On the capacity of general Cantor sets.

By Masatsugu Tsuji

(Received May 28, 1953)

1. General linear Cantor sets.

1. Let Δ be an interval on the x-axis. We take $k \geq 2$ disjoint intervals $\Delta_{i_1}(i_1=1,2,\cdots,k)$ in Δ and k disjoint intervals $\Delta_{i_1i_2}(i_2=1,2,\cdots,k)$ in Δ_{i_1} and proceed similarly, then after n steps, we obtain k^n intervals $\Delta_{i_1\cdots i_n}(i_1,\cdots,i_n=1,2,\cdots,k)$, such that

$$\Delta_{i_1\cdots i_n} \subset \Delta_{i_1\cdots i_{n-1}}. \quad (i_n=1,2,\cdots,k). \tag{1}$$

We put

$$E = \prod_{n=1}^{\infty} \left(\sum_{i_1, \dots, i_n}^{1, 2, \dots, k} \Delta_{i_1 \dots i_n} \right). \tag{2}$$

In § 1 and § 2, we denote the length of an interval I by |I| and the logarithmic capacity of a set M by $\gamma(M)$. We assume that there exists constants a>0, b>0, such that for $n=1,2,\cdots$

$$|\Delta_{i_1\cdots i_{n-1}}\nu| \ge a |\Delta_{i_1\cdots i_{n-1}}| \quad (\nu=1,2,\cdots,k)$$
 (3₁)

and

the mutual distance of $\Delta_{i_1\cdots i_{n-1}\mu}$ and $\Delta_{i_1\cdots i_1\cdots i_{n-1}\nu}$ $(\mu,\nu=1,2,\cdots,k,\mu \neq \nu)$

is
$$\geq b |A_{i_1\cdots i_{n-1}}|$$
. (32)

Then we call E a general linear Cantor set.

THEOREM 1. Let E be a general linear Cantor set. Then

$$m(E)=0$$
, $\gamma(E) \geq a^{\frac{1}{k-1}} b |\Delta| > 0$,

where m(E) is the linear measure and $\gamma(E)$ the logarithmic capacity of E.

At every point of E, the upper capacity density of E is positive, so that every point of E is a regular point for Dirichlet problem.

PROOF. Let

$$E = \prod_{n=1}^{\infty} \left(\sum_{i_1, \dots, i_n}^{1, 2, \dots, k} \Delta_{i_1 \dots i_n} \right). \tag{2}$$

By (3_1) , (3_2) , $\Delta_{i_1\cdots i_{n-1}} - \sum_{i_n=1}^k \Delta_{i_1\cdots i_{n-1}i_n}$ contains an interval δ , such that $|\delta| \geq b |\Delta_{i_1\cdots i_{n-1}}|$, so that

$$\begin{aligned} |\Delta_{i_1\cdots i_{n-1}}| &\geq |\delta| + \sum_{i_n=1}^k |\Delta_{i_1\cdots i_{n-1}i_n}| \geq b |\Delta_{i_1\cdots i_{n-1}}| + \sum_{i_n=1}^k |\Delta_{i_1\cdots i_{n-1}i_n}|, \\ &\sum_{i_n=1}^k |\Delta_{i_1\cdots i_{n-1}i_n}| \leq (1-b) |\Delta_{i_1\cdots i_{n-1}}|. \end{aligned}$$

From this we have

$$\sum_{i_1,\dots,i_n}^{1,2,\dots,k} |\Delta_{i_1\dots i_n}| \leq (1-b)^n |\Delta| \to 0 (n \to \infty),$$

hence m(E) = 0.

From (3_1) , (3_2) , we have

$$|\Delta_{i_1\cdots i_n}| \geq a^n |\Delta| \quad (i_1,\cdots,i_n=1,2,\cdots,k)$$
 (4₁)

and

the mutual distance of $\Delta_{i_1\cdots i_{n-1}}\mu$ and $\Delta_{i_1\cdots i_{n-1}}\nu$ $(\mu, \nu=1, 2, \cdots, k, \mu \neq \nu)$

is
$$\geq a^{n-1}b|A|$$
. (4₂)

Let M be a bounded closed set on the x-axis and x_i ($i=1, 2, \dots, n$) be n points on M, then by Fekete-Szegö's theorem¹⁾, if we put

$$V_n(E) = \underset{x_i \in M}{\operatorname{Max}_{2}^{\binom{n}{2}}} \sqrt{\prod_{i \leq k}^{1, 2, \dots, n} |x_i - x_k|}, \qquad (5)$$

then

$$V_n(E) \rightarrow \gamma(M) \qquad (n \rightarrow \infty).$$
 (6)

¹⁾ M. Fekete: Über die Verteilung der Wurzeln bei gewisser algebraischen Gleichungen mit ganzzahlingen Koeffizienten. Math. Zeits. 17 (1923).

G. Szegö: Bemerkungen zu einer Arbeit von Herrn M. Fekete "Über die Verteilung der Wurzeln bei gewisser algebraischen Gleichungen mit ganzzahligen Koeffizienten". Math. Zeits. 21 (1925).

