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1. General linear Cantor sets.

1. Let 4 be an interval on the x-axis. We take % (>>2) disjoint
intervals 4;, (=1, 2,---, k) in 4 and £ disjoint intervals 4;:.(0,=1,2,--- k)
in 4;, and proceed similarly, then after #» steps, we obtain % intervals
A,‘l...,'n (il,"', 1,=1, 2,---, k), such that

A,’l...,'” - Ail"'in—l . (i,= L,2,--,k). (1)
We put
E=Ii (l'zﬁ'kd- ; ) (2)
Coae\iy, ) v

”

In §1 and §2, we denote the length of an interval I by | I'| and the
logarithmic capacity of a set M by y(M). We assume that there
exists constants ¢>>0, 6>>0, such that for n=1,2,--

| diyeiyy  vIZ @ dipi | (v=1,2,---, k) (31

and
the mutual distance of dipi o pand diii v (u,0=1,2,--- kb, u=Fp)

is =>b I"il“'in—l . (32)

n-1

Then we call E a general linear Cantor set.
THEOREM 1. Let E be a general linear Cantor set. Then

1
m(E)=0, v(E)Y=a*T1b|4]|>0,
wherve m(E) is the linear measure and v(E) the logarithmic capacity
of E.
At every point of E, the upper capacity density of E is positive, so
that every point of E is a regular point for Dirichlet problem.
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PrROOF. Let
o 1, 2._';. &k
E= El< z’l?—'.'i,, Ail-»i,,) . (2)

k
By (3)), (3), ‘1"1""'"—1—.21""1""'"—1"n contains an interval §, such that
In'=

|81=614;,.:,_ ], so that

1

n—lin

k k
|A;l...;n_1lgl8|+ z |A,‘1.‘.,’ lgbld,-r...- _1‘+Z|A;1...,' _ginls
=1 n i,=1 n

.n-l

k
,,Z:U diyei iy I<(1—06)14;,.i

From this we have
1, 2,

S i, | S (1—B)* | 41— 0(n— ) ,

i1,y iy

hence m(E)=0.
From (3,), (3;), we have

| 4;,i | =a* | 4] (5 0n=1,2,-, k) . (4y)

and
the mutual distance of 4;,.:,_ . and 4;,.;,_ v (p,v=1, 2,---, k, pF=v)
is >a"1b4]. (42)

Let M be a bounded closed set on the x-axis and «; (i=1,2,---,#) be
n points on M, then by Fekete-Szegé’s theorem?, if we put

Va(B)= Max'®)/" 0" L= (5)
then
VaE) =y (M) (n> ). ®)

1) M. Fekete: Uber die Verteilung der Wurzeln bei gewisser algebraischen Gleich-
ungean mit ganzzahlingen Koeffizienten. Math. Zeits. 17 (1923).
G. Szeg6: Bemerkungen zu einer Arbeit von Heérrn M. Fekete |, Uber die Ver-
teilung der Wurzeln bei gewisser algebraischen Gleichungen mit ganzzahligen Koeffizi-
enten “, Math. Zeits. 21 (1925).
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We put

1,2,k ' A
Enz, Z Ailwin - (7)

210 I”

and in virtue of (6), take N points xf,‘", (»=1, 2,---, N) on each 4i i,
such that

N
) “13 Yl — 22 1oy (41,0) (N— o) . ®)

Since there are k*Al points x{2; on E,, we have by (5),

(k’;N) L2k 1,2k 1,2, N .
[Vk"N(.En)] = 1 I Mllv lx;'f’, —xM. i |l=m, say. (9)

£1, 3” ]]‘.." j"
Now 7 consists of (z+1) factors:
T=Ty T " "Tn, (10)

where m, is formed with pairs of points, which lie in the same diyi,
and m; is formed with pairs of points, which lie in the same diyei,_,
and belong to 4iyi, ; and 4;.; 5 (75=7') respectively and =, is form-
ed with pairs of points, which lie in the same 4i,.i,_, and belong to
4ipi,_,; and diyei, i (7=F7") respectively and finally =, is formed with

pairs of points, which belong to 4, and 4, (73=j') respectively.
By (8),

(2) /Tl — T oy (45,0,) (N ). (11)

