On Royden's theorem on a covering surface of a closed Riemann surface.

By Masatsugu Tsuji

(Received Nov. 4, 1953)

Let F be a closed Riemann surface of genus $p \ge 2$, spread over the z-plane and Φ be its unramified covering surface. Let C_i $(i=1,2,\cdots,p)$ be p disjoint ring cuts of F, such that, if we cut F along $\{C_i\}$, then F becomes a surface of planar character and let C_i be the conjugate ring cut of C_i , such that C_i meets C_i at a point and is disjoint to C_j , C_j $(j=1,2,\cdots,p,j\pm i)$. We assume that C_i , C_i are rectilinear polygons and meet at a positive angle. We denote the both shores of C_i , C_i by C_i , C_i , C_i , C_i , C_i , C_i respectively.

We denote a surface, which is obtained from F by cutting along a certain number of C_i , C'_i by F' in general, then

$$\Phi = \sum_{k=0}^{\infty} F'_k$$

where F'_k is one F'.

Let Γ_k be the boundary of F'_k , which consists of a certain number of C_i^+ , C_i^- , C'_i^+ , C'_i^- , which we denote by $\{\sigma_k^{(i)}\}_{-1,2,\cdots,\alpha_k}^i$ so that $\Gamma_k = \sum_i \sigma_k^{(i)}$. Along $\sigma_k^{(i)}$, there connects another F'_s to F'_k .

Then Royden¹⁾ proved the following theorem.

THEOREM. The necessary and sufficient condition that Φ is of positive boundary is that there exist a contant $m_k^{(i)}$ corresponding to $\sigma_k^{(i)}$, such that if $\sigma_k^{(i)}$ belong to the boundary of another F_s' and $\sigma_k^{(i)} = \sigma_s^{(j)}$, then $m_s^{(j)} = -m_k^{(i)}$ and satisfy the following conditions:

(i)
$$\sum_{i} m_0^{(i)} \neq 0$$
, $\sum_{i} m_k^{(i)} = 0$ $(k=1, 2, \dots)$,

(ii)
$$\sum_{k=0}^{\infty} M_k^2 < \infty ,$$

¹⁾ H. L. Royden: Harmonic functions on open Riemann surfaces. Trans. Amer. Math. Soc. 75 (1952).

where $M_k = \operatorname{Max} |m_k^{(i)}|$.

We shall give a simple proof in the following lines.

Proof. (i) Necessity.

Suppose that Φ is of positive boundary. We take a circular disc Δ_0 in F_0' and C_0 be its bounding circle.

Let u(z) be the harmonic measure of the ideal boundary of Φ with respect to $\phi - \Delta_0$, then since ϕ is of positive boundary,

$$u=0$$
 on C_0 ,
$$\int_{C_0} \frac{\partial u}{\partial \nu} ds > 0$$
, $0 < u < 1$ in $\Phi - \Delta_0$,
$$D_{\Phi - \Delta_0}[u] < \infty$$
,

where $D_{\Phi^{-} \omega_0}[u]$ is the Dirichlet integral of u(z) in $\Phi^{-} \omega_0$.

Now to F'_k , there connects a finite number of $F''s: F'_{\alpha}, F'_{\beta}, \cdots$. Let z be any point of Γ_k , then

$$|\operatorname{grad} u(z)|^2 \leq \operatorname{const.} \left(D_{F_k'}[u] + \sum_{\alpha} D_{F_{\alpha}'}[u] \right)$$
 ,

so that

$$\max_{z \in \Gamma_k} \left| \frac{\partial u}{\partial \nu} \right|^2 \leq \mathrm{const.} \left(D_{F_k'}[u] + \sum_{\alpha} D_{F_{\alpha}'}[u] \right)$$
 ,

where ν is the outer normal of Γ_k with respect to F'_k .