We put

$$E_n = \sum_{i_1, \dots, i_n}^{1, 2, \dots, k} \Delta_{i_1 \dots i_n} \tag{7}$$

and in virtue of (6), take N points $x_{i_1\cdots i_n}^{(\nu)}$ ($\nu=1,2,\cdots,N$) on each $\Delta_{i_1\cdots i_n}$, such that

$$\sqrt[N]{\prod_{\mu<\nu}^{1,2,\cdots,N}|x_{i_1\cdots i_n}^{(\mu)}-x_{i_1\cdots i_n}^{(\nu)}|} \to \gamma \left(\Delta_{i_1\cdots i_n}\right)(N\to\infty). \tag{8}$$

Since there are $k^n N$ points $x_{i_1 \cdots i_n}^{(v)}$ on E_n , we have by (5),

$$[V_{k^{n}N}(E_{n})]^{\binom{k^{n}N}{2}} \ge \prod_{i_{1},\cdots,i_{n}}^{1,2,\cdots,k} \prod_{j_{1},\cdots,j_{n}}^{1,2,\cdots,k} |x_{i_{1}\cdots i_{n}}^{(\mu)} - x_{j_{1}\cdots j_{n}}^{(\nu)}| = \pi, \quad \text{say.}$$
 (9)

Now π consists of (n+1) factors:

$$\pi = \pi_0 \, \pi_1 \cdots \pi_n \,, \tag{10}$$

where π_0 is formed with pairs of points, which lie in the same $\Delta_{i_1\cdots i_n}$ and π_1 is formed with pairs of points, which lie in the same $\Delta_{i_1\cdots i_{n-1}}$ and belong to $\Delta_{i_1\cdots i_{n-1}j}$ and $\Delta_{i_1\cdots i_{n-1}j'}(j\pm j')$ respectively and π_2 is formed with pairs of points, which lie in the same $\Delta_{i_1\cdots i_{n-2}}$ and belong to $\Delta_{i_1\cdots i_{n-2}j}$ and $\Delta_{i_1\cdots i_{n-2}j'}(j\pm j')$ respectively and finally π_n is formed with pairs of points, which belong to Δ_j and $\Delta_{j'}(j\pm j')$ respectively. By (8),

$$({}^{N}_{2}) / \overline{|\pi_{0}|} \to \prod_{i_{1}, \dots, i_{n}}^{1, 2, \dots, k} \gamma(\Delta_{i_{1} \dots i_{n}}) (N \to \infty) .$$
 (11)

Since the logarithmic capacity of an interval I is |I|/4, we have by (4_1) , $\gamma(\Delta_{i_1\cdots i_n}) \geq a^n |\Delta|/4$, so that

$$\lim_{N\to\infty} \binom{N}{2} \sqrt{|\pi_0|} \ge \left(\frac{a^n |\Delta|}{4}\right)^{k^n}. \tag{12}$$

Since in π_1 , $|x_{i_1\cdots i_n}^{(\mu)}-x_{j_1\cdots j_n}^{(\nu)}|\geq a^{n-1}b|A|$ by (4_2) and the number of such pairs is $\binom{k}{2}N^2k^{n-1}=\frac{(k-1)N^2}{2}k^n$,

$$|\pi_1| \ge (a^{n-1}b|\Delta|)^{\frac{(k-1)N^2}{2}k^n}$$
 (13₁)

Since in π_2 , $|x_{i_1\cdots i_n}^{(\mu)}-x_{j_1\cdots j_n}^{(\nu)}| \ge a^{n-2}b|\Delta|$ and the number of such pairs is $\binom{k}{2}(k\,N)^2\,k^{n-2}=\frac{(k-1)\,N^2}{2}\,k^{n+1}$,

$$|\pi_2| \ge (a^{n-2}b|\Delta|)^{\frac{(k-1)N^2}{2}k^{n+1}}$$
(13₂)

and finally

$$|\pi_n| \ge (b |\Delta|)^{\frac{(k-1)N^2}{2}k^{2n-1}}$$
(13_n)

Since

$$S_n = (n-1) + (n-2)k + \cdots + (n-n)k^{n-1} = \frac{1}{k-1} \left(\frac{k^n - 1}{k-1} - n \right),$$

we have

$$|\pi_1\cdots\pi_n| \geq a^{\frac{N^2}{2}k^n\left(\frac{k^n-1}{k-1}-n\right)} \frac{N^2}{(b|\Delta|)^2} k^{n(k^n-1)}$$

$$(14)$$

Since $\binom{k^n N}{2} \sim \frac{N^2 k^{2n}}{2}$ $(N \to \infty)$, we have from (9), (10), (12), (14),

$$\gamma(E_n)^{k^{2n}} \ge \left(\frac{a^n |\Delta|}{4}\right)^{k^n} a^{k^n \left(\frac{k^n - 1 - n}{k - 1}\right)} (b |\Delta|)^{k^n (k^n - 1)}. \tag{15}$$

Since $\gamma(E_n) \rightarrow \gamma(E) (n \rightarrow \infty)$, we have

$$\gamma(E) \geq a^{\frac{1}{k-1}} b |\Delta| > 0. \tag{16}$$

Let $x_0 \in E$, then there exists i_1, i_2, \dots , such that

$$x_0 \in \Delta_{i_1}$$
, $x_0 \in \Delta_{i_1 i_2}, \dots, x_0 \in \Delta_{i_1 \dots i_n}, \dots$

Let $E_{i_1\cdots i_n}$ be the part of E, which is contained in $\Delta_{i_1\cdots i_n}$, then by (16),

$$\gamma(E_{i_1\cdots i_n}) \geq a^{\frac{1}{k-1}} b |\Delta_{i_1\cdots i_n}|.$$

From this we see that the upper capacity density of E at x_0 is positive,

so that x_0 is a regular point for Dirichlet problem.²⁾ This can be proved simply as follows. By Frostman's theorem,³⁾ the equiliblium potential of E,

$$u(z) = \int_{E} \log \frac{1}{|z-a|} d\mu(a), \int_{E} d\mu(a) = 1 \quad (z = x + iy)$$

attains its maximum value V at x_0 . From the lower semi-continuity of u(z), $\lim_{z\to x_0} u(z) = V$, when z tends to x_0 from the outside of E. Hence

$$w(z) = V - u(z) > 0$$

is a barrier at x_0 , so that x_0 is a regular point for Dirichlet problem. REMARK. The ordinary Cantor set E is obtained as follows. Let $\Delta: 0 \le x \le 1$ and $\Delta_1: 0 \le x \le x_1$, $\Delta_2: y_1 \le x \le 1$, $(x_1 < y_1)$, such that

$$|\Delta_1| = |\Delta_2| = \frac{1}{2p} |\Delta|, \quad y_1 - x_1 = \left(1 - \frac{1}{p}\right) |\Delta|, \quad |\Delta| = 1, \quad (p > 1). \quad (17)$$