Since the logarithmic capacity of an interval I is [I|/4, we have by
(41), v(dir.i )=a"|4|/4, so that

im (%) a* | 4]
lim (%) |7rl2( 4 ) : (12)
Since in =y, |2, — 232 i,l==a""1b|4| by (4,) and the number of such

pairs is (g) N2 pr-1— __(ﬁ__él)]_vz; kn,
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&=1) N2

|| >(a*"1bla]) °
Since in 7, Ixﬁ-:‘..’.,-n—xg-j.’..jnIZa"‘szA] and the number of such pairs is
(g) (ENY kn-2= (k‘“zl)Nz B+

G~D N2 n+1

EAC TP (13,)

and finally
(k-1 N2 g2n-1

|ma]>(b1a]) ° (13,)

Since
- 1 Er—1
Su=(n—1)+(n—2)k+ - +(n—n)kr 1= —
A(n ) +(n—2) (n—n) 51 ( 51 n)
we have
N2 n kn;‘L_”) ——N‘z-—k"(k"—l)
lmpemal>a ® P (bla)) (14

Since (k”2N>~ szkz” (N— o), we have from (9), (10), [(12), [(14),

P (B (AN US) ) aprany. (15)

Since v (E,)—y(E) (n— ), we have

1
v(E)>a"" bl41>0. (16)
Let xye E, then there exists 7), %, -+, such that

Xo€ di, , Xo€ diyiyy s Xo€ djyi y7o"

Let E;,.;, be the part of E, which is contained in 4;,.;, then by

1

V(Eii))=a"" bldi,).

From this we see that the upper capacity density of E at x, is positive,
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so that x,is a regular point for Dirichlet problem.?? This can be proved
simply as follows. By Frostman’s theorem,® the equiliblium potential
of £,

u@={ log 1 aua, | du@=1 G=x+iy)
E |z—a] E

attains its maximum value V at x,, From the lower semi-continuity of
#(2), lim #(z)=V, when z tends to x, from the outside of E. Hence

w@)=V—u(z)>0

is a barrier at x,, so that x, is a regular point for Dirichlet problem.
REMARK. The ordinary Cantor set E is obtained as follows.
Let 4: 0<x<1 and 4,: 0<x<x, 4,: y1<x=<1, (x;<»), such that

= 1 e=(1- 1 —
al=lal= oo 1al, wma=(1- )14l lai=1, (61, (7)
We perform the similar operations on 4,, 4, and proceed similarly, then

after »n steps, we obtain 2” intervals 4i, i, (@,,1,=1,2). Then

oo 1,2
E= IJI(~ Z Air"i,,) (18)
is an ordinary Cantor set. In this case, in (3)), (3.),
k:2, a= 1 , b:l—-—A,l_ ,
2p p
1
so that ak_lbzzl—p — —2;2, hence
1 1
E)y= — — >0, 19
v(E) = 55 op = (19)

which is proved by R. Nevanlinna.?

2) G.C. Evans: Potentials of positive mass, II. Trans. of the Amer. Math. Soc. 38
(1935).

3) O. Frostman: Poteniel d’eqilibre et capacité des ensembles. Lund. (1935). Frost-
man proved the case of Newtonian potential, the case of logarithmic potential can be
proved by the same method.

4) R. Nevanlinna: Eindeutige analytische Funktionen. Berlin (1926). p. 148.
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2 [General planar Cantor sets.

