning
the uniform continuity of Wiener process. Let $\varphi(h)$ be a continuous
and monotone increasing function which tends to zero with $h$ . After
P. L\’evy we say that a function $f(t)$ verifies “ Holder’s weak condition”
relative to $\varphi(t)$ , if there exists a positive number $\epsilon$ such that $|t^{\prime}-t|$

$=h\leq_{-}e$ yields the relation
$|f(t^{\prime})-f(t)|_{-}\leqq\varphi(h)$ .

Let us put
$\varphi_{c}(h)=\{h(2\log 1/h+c\log\log 1/h)\}^{1/2}$

Then we obtain the following theorem.
THEOREM. If $c>5$ , Wiener process $\{X(t, \omega);0\leqq t\leqq 1\}^{1)}$ verifies

“ Holder’s weak condition “ relative to $\varphi_{c}(t)$ and if $c<-1$ , it does not
verify the condition, with probability one.

PROOF. Let us put

(1) $\alpha(h)=Pr${ $|$ A $X(t)|>\varphi_{c}(h)$ },

where $\triangle X(t)$ is the difference of $X(t+h)$ and $X(t)$ . Since $\triangle X(t)$ is a
normal random variable satisfying the conditions $E(\triangle X(t))=0$ and
$V(\triangle X(t))=h^{2)}$ we have the following asymptotic relation

(2) $\alpha(h)/h\sim(1/\pi)^{1/2}(\log 1/h)^{-(c+1)/2}$ .
If $c<-1$ , we obtain

(3) $\alpha(h)/h\rightarrow\infty$ as $h\rightarrow 0$ ,

and therefore
(4) $1-(1-\alpha(1/n))^{n}\rightarrow 1$ as $ n\rightarrow\infty$ .

1) a) is the probability parameter.
2) $E$ and $V$ denote the expectation and the variance respectively.
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The left side of (4) is equal to the probability that there exists at least
one $k(k=0,1,2,\cdots, n-1)$ , such that $|X((k+1)/n)-X(k/n)|$ is larger than
$\varphi_{c}(1/n)$ . So (4) proves the second part of the theorem.

To prove the first part of the theorem we put $c=5+e$ with a
positive number $e$ . We shall define $\alpha_{n,m.l}$ as the probability that the
event
(5) $|X((m+l)/2^{n})-X(l/2^{n})|>\varphi_{c}(m/2^{n})$

holds,
$n=1,2,3,$ $\cdots$ , $m=1,2,$ $\cdots,$ $n$ , $l=0,1,2,$ $\cdots,$

$2^{n}-1$ .
Since $\alpha_{n,m,l}$ is independent of $l$, we may omit $l$ hereafter. Then we
have for a sufficiently large $n$

(6) $\alpha_{n.1}\leqq\alpha_{n.2}\leqq\cdots\leqq\alpha,,.n=\alpha(n/2^{n})=O(1)/(n^{2+\epsilon/2}2^{n})$

and

(7) $\sum_{n}n2^{n}\alpha(n/2^{n})=O(1)\sum_{n}n^{-(1+e/2)}$ .
Since $\alpha(h)$ is monotone increasing function for small $h(>0)$ the n-th
term of the left side of (7) is not less than the probability that there
exists at least one pair $(m, l)$ for which (5) holds. Since the right side
of (7) converges, we can see, by Borel Cantelli’s theorem, that there
exists $n(\omega)$ such that $n>n(\omega)$ implies the following inequalities

(8) $|X((m+l)/2^{n})-X(l/2^{n})|\leqq\varphi_{c}(m/2^{n})$ ,

$m=1,2,$ $\cdots,$ $n$ ,

$l=0,1,2,$ $\cdots,$
$2^{n}-1$ ,

with probability one. Thus the first part of the theorem is true for
the special cases that both $t$ and $t^{\prime}$ take the values of the form $k/2^{n}$.

If $t=k/2^{n}$ and $t<t^{\prime}<t+1/2^{n}(n>n(\omega)\geqq 2)$ , we may write $f-t$ as
$t^{\prime}-t=\sum_{\nu-1}^{\infty}e_{v}/2^{n+\nu}$ ,

where $e_{\nu}=0$ or 1. Using the monotony of $\varphi_{c}(h)$ for small $h(>0)$ , by
(8), we have

(9) $|X(t^{\prime})-X(t)|\leqq\sum_{\nu-1}^{\infty}e_{\nu}\varphi_{c}(1/2^{n+\nu})$
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$\leqq\varphi_{c}(1/2^{n+l})\sum_{\nu-1}^{\infty}(2_{\nu}/2^{\nu})^{1/2}$

$\leqq C\varphi_{c}(t^{\prime}-t)$ ,

where 1 is the smallest $\nu$ for which $e_{V}=1$ and $C$ is a constant. In the
same way we can see that (9) holds also for the cases of $t^{\prime}=k/2^{n}$ and
$l-1/2^{l}<t<t^{\prime}(n>n(\omega)\geqq 2)$ .

For any pair of $(t, t^{\prime})$ , if $(t_{v}-t)$ is sufficiently small, there exists $n$

such that

(10) $(n+1)/2^{n*1}<t^{\prime}-t\leqq n/2^{r}$ , $n>n(\omega)\geqq 2$ .
Then we may take $t_{1}$ and $t_{1}^{\prime}$ as follows:

(11) $k/2^{\hslash}<t\leqq t_{1}=(k+1)/2^{n}<t_{1}^{\prime}=k^{\prime}/2^{n}\leqq t^{\prime}<(k^{\prime}+1)/2^{n}$ .
From (10) and (11) it follows that (S) holds for $(t_{1}, t_{1}^{\prime})$ and (9) holds for
$(t, t_{1})$ and $(t_{1}^{\prime}, t^{\prime})$ . Then we have

(12) $|X(t^{\prime})-X(t)|\leqq|X(t^{\prime})-X(t_{1}^{\prime})|+|X(t_{1}^{\prime})-X(t_{1})|+|X(t_{1})-X(t)|$

$\leqq\varphi_{c}(f-t)+2C\varphi_{c}(1/2^{r})$ .
But we have, by (10),

(13) $\varphi_{c}(1/2^{n})=\{2^{-n}(2\log 2^{n}+c\log\log 2^{\alpha})\}^{1/2}$

$\leqq[2(t^{\prime}-t)/n\{2\log(n/(f-t))$

$+c\log\log(n/(t^{\prime}-t)\})]^{1/2}$ ,
which implies

(14) $\varphi_{t}(1/2^{n})\leqq[2(t^{\prime}-t)/n\{4\log(1/(f-t))+c\log\log(1/(t^{\prime}-t))$

$+c\log 2\}]^{M}$ ,

as $(t^{\prime}-t)$ is less than $1/n$. Moreover, by (10), we get

(15) $n\log 2-\log n\leqq\log(1/(t^{\prime}-t))<(n+1)\log 2-\log n$ ,

and therefore

(16) $\log(1/(t^{\prime}-t))/n=0\{(\log\log(1/(t^{\prime}-t)))\}$ as $(f-t)\rightarrow 0$ .
Combining (12), (14) and (16) we obtain for a sufficiently small $(f-t)$
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(17) $|X(t^{\prime})-X(t)|\leqq\varphi_{c+e/2}(t^{\prime}-t)$ .
Since the above discussion is available for $d=5+e/2,$ (17) proves the
first part of the theorem.

Mathematical Institute, Nagoya University.
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