We perform the similar operations on Δ_1 , Δ_2 and proceed similarly, then after n steps, we obtain 2^n intervals $\Delta_{i_1 \cdots i_n}$ $(i_1, \cdots, i_n = 1, 2)$. Then

$$E = \prod_{n=1}^{\infty} \left(\sum_{i_1, \dots, i_n}^{1, 2} \Delta_{i_1 \dots i_n} \right)$$
 (18)

is an ordinary Cantor set. In this case, in (3_1) , (3_2) ,

$$k=2$$
, $a=\frac{1}{2p}$, $b=1-\frac{1}{p}$,

so that $a^{\frac{1}{k-1}}b = \frac{1}{2p} - \frac{1}{2p^2}$, hence

$$\gamma(E) \ge \frac{1}{2b} - \frac{1}{2b^2} > 0,$$
 (19)

which is proved by R. Nevanlinna.49

²⁾ G.C. Evans: Potentials of positive mass, II. Trans. of the Amer. Math. Soc. 38 (1935).

³⁾ O. Frostman: Poteniel d'eqilibre et capacité des ensembles. Lund. (1935). Frostman proved the case of Newtonian potential, the case of logarithmic potential can be proved by the same method.

⁴⁾ R. Nevanlinna: Eindeutige analytische Funktionen. Berlin (1936). p. 148.

2 General planar Cantor sets.

1. Let Δ be a circular disc of radius R. We take $k \geq 2$ disjoint circular discs $\Delta_{i_1}(i_1=1,2,\cdots,k)$ of radius R_{i_1} in Δ and proceed similarly, then after n steps, we obtain k^n circular discs $\Delta_{i_1\cdots i_n}(i_1,\cdots,i_n=1,2,\cdots,k)$ of radius $R_{i_1\cdots i_n}$, such that

$$\Delta_{i_1\cdots i_{n-1}i_n} \subset \Delta_{i_1\cdots i_{n-1}} (i_n=1,2,\cdots,k). \tag{1}$$

We put

$$E = \prod_{n=1}^{\infty} \left(\sum_{i_1, \dots, i_n}^{1, 2, \dots, k} \Delta_{i_1 \dots i_n} \right). \tag{2}$$

We assume that there exists constants a>0, b>0, such that for $n=1,2,\cdots$,

$$R_{i_1\cdots i_{n-1}}\nu \ge a R_{i_1\cdots i_{n-1}} \ (\nu=1,2,\cdots,k)$$
 (3₁)

and

the mutual distance of $\Delta_{i_1\cdots i_{n-1}}\mu$ and $\Delta_{i_1\cdots i_{n-1}}\nu$ $(\mu,\nu=1,2,\cdots,k,\mu \neq \nu)$

is
$$\geq b R_{i_1 \cdots i_{n-1}}$$
. (3₂)

Then we call E a general planar Cantor set.

THEOREM 2. Let E be a general planar Cantor set. Then

$$m(E)=0$$
, $\gamma(E) \geq a^{\frac{1}{k-1}}b R > 0$,

where m(E) is the plane measure and $\gamma(E)$ the logarithmic capacity of E.

At every point of E, the upper capacity density of E is positive, so that every point of E is a regular point for Dirichlet problem.

PROOF. We have only to prove that m(E)=0, for the other part can be proved similarly as Theorem 1. Let C_i be the bounding circle of Δ_i and O_i be its center and R_i be its radius. Let O be the center of Δ . We draw a circle C_i' of radius $R_i + \frac{bR}{2}$ about O_i , then C_i' ($i=1,2,\cdots,k$) are disjoint. Hence if we denote the points of intersection of the segment O_i O with C_i and C_i' by A_i , A_i' respectively, then a circle Γ_i ,

with the diameter $A_i A_i'$ lies in Δ and Γ_i are disjoint each other. Let D_i be the inside of Γ_i and $|D_i|$ be its area, then

$$|D_i| = \pi \left(\frac{bR}{4}\right)^2 = \left(\frac{b}{4}\right)^2 \pi R^2 = \left(\frac{b}{4}\right)^2 |\Delta|.$$

From this, we have $\sum_{i=1}^{k} |a_i| \le \alpha |a|$, where $0 < \alpha < 1$ is a constant, which depends on b only. Hence

$$m(E) \leq \sum_{i_1,\cdots,i_n}^{1,2,\cdots,k} |\Delta_{i_1\cdots i_n}| \leq \alpha^n |\Delta| \rightarrow 0 \quad (n \rightarrow \infty),$$

so that m(E)=0.

2. To generalize Theorem 2, we shall use the following lemma. Lemma 1.5) Let Γ be an analytic Jordan curve on a plane, then

$$\gamma(\Gamma) \geq \frac{d(\Gamma)}{4}$$
,

where $\gamma(I)$ is the logarithmic capacity and d(I) the diameter of Γ .