1. Let 4 be ¢ c.rcular disc of radius R. We take k& (>2) disjoint
circular discs 4;, (i,=1, 2,---, k) of radius R;, in 4 and proceed 31m11ar1y,
then after » steps, we obtam k» circular discs dipi, (B, 10=1,2,--, k)

of radius R;,.; , such that
diyei iy < diyeiy_y n=1,2,---, k). (1)
We put
E=T1i ( ’, dii ). (2)

n=1 "y 1y
We assume that there exists constants @_>0, >0, such that for
n=1,2,-,

Rivi  v=aRi.i _ (v=1,2,,k) (3)

n-

and
the mutual distance of 4;,.;  u and diyeiy v (,v=1,2,, k, p5=v)

is 2bRi..i . (32)
Then we call E a general planar Cantor set.
THEOREM 2. Lct E be a general planar Cantor set. Then

-

m(E)=0, v(E)=a*'8R>0,

where m(E) is the plane measure and v(E) the logarithmic capacity

of E.

At every point of E, the upper capacity density of E is positive, so

that every point of E is a regular point for Dirichlet problem.
ProoF. We have only to prove that m(E)=0, for the other part

can be proved similarly as Theorem 1. Let C; be the bounding circle of

4; and O; be its center and R; be its radius. Let O be the center of 4.

We draw a circle C; of radius R,~+£§ about O;, then C;(i=1,2, -, k)

are disjoint. Hence if we denote the points of intersection of the seg-
ment O; O with C; and C; by A;, A; respectively, then a circle 77,
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with the diameter A; A; lies in 4 and 7I"; are disjoint each other. Let
D; be the inside of I"; and |D;| be its area, then

Dil=m (PR ) =(L) w = (L) 141

k
From this, we have Zil 4;|Z al4di, where 0<a <1 is a constant, which

L 3

depends on 4 only. Hence

m(E)< S | ii | Sa¥ | 41—0  (n— o),
so that m(E)=0.
2. To generalize Theorem 2, we shall use the followmg lemma.
LeEMMA 1%  Let I' be an analytic Jordan curve on a plane, then

7(1’)_2_‘1—(51,

where v(I') is the logarithmic capacity and d(I’) the diameter of I.

PrOOF. Let Pel’, QeI’, such that PQ=d(I’). We take the line
PQ as the x-axis on the xy-plane and let P=(a,0), Q@=(b,0) (a<b).
We take points a < x;<x,<---<x,<.b and let P, be a point on I,
whose projection on the x-axis is x,, then P, P,~>|x,—x,|. From this
PQ _ d(I)

4 4 -

In the following, a Jordan domain is a domain, which is bounded
by an analytic Jordan curve and d(M) is the diameter of a set M.
Let 4 be a Jordan domain. We take k(=2) disjoint Jordan domains
4;,(6=1,2,---, k) in 4 and proceed similarly‘, then after » steps, we
obtain k* Jordan domains 4;,..; (&', %=1,2,---, k) and put

we have easily y(I") =y (PQ)= q.e.d.

E= El( N 2 dipei,) - (1)
We assume that
d (Ail...;n_lv)ga d("ix~--i”_1) r=1,2,-, k) (2)

5) G. Pbdlya und G. Szego: Aufgaben und Lehrsitze aus der Analysis, II. Berlin
(1925). p. 25.
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and the mutual distance of 4;,.;, puand 4;,.; v (p,»=1,2k,
pFv) is 2b d(dipi ), (2,)

where a_>0, b6>>0 are constants. Then by means of Lemma 1, we
«can prove similarly as Theorem 1, the following generalization of
Theorem 2.

1

THEOREM 3. v(E)=>a """ b d(4)>>0. At every point of E, the
upper capacity density of E is positive, so that every point of E is a
regular point for Dirichlet problem.

3. We shall prove a lemma.

LEMMA 2. Let 4 be a ring domain on the z-plane, which is
bounded by two analytic Jordan curves C, C,, where C, lies inside of
C,. Let C be an analytic Jordan curve, which lies between C, and C.,
and contains C; in its inside. Let w=f(z) be regular and schlicht in
4 and I’ be the image of C on the w-plane, L be its length and D be
its diameter. Then

L<«D,
where x>0 is a constant, which depends on C and 4 only.