Now we define $m_k^{(i)}$ by

$$\int_{\sigma_k^{(i)}} \frac{\partial u}{\partial \nu} ds = m_k^{(i)}, \qquad (1)$$

then

$$\sum_{i} m_0^{(i)} = \int_{C_0} \frac{\partial u}{\partial \nu} ds > 0, \qquad \sum_{i} m_k^{(i)} = \int_{\Gamma_k} \frac{\partial u}{\partial \nu} ds = 0 \quad (k \ge 1).$$
 (2)

If we put $M_k = \text{Max} |m_k^{(i)}|$, then

$$M_k^2 \leq \mathrm{const.} \left. \max_{z \in \Gamma_k} \left| rac{\partial \, u}{\partial \,
u}
ight|^2 \leq \mathrm{const.} \left(D_{F_k'}[u] + \sum_{\alpha} D_{F_\alpha'}[u]
ight)$$
 ,

so that

$$\sum_{k=0}^{\infty} M_k^2 \leq \text{const.} \ D_{\Phi^{-A_0}}[u] < \infty . \tag{3}$$

Hence $\{m_k^{(i)}\}$ satisfy the condition of the theorem.

(ii) Sufficiency.

Suppose that there exist constants $m_k^{(i)}$, which satisfy the condition of the theorem. We define $f_k(z)$ on Γ_k by

$$f_k(z) = m_k^{(i)} / |\sigma_k^{(i)}| \quad \text{on} \quad \sigma_k^{(i)} \quad (k=0, 1, 2, \cdots),$$
 (4)

where $|\sigma_k^{(i)}|$ is the length of $\sigma_k^{(i)}$, then

$$\int_{\Gamma_k} f_k(z) ds = \sum_i m_k^{(i)} = 0 \qquad (k \ge 1).$$

We solve the Neumann problem for F'_k $(k \ge 1)$ with the boundary value $f_k(z)$ and let $w_k(z)$ be its solution, such that $w_k(z)$ is harmonic in F'_k and

$$\frac{\partial w_k}{\partial \nu} = f_k(z) \quad \text{on } \Gamma_k. \tag{5}$$

Let $f_k^{(i)}(z)$ $(i \ge 2)$ be defined on Γ_k by

$$f_k^{(i)}(z) = 1/|\sigma_k^{(i)}| \quad \text{on} \quad \sigma_k^{(i)} \ (i \ge 2),$$

$$= -1/|\sigma_k^{(1)}| \quad \text{on} \quad \sigma_k^{(1)},$$

$$= 0 \quad \text{on} \quad \sigma_k^{(j)} \quad (j \ne i, 1),$$
(6)

then $\int_{\Gamma_k} f_k^{(i)}(z) ds = 0$. Let $w_k^{(i)}(z)$ be the solution of the Neumann problem for F_k' , with the boundary value $f_k^{(i)}(z)$, then since $\sum_i m_k^{(i)} = 0$,

$$f_k(z) = \sum_{i=2}^{\sigma_k} m_k^{(i)} f_k^{(i)}(z)$$
 ,

so that

$$w_k(z) = \sum_{i=2}^{\alpha_k} m_k^{(i)} w_k^{(i)}(z)$$
.

Hence

$$\sqrt{D_{F_k'}[w_k]} \leq \sum_{i=2}^{a_k} |m_k^{(i)}| \sqrt{D_{F_k'}[w_k^{(i)}]} \leq \text{const. } M_k,$$

$$\sum_{k=1}^{\infty} D_{F_k'}[w_k] \leq \text{const. } \sum_{k=1}^{\infty} M_k^2 < \infty.$$
(7)

Let $w_0(z)$ be the solution of the mixed boundary value problem for $F'_0 - \Delta_0$, such that $w_0(z)$ is harmonic in $F'_0 - \Delta_0$,

On Royden's theorem on a covering surface of a closed Riemann surface. 35

$$w_0=0$$
 on C_0 , $\frac{\partial w_0}{\partial \nu}=f_0(z)$ on Γ_0 . (8)

Then

$$\int_{C_0} \frac{\partial w_0}{\nu \, \partial} \, ds = \sum_i m_0^{(i)} \neq 0 \,. \tag{9}$$

We define w(z) in $\Phi - \Delta_0$ by putting

$$w(z) = w_0(z)$$
 in $F'_0 - A_0$, (10)
= $w_k(z)$ in F'_k $(k \ge 1)$.