PROOF. Let $P \in \Gamma$, $Q \in \Gamma$, such that $\overline{PQ} = d(\Gamma)$. We take the line PQ as the x-axis on the xy-plane and let P = (a, 0), Q = (b, 0) (a < b). We take points $a \le x_1 < x_2 < \cdots < x_n \le b$ and let P_{ν} be a point on Γ , whose projection on the x-axis is x_{ν} , then $\overline{P_{\mu}P_{\nu}} \ge |x_{\mu}-x_{\nu}|$. From this we have easily $\gamma(\Gamma) \ge \gamma(PQ) = \frac{\overline{PQ}}{4} = \frac{d(\Gamma)}{4}$. q. e. d.

In the following, a Jordan domain is a domain, which is bounded by an analytic Jordan curve and d(M) is the diameter of a set M. Let Δ be a Jordan domain. We take $k \geq 2$ disjoint Jordan domains $\Delta_{i_1}(i_1=1,2,\cdots,k)$ in Δ and proceed similarly, then after n steps, we obtain k^n Jordan domains $\Delta_{i_1\cdots i_n}(i_1,\cdots,i_n=1,2,\cdots,k)$ and put

$$E = \prod_{n=1}^{\infty} \left(\sum_{i_1, \dots, i_n}^{1, 2, \dots, k} \Delta_{i_1 \dots i_n} \right). \tag{1}$$

We assume that

$$d(\Delta_{i_1\cdots i_{n-1}}\nu) \ge a d(\Delta_{i_1\cdots i_{n-1}}) (\nu=1,2,\cdots,k)$$
 (2₁)

⁵⁾ G. Pólya und G. Szegö: Aufgaben und Lehrsätze aus der Analysis, II. Berlin (1925). p. 25.

and the mutual distance of $\Delta_{i_1\cdots i_{n-1}}\mu$ and $\Delta_{i_1\cdots i_{n-1}}\nu$ $(\mu, \nu=1, 2, \cdots, k, \mu \neq \nu)$ is $\geq b$ $d(\Delta_{i_1\cdots i_{n-1}})$, (2₂)

where a>0, b>0 are constants. Then by means of Lemma 1, we can prove similarly as Theorem 1, the following generalization of Theorem 2.

THEOREM 3. $\gamma(E) \ge a^{\frac{1}{k-1}} b \ d(\Delta) > 0$. At every point of E, the upper capacity density of E is positive, so that every point of E is a regular point for Dirichlet problem.

3. We shall prove a lemma.

LEMMA 2. Let Δ be a ring domain on the z-plane, which is bounded by two analytic Jordan curves C_1 , C_2 , where C_1 lies inside of C_2 . Let C be an analytic Jordan curve, which lies between C_1 and C_2 and contains C_1 in its inside. Let w=f(z) be regular and schlicht in Δ and Γ be the image of C on the w-plane, L be its length and D be its diameter. Then

$$L \leq_{\kappa} D$$
,

where $\kappa > 0$ is a constant, which depends on C and Δ only.

PROOF. Let $\Delta_1 \subset \Delta$ be a closed ring domain, which contains C and z_0 be a point of $\overline{\Delta_1}$. Then by Koebe's distortion theorem,

$$A|f'(z_0)| \leq |f'(z)| \leq B|f'(z_0)|, \qquad z \in \overline{A_1}, \qquad (1)$$

where A>0, B>0 are constants. Hence

$$L = \int_{C} |f'(z)| |dz| \leq \text{const.} |f'(z_0)|.$$
 (2)

Let C' be an analytic Jordan curve in \overline{A}_1 , which is contained inside of C and contains C_1 in its inside and I' be its image on the w-plane. We take two points $w \in I'$, $w' \in \Gamma'$, such that |w - w'| is equal to the shortest distance of I' and I''. Then the segment w w' is contained in a ring domain, which is bounded by Γ and Γ' . Hence its image γ on the z-plane is contained in \overline{A}_1 . Hence by (1),

$$D \ge |w - w'| = \int_{\gamma} |f'(z)| |dz| \ge \text{const.} |f'(z_0)|.$$
 (3)

From (2), (3), we have

$$L \leq \text{const. } D$$
. q. e. d.

4. Let Δ be a domain on the z-plane, which contains $z=\infty$ and G be a group of Schottky type, whose elements are schlicht meromorphic functions f(z) in Δ , which transform Δ into itself. We assume that the fundamental domain Δ_0 of G is bounded by $p(2 \le p \le \infty)$ pairs of disjoint equivalent analytic Jordan curves C_i , C_i $(i=1,2,\cdots,p)$ and a bounded closed set M_0 .

Let Δ_{ν} be equivalents of Δ_0 by G_{ν} then Δ_{ν} cluster to a non-dense perfect set E_{ν} , which is called the singular set of G_{ν} .

If we denote the boundary of Δ by Γ , then

$$I'=E+\sum_{\nu=0}^{\infty}M_{\nu}$$
,

where M_{ν} are equivalents of M_0 .

We shall prove the following theorem, which is a precise form of Myrberg's theorem⁶⁾, who proved that $\gamma(I) > 0$.

THEOREM 4. (i) $\gamma(E) > 0$.

(ii) If $2 \le p < \infty$, then at every point of E, the upper capacity density of E is positive, so that every point of E is a regular point for Dirichlet problem.

PROOF. First we suppose that $2 \le p < \infty$. Then the totality of equivalents of C_i , C_i' $(i=1,2,\cdots,p)$, which lie inside of C_1 can be written in the form: C_1 $i_1\cdots i_n$ $(i_1,\cdots,i_n=1,2,\cdots,q,\ q=2p-1)$, such that

$$D_{1 i_1 \cdots i_{n-1} i_n} \subset D_{1 i_1 \cdots i_{n-1}} (i_n = 1, 2, \cdots, q)$$

where $D_{1 i_1 \cdots i_n}$ is the inside of $C_{1 i_1 \cdots i_n}$.