PROOF. Let 4,< 4 be a closed ring domain, which contains C
and z, be a point of 4;. Then by Koebe’s distortion theorem,

Alf'(z2) | Z N (2)|I< Bl f'(2)], ze 4, (1)
where A>0, B_>0 are constants. Hence

L=jc | (2)| |dz|<const. |f'(z)]. 2)

Let C’ be an analytic Jordan curve in 4, which is contained inside of
C and contains C; in its inside and 77’ be its image on the w-plane.
We take two points wel’, w'eI”’, such that |w—w']| is equal to the
shortest distance of I and I”. Then the segment w w’ is contained
in a ring domain, which is bounded by 7" and 7. Hence its image v

on the z-plane is contained in 4,. Hence by (1),

D—Z_IW—w'l-:L |f'(2)! |dz]=const. | f(z,)] . 3)
From (2), (3), we have
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L<const.D. q.e.d.

4. Let 4 be a domain on the z-plane, which contains z=c and G
be a group of Schottky type, whose elements are schlicht meromorphic
functions f(z) in 4, which transform 4 into itself. We assume that the
fundamental domain 4, of G is bounded by p(2<p=< ) pairs of dis-
joint equivalent analytic Jordan curves C;, C; (i=1,2,--,p) and a
bounded closed set M.

Let 4. be equivalents of 4, by G, then 4, cluster to a non-dense perfect
set £, which is called the singular set of G.
If we denote the boundary of 4 by I', then
I'=F+ _Z:]Mv ,
where M, are equivalents of M,.
We shall prove the following theorem, which is a precise form of
Myrberg’s theorem?®, who proved that «(77)>0.

THEOREM 4. (i) vy(E)>0.

(i) If 2="p <o, then at every point of E, the upper capacity
density of E is positive, so that every point of E is a regular point
for Dirichlet problem.

Proor. First we suppose that 2<p<_c. Then the totality of
equivalents of C;, C;(i=1, 2,---, p), which lie inside of C, can be written
in the form: C,,..; (4, -, 7,=1,2,--,q, g=2p—1), such that

Diiiy iy Dy iy, (8:=1,2,--,q),

where D ; .;, is the inside of C;,,. iy

We denote the part of E, which hes in Cl by FE;.

Let C be an analytic Jordan curve in 4,, which contains C;, C;
(=1,2,---,p) in its inside and M, lies outside of C and 4y be the
domain, which is bounded by C;, C;(:=1,2,---,p) and C. Let gz 4,
then by Koebe’s distortion theorem, for any f(z)eG,

Alf' (@) <1 @QIZBIf(2)],  zed, (1)

where A>0, B>>0 are constants. Hence if we denote the length of
Clzl iy, by L1 - then

6) P J Myrberg Die Kapazitat der sinzularen Menge der linearen Gruppe. Ann.
Acad. Fenn. Ser. A. 10 (1941).
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const. | f/(2)| < Ly,.i, = const. | £ (z)]. (2)
Hence by Lemma 2,
d(Dy i,i,_v)=const. Ly ;,.i,_ v =const. | I (20)]
=>const. L, .-1...,-”_lgconst. d(D, ;1...,«”_1) »=12,--,q9). (3)

Let d be the shortest distance of D, ;,.;  x and D, ;,.i, v, then there
exists 2,€Criy-i_jur 2v€Criymi, such that

|z, —2z,]=d. (4)
The segment z, 2, meets the boundary of 4;i,.i, , in general, where
41 i,-i,_, is an equivalent of 4;, whose outermost boundary is C,.i,_,.
Let z’ be a point on the segment z, z,, which lies on the boundary of
Ajiei, such that the segment z, 2’ lies in 4y;,.;, , and v be its
image in 4;, where if the segment z, 2z, does not meet the boundary of
41i,-i,_,, then we take Z=z,. Then

d=z,~71={ |f(2)] |dz| Zconst. | f'(z)]

=>const. L, ,-1...,-,'_lgconst. d(Di;..i._.). (5)

n-1

By (3), (5), the condition of Theorem 3 is satisfied, so that y(E;)>0
and at every point of E;, the upper capacity density of E; is positive,
so that every point of E; is a regular point for Dirichlet problem.
A similar relation holds for the part of E, which is contained in C;, C;
{(i=1, 2,---,p). Hence (ii) is proved. (i) (where p= ) can be deduced
from the case 2<p< . Hence our theorem is proved.

