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On Royden’s theorem on a covering surface
of a closed Riemann surface.

By Masatsugu Tsuj1

(Received Nov. 4, 1953)

Let F be a closed Riemann surface of genus p=2, spread over
the z-plane and @ be its unramified covering surface. Let C; (i=1,2,---,p)
be p disjoint ring cuts of F, such that, if we cut F along {C;}, then
F becomes a surface of planar character and let C; be the conjugate
ring cut of C;, such that C; meets C; at a point and is disjoint to
C;, C; (7=1,2,--,p, j=i). We assume that C;, C; are rectilinear poly- .
gons and meet at a positive angle. We denote the both shores of C;,
C; by C},C7, Ci*, C;~ respectively.

We denote a surface, which is obtained from F by cutting along
a certain number of C;, C; by F’ in general, then

o= F},
k=0

where Fj, is one F'.
Let 7", be the boundary of F;, which consists of a certain number
of C#,C;,Ci*,Ci~, which we denote by {o§’}L, ;.. 4, S0 that I"',=>]0%.

Along &§, there connects another F. to Fj.

Then Royden! proved the following theorem.

THEOREM. The necessary and sufficient condition that @ is of
positive boundary is that there exist a contant m$ corresponding to o,
such that if o5 belong to the boundary of another F; and of=d'?,

then mP>=—m$’ and satisfy the following conditions :
(1) SIm®=+0, >SImP=0 (k=1,2,-),
(i) SIME< oo,

1) H.L. Royden: Harmonic functions on open Riemann surfaces. Trans. Amer.
Math. Soc. 75 (1952).
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where M,=Max |mi|.
z

We shall give a simple proof in the following lines.

PrROOF. (i) Necessity.

Suppose that @ is of positive boundary. We take a circular disc 4,
in Fy and C, be its bounding circle.

Let #(z) be the harmonic measure of the ideal boundary of @ with
respect to ¢ —4,, then since @ is of positive boundary,

#=0 on C,, j i’alds>o, 0<u<l in ®—4,
Co

v

D@—Ao[u]<°° ’
where D,_,[u] is the Dirichlet integral of #(z) in @— 4,.
Now to F}, there connects a finite number of F'’s: F,, Fg,--. Letz

be any point of 7I7;, then
| grad u(z) P < const. (D, [u] + 3 Dy [u])
so that

Max | ou
zel‘k 1 61}

"< const. (D [u]+3) Dy [udl)

where » is the outer normal of /I’, with respect to F;.
Now we define m%’ by

oo ot ds=mp, (1)
Tk

then

Simp=| 2% gs>0, mmp=| as—0 k=1. @

Co Qv ry, ov

If we put M,=Max |m}’|, then

: 2
M2 < const. Marx aa” < const. (DF;E [#]+> Dy, [u]) ,
zely v o
so that
. ki M? < const. Dg_, [u]<< o . (3)
=0

Hencn {m$) satisfy the condition of the theorem.
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(i1) Sufficiency.
Suppose that there exist constants 7, which satisfy the condition
of the theorem. We define f,(z) on I, by

fk(z)__’-m(ki)/, o-;zi), on O-Sei) (k::o, 1) 2’“') ’ (4)
where |o%’| is the length of o, then
[, fula)ds =31 mp=0 (k==1).

We solve the Neumann problem for Fj; (k=1) with the boundary
value fi(z) and let wg(z) be its solution, such that wy(z) is harmonic
in F; and

oy =f(z) on I’;. (5)

v
Let f$’(z) (1=2) be defined on I', by
22)=1/le¥?| on of (1=2),
=—1/|a%/ on &, (6)
=0 on o>  (ji,1),
then Sr f9(z)ds=0. Let w¥(z) be the solution of the Neumann pro-
k

blem for F, with the boundary value f3”(z), then since > m{’=0,

%
fi(2)= iZ_ZM‘/:’fZ”(z),
so that
®p
wi(2)= 22 mid wif(z) .

Hence

wk ] _
V' D [wp] < > |mi| v/ Dg [wi’] < const. M,

1Dy [w,] < const. ST M3< o . (7
k=1 k=1 ’

Let w,(z) be the solution of the mixed boundary value problem for
Fy— 4, such that wy(z) is harmonic in F— 4,
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w,=0 on G, 8 Wo =f(z) on I,. (8)
1 4
Then
ow, _ i
Jo, S do=imio 0. ®

We define w(z) in @— 4, by putting
w2)=wylz) in Fy—4,, (10)
=wyz) .in F; (k=1).
Then by (7), (9),

| 2% as=o, Do, Jw]<co . (11)
Co 61)

First proof. Let @, be a connected part of @, such that
00=(Fi—a)+ 31 F; (12)

and Cy+ v, be its boundary. Let #,(z) be the solution of the mixed
boundary value problem for @,, such that #,(z) is harmonic in @,,

0Un _ OW
ov ov

%n=0 on C(), on v,. (13)

Then

ow ou
D , W :S - dS:SV 2% ds=D nl s
o, [t4n, W] 1,nu oy y‘nun 9 s=Dq [24s]

so that D [#,, w—u,]=0, hence

Dy o[ ] Dy [1]= Dy, [t4]+ Doy [t0— 101 Dy [1ta], (14)
0 Uy _ 0 Uy — ow — ow ..
jc., 2 ds= SY” Dttn. s Ln . g Lﬁ oL gs:40. (15)

By we can select a partial sequence ”nk(z) from #,(z), such that
u,,k(z)—>u(z) uniformly in the wider sense in @—4, then u(z) is

harmonic in @—4, and by (13), (15),

=0 on G, L%’;}ids#o, Dy, Ju]< o . (16)
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Since such a harmonic function #(z) exsits on @—4, @ is of positive
boundary.

Second proof. (together with A. Mori). Let #,(z) be the harmonic
measure of v, with respect to @,, such that #,(z) is harmonic in @,,

u,=0 on G, ur=1 on v,.

Let v,(z) be its conjugate harmonic function and put

d,,=jco dv,>0 . (17)

Let C, be the niveau curve: u,(2)=p (0<p<1), then if w(z) is defined
by (10),

Scpaa—wdv,,=jcp g,t,u ds= e 61;}0 ds::a(,:l:O,
so that
ai= (| . o o) < | ¢, @ jcp (2% )dvu=d, jcp (%:’f—)zdv,, ,

d<af do [ (22 ) doady Do [01<dy Do- 1],
p

Hence d, does not tend to zero with #— o, so that @ is of positive
boundary.
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