We denote the part of E, which lies in C_1 by E_1 .

Let C be an analytic Jordan curve in Δ_0 , which contains C_i, C_i' $(i=1,2,\cdots,p)$ in its inside and M_0 lies outside of C and Δ_0' be the domain, which is bounded by C_i, C_i' $(i=1,2,\cdots,p)$ and C. Let $z_0 \in \Delta_0'$, then by Koebe's distortion theorem, for any $f(z) \in G$,

$$A|f'(z_0)| \leq |f'(z)| \leq B|f'(z_0)|, \quad z \in \Delta'_0,$$
 (1)

where A>0, B>0 are constants. Hence if we denote the length of $C_{1\ i_1\cdots i_n}$ by $L_{1\ i_1\cdots i_n}$, then

⁶⁾ P. J. Myrberg: Die Kapazität der singulären Menge der linearen Gruppe. Ann. Acad. Fenn. Ser. A. 10 (1941).

$$const. |f'(z_0)| \leq L_{li_1 \cdots i_n} \leq const. |f'(z_0)|.$$
 (2)

Hence by Lemma 2,

$$d(D_{1 i_{1} \cdots i_{n-1}} \nu) \ge \text{const. } L_{1 i_{1} \cdots i_{n-1}} \nu \ge \text{const. } |f'(z_{0})|$$

$$\ge \text{const. } L_{1 i_{1} \cdots i_{n-1}} \ge \text{const. } d(D_{1 i_{1} \cdots i_{n-1}}) \ (\nu = 1, 2, \cdots, q). \tag{3}$$

Let d be the shortest distance of $D_{1 i_1 \cdots i_{n-1}} \mu$ and $D_{1 i_1 \cdots i_{n-1}} \nu$, then there exists $z_{\mu} \in C_{1 i_1 \cdots i_{n-1} \mu}$, $z_{\nu} \in C_{1 i_1 \cdots i_{n-1} \nu}$, such that

$$|z_{\mu}-z_{\nu}|=d. \tag{4}$$

The segment $z_{\mu} z_{\nu}$ meets the boundary of $\Delta'_{1 i_{1} \cdots i_{n-1}}$ in general, where $\Delta'_{1 i_{1} \cdots i_{n-1}}$ is an equivalent of Δ'_{0} , whose outermost boundary is $C_{1 i_{1} \cdots i_{n-1}}$. Let z' be a point on the segment $z_{\mu} z_{\nu}$, which lies on the boundary of $\Delta'_{1 i_{1} \cdots i_{n-1}}$, such that the segment $z_{\mu} z'$ lies in $\Delta'_{1 i_{1} \cdots i_{n-1}}$ and γ be its image in Δ'_{0} , where if the segment $z_{\mu} z_{\nu}$ does not meet the boundary of $\Delta'_{1 i_{1} \cdots i_{n-1}}$, then we take $z' = z_{\nu}$. Then

$$d \geq |z_{\mu} - z'| = \int_{\gamma} |f'(z)| |dz| \geq \text{const.} |f'(z_{0})|$$

$$\geq \text{const.} L_{1 i_{1} \cdots i_{n-1}} \geq \text{const.} d(D_{1 i_{1} \cdots i_{n-1}}). \tag{5}$$

By (3), (5), the condition of Theorem 3 is satisfied, so that $\gamma(E_1) > 0$ and at every point of E_1 , the upper capacity density of E_1 is positive, so that every point of E_1 is a regular point for Dirichlet problem. A similar relation holds for the part of E, which is contained in C_i , C_i ($i=1,2,\dots,p$). Hence (ii) is proved. (i) (where $p=\infty$) can be deduced from the case $2 \le p < \infty$. Hence our theorem is proved.

5. We shall prove a lemma.

LEMMA 3. Let x_1 , x_2 , x_3 , x_4 be four points on the x-axis and by a linear transformation, x_i be transformed into ξ_i (i=1,2,3,4) on the x-axis, such that $\xi_1 < \xi_2 < \xi_3 < \xi_4$ and put

$$\delta = \xi_2 - \xi_1$$
, $\Delta = \xi_3 - \xi_2$, $\delta' = \xi_4 - \xi_3$.

Then

$$\Delta \leq \kappa \delta$$
, $\Delta \leq \kappa \delta'$,

where $\kappa > 0$ is a constant, which depends on x_1, x_2, x_3, x_4 only.

PROOF. Let

$$\frac{x_2-x_1}{x_4-x_1}:\frac{x_2-x_3}{x_4-x_3}=-\frac{1}{\kappa}.$$

Then since the anharmonic ratio is invariant by a linear transformation,

$$\frac{\xi_2 - \xi_1}{\xi_4 - \xi_1} : \frac{\xi_2 - \xi_3}{\xi_4 - \xi_3} = - \frac{1}{\kappa} ,$$

or

$$\frac{\delta}{\omega + \delta + \delta'} = \frac{1}{\kappa} \cdot \frac{\omega}{\delta'},$$

$$\kappa \delta \delta' = \omega (\omega + \delta + \delta') \ge \delta' \omega,$$

hence

$$\Delta \leq \kappa \delta$$
.

Similarly

$$1 \leq \kappa \delta'$$
.