5. Wae shall prove a lemma.

LEMMA 3. Let x, X, x5, x4 be four points on the x-axis and by
a linear transformation, x; be transformed into &; (i=1,2,3,4) on the
x-axis, such that &, <& &<<é and put

8=&—§&, 4=&—&, & =§—8&.
Then

4«8, 4= k¥,

where >0 is a constant, which depends on x, X3, X3, X4 Only.
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PrROOF. Let
XX . AT A3 1
X4— X, X4— X3

Then since the anharmonic ratio is invariant by a linear transforma-
tion,

b—b . b __ 1
54_§1 5.1”"53 K ’
or
) _ 1 4
4+8+8 k&
k88 =4 (4+8+8) =84,
hence
4= ks,
Similarly
=&

6. Let F be a Riemann surface spread over the w-planc, whose
genus p is 2=Xp< . Let F*™ be an unramified covering surface of F,
which is of planar character. By w=F(z), we map F > on a schlicht
domain .1 on the z-plane conformally. Then F(z2) is automorphic with
respect to a group G of Schottky type, whose elements are meromor-
phic schlicht functions f(2) in 4, which transform . into itself. Let
4o be the fundamental domain of ¢, then J, is bounded by p pairs of
disjoint analytic Jordan curves C;, C; (i=1,2,--, p) and a bounded closed
set M, where C;, C; are equivalent by . Let 7" be the boundary of
4 and E be the singular set of G. By z=¢(¢), we map the universal
covering surface of 4 on (¢|< 1 conformally. Then ¢(¢) is automor-
phic with respect to a Fuchsian group & in (¢|<C1. Let D, be its
fundamental domain and ¢, be the image of E on [¢|=1, with lies on
the boundary of D,. Then

THEOREM 5. (i) «v(e)>0, where v(¢)) is the logarithmic capacity
of ¢,.

(1) If 2= p<Coo, then m(e,)=0 and at cvery point of ¢, the
upper capacity density of e, is positive, so that cvery point of e, is a
regular point for Dirichlet problem, where m(e,) is the lincar measure
of e,
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PROOF. By a linear transformation, we map |¢;<_1 on the upper
half 3 x>0 of the x-plane. Then (=®; and G=G, correspond to
linear groups (b, and G, in M x_>0 respectively. Let D be the
image of Dy=D in Jx_>0, then Dy is the fundamental domain of
®, and e’ be the image of e¢,=¢;*’ on the boundary of D{®. Let 4§
be the image of 4, on the x-plane, then 4{” is the fundamental domain
of G,.

We may assume that 45 D§’. 4§ can be constructed as follows.
We take z;(:=1,2,---,p) in 4, where if p=oco, then we choose z;, such
that the cluster points of {z;} lie on M, Let a;, a; be equivalent
points on C;, C; respectively. We connect @; (a}) to z; by a Jordan arc
v: (v;) in 4, and connect z;,, 2;,; by a Jordan arc A; in 4, such that
vi, vi, A (1=1,2,---, p) have no common points, except the end points.

D
We take off 2(71+7;+Xi) and at most a countable number of suitable

cross cuts, whose end points lie on M, from 4, then we obtain a
simply connected domain 4, Let 4;* be one of the images of 4 in
x>0, then 4 is the fundamental domain of G,.

First we assume that 2<"p<" . The totality of equivalents of C;, C;
(¢=1,2,---, p) by G, which lie inside of C, can be written in the form
Cii, @, 8:=1,2,-, q,g=2p—1), such that

51 il---i"_lin CSI ir--in_l (in:lr 2s' Ty Q) ’ (1)

where 8,; .; 1is the inside of Cl,-].._,-n.