Then by (7), (9),

$$\int_{C_0} \frac{\partial w}{\partial \nu} ds = 0, \qquad D_{\Phi - A_0}[w] < \infty.$$
 (11)

First proof. Let Φ_n be a connected part of Φ , such that

$$\Phi_n = (F_0' - \Delta_0) + \sum_{k=1}^n F_k' \tag{12}$$

and $C_0 + \gamma_n$ be its boundary. Let $u_n(z)$ be the solution of the mixed boundary value problem for Φ_n , such that $u_n(z)$ is harmonic in Φ_n ,

$$u_n = 0 \text{ on } C_0, \qquad \frac{\partial u_n}{\partial \nu} = \frac{\partial w}{\partial \nu} \text{ on } \gamma_n.$$
 (13)

Then

$$D_{\Phi_n}[u_n, w] = \int_{\gamma_n} u_n \frac{\partial w}{\partial \nu} ds = \int_{\gamma_n} u_n \frac{\partial u_n}{\partial \nu} ds = D_{\Phi_n}[u_n],$$

so that $D_{\Phi_n}[u_n, w-u_n]=0$, hence

$$D_{\Phi^{-}}[w] \ge D_{\Phi_n}[w] = D_{\Phi_n}[u_n] + D_{\Phi_n}[w - u_n] \ge D_{\Phi_n}[u_n], \qquad (14)$$

$$\int_{C_0} \frac{\partial u_n}{\partial \nu} ds = \int_{\gamma_n} \frac{\partial u_n}{\partial \nu} ds = \int_{\gamma_n} \frac{\partial w}{\partial \nu} ds = \int_{C_0} \frac{\partial w}{\partial \nu} ds = 0.$$
 (15)

By (14), we can select a partial sequence $u_{n_k}(z)$ from $u_n(z)$, such that $u_{n_k}(z) \rightarrow u(z)$ uniformly in the wider sense in $\Phi - \Delta_0$, then u(z) is harmonic in $\Phi - \Delta_0$ and by (13), (14), (15),

$$u_0=0$$
 on C_0 , $\int_{C_0} \frac{\partial u}{\partial v} ds \neq 0$, $D_{\Phi^{-d_0}}[u] < \infty$. (16)

36 M. Tsuji

Since such a harmonic function u(z) exsits on $\Phi - \Delta_0$, Φ is of positive boundary.

Second proof. (together with A. Mori). Let $u_n(z)$ be the harmonic measure of γ_n with respect to Φ_n , such that $u_n(z)$ is harmonic in Φ_n ,

$$u_n=0$$
 on C_0 , $u_n=1$ on γ_n .

Let $v_n(z)$ be its conjugate harmonic function and put

$$d_n = \int_{C_0} dv_n > 0. (17)$$

Let C_{ρ} be the niveau curve: $u_n(z) = \rho$ $(0 \le \rho \le 1)$, then if w(z) is defined by (10),

$$\int_{C_0} \frac{\partial w}{\partial \rho} dv_n = \int_{C_\rho} \frac{\partial w}{\partial \nu} ds = \int_{C_0} \frac{\partial w}{\partial \nu} ds = a_0 \neq 0,$$

so that

$$\begin{split} a_0^2 &= \left(\int_{C_{\rho}} \frac{\partial w}{\partial \rho} \, dv_n\right)^2 \leq \int_{C_{\rho}} dv_n \int_{C_{\rho}} \left(\frac{\partial w}{\partial \rho}\right)^2 \! dv_n = d_n \int_{C_{\rho}} \left(\frac{\partial w}{\partial \rho}\right)^2 \! dv_n \,, \\ a_0^2 &\leq d_n \int_0^1 d\rho \int_{C_{\rho}} \left(\frac{\partial w}{\partial \rho}\right)^2 dv_n \leq d_n \, D_{\Phi_n}[w] \leq d_n \, D_{\Phi_{-d_0}}[w] \,. \end{split}$$

Hence d_n does not tend to zero with $n \to \infty$, so that Φ is of positive boundary.

Mathematical Institute, Tokyo University.