6. Let F be a Riemann surface spread over the w-plane, whose genus p is $2 \le p \le \infty$. Let $F^{(\infty)}$ be an unramified covering surface of F, which is of planar character. By w = F(z), we map $F^{(\infty)}$ on a schlicht domain J on the z-plane conformally. Then F(z) is automorphic with respect to a group G of Schottky type, whose elements are meromorphic schlicht functions f(z) in J, which transform J into itself. Let J_0 be the fundamental domain of G, then J_0 is bounded by p pairs of disjoint analytic Jordan curves C_i , C_i ($i=1,2,\cdots,p$) and a bounded closed set M_0 , where C_i , C_i are equivalent by G. Let I' be the boundary of J and E be the singular set of G. By $z = \varphi(\xi)$, we map the universal covering surface of J on $|\xi| < 1$ conformally. Then $\varphi(\xi)$ is automorphic with respect to a Fuchsian group (8) in $|\xi| < 1$. Let D_0 be its fundamental domain and e_0 be the image of E on $|\xi| = 1$, with lies on the boundary of D_0 . Then

THEOREM 5. (i) $\gamma(e_0) > 0$, where $\gamma(e_0)$ is the logarithmic capacity of e_0 .

(ii) If $2 \le p < \infty$, then $m(e_0)=0$ and at every point of e_0 , the upper capacity density of e_0 is positive, so that every point of e_0 is a regular point for Dirichlet problem, where $m(e_0)$ is the linear measure of e_0 .

PROOF. By a linear transformation, we map $|\zeta| < 1$ on the upper half $\Im x > 0$ of the x-plane. Then $\Im = \Im_{\zeta}$ and $G = G_z$ correspond to linear groups \Im_x and G_x in $\Im x > 0$ respectively. Let $D_0^{(x)}$ be the image of $D_0 = D_0^{(\zeta)}$ in $\Im x > 0$, then $D_0^{(x)}$ is the fundamental domain of \Im_x and $e_0^{(x)}$ be the image of $e_0 = e_0^{(\zeta)}$ on the boundary of $D_0^{(x)}$. Let $\Delta_0^{(x)}$ be the image of Δ_0 on the x-plane, then $\Delta_0^{(x)}$ is the fundamental domain of G_x .

We may assume that $\Delta_0^{(x)} \subset D_0^{(x)}$. $\Delta_0^{(x)}$ can be constructed as follows. We take z_i $(i=1,2,\cdots,p)$ in Δ_0 , where if $p=\infty$, then we choose z_i , such that the cluster points of $\{z_i\}$ lie on M_0 . Let a_i , a_i' be equivalent points on C_i , C_i' respectively. We connect a_i (a_i') to z_i by a Jordan arc γ_i (γ_i') in Δ_0 and connect z_i , z_{i+1} by a Jordan arc λ_i in Δ_0 , such that γ_i , γ_i' , λ_i $(i=1,2,\cdots,p)$ have no common points, except the end points. We take off $\sum_{i=1}^{p} (\gamma_i + \gamma_i' + \lambda_i)$ and at most a countable number of suitable cross cuts, whose end points lie on M_0 from Δ_0 , then we obtain a simply connected domain Δ_0' . Let $\Delta_0^{(x)}$ be one of the images of Δ_0' in $\Im x > 0$, then $\Delta_0^{(x)}$ is the fundamental domain of G_x .

First we assume that $2 \le p < \infty$. The totality of equivalents of C_i , C'_i $(i=1,2,\cdots,p)$ by G, which lie inside of C_1 can be written in the form C_1 $i_1\cdots i_n$ $(i_1,\cdots,i_n=1,2,\cdots,q,q=2p-1)$, such that

$$\delta_{1 \ i_1 \cdots i_{n-1} i_n} \subset \delta_{1 \ i_1 \cdots i_{n-1}} \quad (i_n = 1, 2, \cdots, q),$$
 (1)

where $\delta_{1 i_1 \cdots i_n}$ is the inside of $C_{1 i_1 \cdots i_n}$.

Let $C_{1i_1\cdots i_n}^{(x)}$ be one of the images of $C_{1i_1\cdots i_n}$ on the x-plane, which has common points with $D_0^{(x)}$, then $C_{1i_1\cdots i_n}^{(x)}$ is a Jordan arc, whose two end points lie on the x-axis. Let $E_{1i_1\cdots i_n}$ be the segment, which is bounded by these two end points. We may assume the $\delta_{1i_1\cdots i_n}$ is mapped on a finite domain on the x-plane, then

$$E_{1 i_1 \cdots i_{n-1} i_n} \subset E_{1 i_1 \cdots i_{n-1}} (i_n = 1, 2, \cdots, q).$$
 (2)

If we put

$$E^{(1)} = \prod_{n=1}^{\infty} \left(\sum_{i_1, \dots, i_n}^{1, 2, \dots, q} E_{1 \ i_1 \dots i_n} \right), \tag{3}$$

then $E^{(1)}$ is a sub-set of $e_0^{(x)}$.

We shall prove that

$$|E_{1i_1\cdots i_{n-1}}\nu| \ge a |E_{1i_1\cdots i_{n-1}}| \quad (\nu=1,2,\cdots,q)$$
 (4₁)

and

the mutual distance of $E_{1i_1\cdots i_{n-1}\mu}$ and $E_{1i_1\cdots i_{n-1}\nu}$ (μ , $\nu=1,2,\cdots,q$,

$$\mu \neq \nu$$
) is $\geq b |E_{1i_1 \cdots i_{n-1}}|$, (4₂)

where a>0, b>0 are constants.

We shall prove (4_1) , (4_2) for the case $i_{n-1}=1$, the other case can be proved similarly.