Let C7.;, be one of the images of Cy;,.; on the x-plane, which
has common points with D, then C{7’.; is a Jordan arc, whose two
end points lie on the x-axis. Let E, i,-i, be the segment, which is
bounded by these two end points. We may assume the &, ;,..;, is mapped
on a finite domain on the x-plane, then

El TRy ("El i]“'in__l (in:l, 29'”’ q) . (2)

n—1%n

If we put
1,24 .
EY=11( > E; ,~1...,'") , (3

n=1 i1, 1,
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then EV is a sub-set of e{.
We shall prove that

| Eyiyei,_pl =@ Eyiyi [} (v=1,2,+, q) (40

11
and
the mutual distance of Eyii pwand Ey.i v (p,v=1,2,---, g,

,u.:%:v) iS :_/:b |E1,'1...i ’ N (42)

n-1

where >0, >0 are constants.

We shall prove (4;), (4;) for the case 7,.,=1, the other case can be
proved similarly.

Let
Eyiyei, =[x, 1],
Eli,---in_z =[x, yul, Elil--‘in_2 2=[%12, Y10 ,
Eli,---in_2 n=[%m, yml, - > Eli,---i”_zlq:[xuqaynq] )

where we may asume that

M
X1 <xi1<x111 <3’111<x112< Y12 <" '<an <y11q <o <xp<yp <J’1 .
L&) [&:] [My] [8:] [M,] [M,] [85+1] [80]
We put
M=[xy,yul, So=[x1, x11] , &1=[x1, X1,
M= =[xu1, Y1ul, Sz=[ ¥y, 21121,
M2=[x112) yuz] AR EEEEET AL , qu[yua_l, an] ,
qu[an, ylla] s Sa+r1=[ V114, J’n] ’ 86:[3’11, X12] .

Now Cjf.;, , is obtained from one of C{®, Ci® (i=1,2,,p) by a

transformation SeG,, where C{* (C{*) is the image of C; (C:) on the
x-plane, which has common points with D§.
Let

£=5"(xy), £,=S"1(xp), &=S"1(xm), £=S"1(ymw),

then &, &, &, & belong to a certain set A, which consists of a finite
number of points and is independent of S.
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Hence by Lemma 3,
18,1 =k, |81 < x| M],

where x>0 is a constant independent of S. Similarly we have

| M| < k|81, |M| < kl|8,,
|32|§-le1], lszlélclel,
IMqlélcian, 'MqlgxlsqﬂI»
1841l = x| M,]|, |8q+1/ = k18] .

It follows that
IMVI—_>—_aIM| (V=1,2,'"’Q)9

where a>0, 5_>0 are constants independent of S.
Hence

IElil'"i”_zlvI-—>:‘alEli1‘"i”_21I (y: 1, 2’. - q)

and the mutual distance of El"r'-"n-zlf" and Elir""n—zl” is > bIEi,-l...,-n_zll .

Hence (4,), (4;) are proved, so that by Theorem 1, m(E?V)=0 and
v(ET)>0 and at every point of E, the upper capacity density of
EY is positive, so that every point of E is a regular point for Diri-
chlet problem. From this we see that every point of e§*> has the same
property and hence its image ¢, on |¢|=1 has the same property.
Hence (ii) is proved. (i) can be deduced from (ii).