Let

$$E_{1i_{1}\cdots i_{n-2}}=[x_{1}, y_{1}],$$

$$E_{1i_{1}\cdots i_{n-2}}=[x_{11}, y_{11}], \qquad E_{1i_{1}\cdots i_{n-2}}=[x_{12}, y_{12}],$$

$$E_{1i_{1}\cdots i_{n-2}}=[x_{111}, y_{111}], \cdots , E_{1i_{1}\cdots i_{n-2}}=[x_{11q}, y_{11q}],$$

where we may asume that

$$X_1 < x_{11} < x_{111} < y_{111} < x_{112} < y_{112} < \cdots < x_{11q} < y_{11q} < y_{11} < x_{12} < y_{12} < y_1$$
.
 $[\delta_0] \quad [\delta_1] \quad [M_1] \quad [\delta_2] \quad [M_2] \quad [M_q] \quad [\delta_{q+1}] \quad [\delta'_0]$

We put

$$M = [x_{11}, y_{11}],$$
 $\delta_0 = [x_1, x_{11}],$ $\delta_1 = [x_{11}, x_{111}],$ $M_1 = = [x_{111}, y_{111}],$ $\delta_2 = [y_{111}, x_{112}],$ $M_2 = [x_{112}, y_{112}],$, $\delta_q = [y_{11q-1}, x_{11q}],$ $M_q = [x_{11q}, y_{11q}],$ $\delta_{q+1} = [y_{11q}, y_{11}],$ $\delta_0' = [y_{11}, x_{12}].$

Now $C_{1i_1\cdots i_{n-2}}^{(x)}$ is obtained from one of $C_i^{(x)}$, $C_i^{(x)}$ $(i=1,2,\cdots,p)$ by a transformation $S \in G_x$, where $C_i^{(x)}(C_i^{(x)})$ is the image of $C_i(C_i)$ on the x-plane, which has common points with $D_0^{(x)}$.

Let

$$\xi_1 = S^{-1}(x_1)$$
, $\xi_2 = S^{-1}(x_{11})$, $\xi_3 = S^{-1}(x_{111})$, $\xi_4 = S^{-1}(y_{111})$,

then ξ_1 , ξ_2 , ξ_3 , ξ_4 belong to a certain set A, which consists of a finite number of points and is independent of S.

Hence by Lemma 3,

$$|\delta_1| \leq \kappa |\delta_0|$$
, $|\delta_1| \leq \kappa |M_1|$.

where $\kappa > 0$ is a constant independent of S. Similarly we have

It follows that

$$|M_{\nu}| \ge a|M|$$
 $(\nu=1,2,\dots,q)$,
 $|\delta_{i}| \ge b|M|$ $(j=1,2,\dots,q+1)$,

where a>0, b>0 are constants independent of S. Hence

$$|E_{1i_1\cdots i_{n-2}1}\nu| \ge a|E_{1i_1\cdots i_{n-2}1}| \quad (\nu=1,2,\cdots,q)$$

and the mutual distance of $E_{1i_1\cdots i_{n-2}1}\mu$ and $E_{1i_1\cdots i_{n-2}1}\nu$ is $\geq b |E_{1i_1\cdots i_{n-2}1}|$.

Hence (4_1) , (4_2) are proved, so that by Theorem 1, $m(E^{(1)})=0$ and $\gamma(E^{(1)})>0$ and at every point of $E^{(1)}$, the upper capacity density of $E^{(1)}$ is positive, so that every point of $E^{(1)}$ is a regular point for Dirichlet problem. From this we see that every point of $e_0^{(x)}$ has the same property and hence its image e_0 on $|\zeta|=1$ has the same property. Hence (ii) is proved. (i) can be deduced from (ii).

3. General spatial Cantor sets.

Let Δ be a spherical domain, which is bounded by a sphere of radius R. We take $k \geq 2$ disjoint spherical domains Δ_{i_1} $(i_1=1,2,\dots,k)$ of radius R_{i_1} in Δ and proceed similarly, then after n steps, we obtain k^n spherical domains $\Delta_{i_1\cdots i_n}$ $(i_1,\dots,i_n=1,2,\dots,k)$ of radius $R_{i_1\cdots i_n}$, such that

$$\Delta_{i_1\cdots i_{n-1}i_n} \subset \Delta_{i_1\cdots i_{n-1}} \ (i_n=1,2,\cdots,k) \ . \tag{1}$$

We put

$$E = \prod_{n=1}^{\infty} \left(\sum_{i_1, \dots, i_n}^{1, 2, \dots, k} \Delta_{i_1 \dots i_n} \right). \tag{2}$$

We assume that there exists constants a>0, b>0, such that for $n=1,2,\cdots$

$$R_{i_1\cdots i_{n-1}}\nu \geq aR_{i_1\cdots i_{n-1}} \ (\nu=1,2,\cdots,k)$$
 (3₁)

and

the mutual distance of $\Delta_{i_1\cdots i_{n-1}}\mu$ and $\Delta_{i_1\cdots i_{n-1}}\nu$ $(\mu, \nu=1, 2, \cdots k, \mu \neq \nu)$

is
$$\geq b R_{i_1\cdots i_{n-1}}$$
. (3₂)

Then we call E a general spatial Cantor set.

THEOREM 6. Let E be a general spatial Cantor set. Then

$$m(E)=0$$
,

where m(E) is the spacial measure of E.

(ii) If ak > 1, then

$$\gamma(E) \ge \frac{b(ak-1)R}{a(k-1)} > 0$$
,

where $\gamma(E)$ is the Newtonian capacity of E and at every point of E, the upper capacity density of E is positive, so that every point of E is a regular point for Dirichlet problem.