3. General spatial Cantor sets.

Letd be a spherical domain, which is bounded by a sphere of
radius R. We take k(=2) disjoint spherical domains 4;, (1;=1, 2,---, k)
of radius R;, in 4 and proceed similarly, then after » steps, we obtain
k* spherical domains 4;,..;, (&, -, 2.=1,2,---,k) of radius R;,..; , such that

Ail"'in~1in - A,'l...,'"_l (,=1, 2,---, k). (1)



On the capacity of general Cantor sets. 249

We put
g 1. 2 et

E=1("S" 4is)). 2)

n=1 il-'". i"

We assume that there exists c¢onstants @a>0, 5>0, such that for
n=1,2,--

Ril,..i”_lv__Z_aR (v=1, 2,"', k) (31)

il"'in—l
and

the mutual distance of diyi,_ p and di.i,_ v (u, v=1,2,-- k, p=Fv)
is gb Rir"i (32)

n-1°

Then we call E a general spatial Cantor set.
THEOREM 6. Let E be a general spatial Cantor set. Then

m(E)=0,

where m(E) is the spacial measure of E.
(1) If ak>1, then

blak—1)R
v(E)= 2(k—1) >0,

where v(E) is the Newtonian capacity of E and at every point of E,
the upper capacity density of E is positive, so that every point of E is
a regular point for Dirichlet problem.

PrROOF. Since the first part can bte proved similarly as Theorem
2, we shall prove the second part.
By (31)’ (32),

R,-l.‘.,-n:>:a" R (4,)

and

the mutual distance of isip_ 1 and dipi v is > a*bR (4,)

1
Let M be a bounded closed set in space, we denote its Newtonian
capacity by y(M). We take » points p, (»=1,2,---, #) on M and put

]. 2'.... 7 1

Vi) =Max (3) /3" L
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then by Polya-Szego’s theorem?,

Va(M)—>y(M) (n— ). (6)
We put
L2, k
E,= ) Z' diyi, (7)

and take N point p{2; (»=1,2,---, N) on each 4;,.i,, such that by (6),

G & i, iy, i) (V= ). (®)

Since there are k» N points pﬁ;’..’.,-” on E,, we have

2P S

. (1) .
vig Juidy,  myv PR i Dir i

=(*N)/s, sy. (9)
Now > consists of (n+1) parts:
=2%+>0+ -+, (10)

where X7, is formed with pairs of points, which belong to the same
di,-;, and >3 is formed with pairs of points, which lie in the same

4;,-i,_, and belong to 4;,. ipps and d4i . i+ (J=FJ") respectively and

finally, 37, is formed with pairs of points, which belong to 4; and 4;

(7==7") respectively.
Since the Newtonian capacity of a sphere of radius » is », we have

Zoé(lﬁ-e;v)(lg\ 122 1 g (1+en) N2R»

, 1
i (i) 2a* R (11)

where ey—0 (N— =) and by (4,), similarly as the proof of Theorem 1,
we have

7) G. Pélya uns G. Szego Uber die transfiniten Durchmesser (Kapazititskonstante)
von ebenen und raiimlichen Mengen. Jour. f. reine u. angewandte Math. 165 (1931).
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sy(B) MR (DN e

a*'p R 20" B R

»

k—1)N? k"1
5 < ( LAY -
e 2a* bR

5 < (B—1) N2t
- 2bR ’

hence

Sht S, < (B N2E ((ak)yr—1)

- 20" 'b R(ak—1) ° (12)

so that by (9), (10), (11), [(12),

F*NY [ (14 ey) N2kn (F—1)N2E*((ak)*—1)
Viry (E”)*>=< 2 ) ( 22;13 Y=Y R(ak—1)

If we make N— <o,

V(Ey) > blak) (ak—1)R
YT blak—1)+a(k—1) ((akyr—1)

and n— o, then we have

blak—1R

"/(E)2 a(k—l) >0. (13)

The other part of the theorem can be proved similarly as Theorem 1.
REMARK. Suppose that for n=1,2,---

R =aRi,.;,  (ix=1,2,,k), (14)

TR

where ¢-0 is a constant, such that ak<1. Then R; .., =a"R.

Since for n# bounded closed sets M, ---, M,,

v (M, + ---+M,,>_s_§1 v(M,),
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we have

'Y(En)éil'_z?:k v(4iy-i ) < (aky* R—0(n— ),

so that v(E£)=0.
Hence if in Theorem 6, v(E) may be zero, if ak<<1.

Mathematical Institute, Tokyo University.
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