PROOF. Since the first part can be proved similarly as Theorem 2, we shall prove the second part. By (3_1) , (3_2) ,

$$R_{i_1\cdots i_n} \geq a^n R \tag{4_1}$$

and

the mutual distance of $\Delta_{i_1\cdots i_{n-1}}\mu$ and $\Delta_{i_1\cdots i_{n-1}}\nu$ is $\geq a^{n-1}bR$ (42)

Let M be a bounded closed set in space, we denote its Newtonian capacity by $\gamma(M)$. We take n points p_{ν} ($\nu=1,2,\dots,n$) on M and put

$$V_n(M) = \underset{p_n \in M}{\operatorname{Max}} \binom{n}{2} / \sum_{\mu < \nu}^{1, 2, \dots, n} \frac{1}{p_{\mu} p_{\nu}}, \tag{5}$$

then by Pólya-Szegö's theorem7,

$$V_n(M) \rightarrow \gamma(M) \quad (n \rightarrow \infty) .$$
 (6)

We put

$$E_n = \sum_{i_1, \dots, i_n}^{1, 2, \dots, k} \Delta_{i_1 \dots i_n} \tag{7}$$

and take N point $p_{i_1\cdots i_n}^{(\nu)}(\nu=1,2,\cdots,N)$ on each $\Delta_{i_1\cdots i_n}$, such that by (6),

$$\binom{N}{2} \Big/ \sum_{\mu < \nu}^{1, 2, \dots, N} \frac{1}{p_{i_1 \cdots i_n}^{(\mu)} p_{i_1 \cdots i_n}^{(\nu)}} \rightarrow \gamma(\Delta_{i_1 \cdots i_n}) (N \rightarrow \infty) .$$
 (8)

Since there are $k^n N$ points $p_{i_1 \cdots i_n}^{(\nu)}$ on E_n , we have

$$V_{k^{n}N}(E_{n}) \ge {k^{n}N \choose 2} / \sum_{i_{1},\dots,i_{n}}^{1,2,\dots,k} \sum_{j_{1},\dots,j_{n}}^{1,2,\dots,k} \frac{1}{p_{i_{1}\dots i_{n}}^{(\mu)}} \frac{1}{p_{j_{1}\dots j_{n}}^{(\nu)}}$$

$$= {k^{n}N \choose 2} / \sum, \text{ say }.$$

$$(9)$$

Now \sum consists of (n+1) parts:

$$\sum = \sum_{0} + \sum_{1} + \cdots + \sum_{n}, \qquad (10)$$

where \sum_{0} is formed with pairs of points, which belong to the same $\Delta_{i_1\cdots i_n}$ and \sum_{1} is formed with pairs of points, which lie in the same $\Delta_{i_1\cdots i_{n-1}}$ and belong to $\Delta_{i_1\cdots i_{n-1}j}$ and $\Delta_{i_1\cdots i_{n-1}j'}$ ($j \neq j'$) respectively and finally, \sum_{n} is formed with pairs of points, which belong to Δ_{j} and $\Delta_{j'}$ ($j \neq j'$) respectively.

Since the Newtonian capacity of a sphere of radius r is r, we have by (4_1) , (8),

$$\sum_{0} \leq (1 + \epsilon_{N}) {N \choose 2} \sum_{i_{1}, \dots, i_{n}}^{1, 2, \dots, k} \frac{1}{\gamma(\Delta_{i_{1} \dots i_{n}})} \leq \frac{(1 + \epsilon_{N}) N^{2} k^{n}}{2 a^{n} R}, \qquad (11)$$

where $\epsilon_N \to 0$ $(N \to \infty)$ and by (4_2) , similarly as the proof of Theorem 1, we have

⁷⁾ G. Pólya uns G. Szegö: Über die transfiniten Durchmesser (Kapazitätskonstante) von ebenen und raümlichen Mengen. Jour. f. reine u. angewandte Math. 165 (1931).

$$\sum_{1} \leq {k \choose 2} \frac{N^2 k^{n-1}}{a^{n-1}bR} = \frac{(k-1)N^2 k^n}{2 a^{n-1}bR},$$

$$\sum_{2} \leq \frac{(k-1)N^2 k^{n-1}}{2 a^{n-2}bR},$$

......

$$\sum_{n} \leq \frac{(k-1)N^2k^{2n-1}}{2bR}$$
 ,

hence

$$\sum_{1} + \dots + \sum_{n} \leq \frac{(k-1)N^{2}k^{n}((ak)^{n}-1)}{2a^{n-1}b R(ak-1)},$$
 (12)

so that by (9), (10), (11), (12),

$$V_{k^{n}N}(E_{n}) \geq {k^{n}N \choose 2} \left[\frac{(1+\epsilon_{N})N^{2}k^{n}}{2a^{n}R} + \frac{(k-1)N^{2}k^{n}((ak)^{n}-1)}{2a^{n-1}b\ R(ak-1)} \right].$$

If we make $N \rightarrow \infty$,

$$\gamma(E_n) \ge \frac{b(ak)^n (ak-1)R}{b(ak-1) + a(k-1) ((ak)^n - 1)}$$

and $n \rightarrow \infty$, then we have

$$\gamma(E) \ge \frac{b(ak-1)R}{a(k-1)} > 0. \tag{13}$$

The other part of the theorem can be proved similarly as Theorem 1. Remark. Suppose that for $n=1,2,\cdots$

$$R_{i_1\cdots i_{n-1}i_n} = aR_{i_1\cdots i_{n-1}}(i_n=1,2,\cdots,k),$$
 (14)

where a>0 is a constant, such that ak<1. Then $R_{i_1\cdots i_n}=a^nR$. Since for n bounded closed sets M_1,\cdots,M_n ,

$$\gamma(M_1+\cdots+M_n) \leq \sum_{\nu=1}^n \gamma(M_{\nu})$$
,

we have

$$\gamma(E_n) \leq \sum_{i_1,\cdots,i_n}^{1,2,\cdots,k} \gamma(\Delta_{i_1\cdots i_n}) \leq (ak)^n R \to 0 (n \to \infty),$$

so that $\gamma(E)=0$.

Hence if in Theorem 6, $\gamma(E)$ may be zero, if ak < 1.

Mathematical Institute, Tokyo University.