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Wedderburn’s theorem, weakly normal rings,
and the semigroup of ring-classes.
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A well-known theorem of Wedderburn asserts that if a central
simple finite-dimensional algebra A, over a field, is a subalgebra of an
algebra S and if the unit element of A is also a unit element in S,
then S is the Kronecker product A x Vi (A), where Vs (A) denotes the
commuter ring of A in S. An interesting generalization of the theorem
was recently obtained by Azumaya [1] It deals with the notion of
maximally central algebras, which was introduced formerly by Azumaya
and the writer in a narrower sense, in a ditferent context. In the
present note we first offer (51, and § 3, Theorems, 2, 3) a
further generalization of that Wedderburn-Azumaya theorem, dealing
simply with a ring A possessing an independent finite right-basis over
its (not necessarily commutative) subring C. On the other hand, weakly
normal (or ‘ galoisien”) subrings of a ring have recently been used
effectively by Dieudonné and the writer [7], [9], [10] in studying
automorphisms and the Galois theory or rings. The innerly weakly
normal case is of particular interest in our context, and our theorem
can, togetheor with some other propositions, be given a finer formula-
tion in this case (§3). The maximally central case is a further parti-
cular case in which the innerly weakly normal subring C is commuta-
tive and is contained in (in fact, coincides with) the center of A. For
maximally central rings Azumaya defined the notion of algebra- or
ring-classes and introduced their group, a generalization of the Brauer
group of the classes of central simple algebras. We are led to introduce
the semigroup of the ring-classes of rings containing a fixed commuta-
tive ring C in their center and weakly normal over C (as we want to
call) (5). It turns out that Azumaya’s group is in fact the largest
subgroup in this semigroup (Theorem 5). In Appendix we give a
simple proof to Jacobson’s inverse to Wedderburn’s theorem.
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The writer wishes to thank G. Azumaya for his kind cooperation
during the preparation of the present paper.

§ 1. Endomorphism rings over subrings.

Let A be, throughout the present note, an (associative) ring with
unit element 1. Let C be a subring of A. We assume always that
C contains the unit element 1 of A and moreover A possesses an in-
dependent finite right-basis over C, of rank =, say;?

A=a,C®a, CH D a, C.

Let A be the absolute endomorphism ring of A as a modul. With a
subset X of A we denote by X (resp. X.) the set of right (resp. left)
multiplications of the elements of X onto A, which we consider as a
subset of A. The C-right-endomorphism ring of A is nothing but the
commuter ring Vy (Cg) of Cg in . Vy (Cgr) contains the left-multi-
plication ring A, of A and possesses, as follows from our assumption,
an independent right-basis of rank # over A; ;

Va(Cr)=v1 AL ® v AL @ ® v AL

In fact, Vy (Cg) is Vy (Cg)-right-isomorphic to the direct sum A”* of
copies of the Vy (Cg)-module A. A further different interpretation of
Vi (Cg) is that it is the relation-module with respect to 1x1 of the
A-double-module A+ A4, in the sense of e.g. We note also that
Vi (Vu (CR) )=CR-

PROPOSITION 1. Let vy, s, -, v, be a finite set of elements in the
absolute endomorphism ring A of A such that the sum?® v, A, +v, A, +
+oym AL forms a ving. In order that v, A, +v, AL+ - +o,. A, is
Vo (Cr) with a certain subring C(s1) of A over which A possesses an
independent right-basis and vy, v, -, v, ave vight-independent over A,
it is necessary and sufficient that there exist m elements %y, %, -, Xp in
A such that the matrix

1) Thus, if C satisfies the minimum (maximum) condition for right-ideals, then A4
satisfies the same (for C.right-modules, whence) for right-ideals. On the other hand, if
A satisfies the left minimum (maximum) condition, then C satisfies the same; consider

al@axl P D a,! with left-ideals I of C.
2) Not necessarily direct, for the moment.
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in A is rvegular. If this is the case the m elements x,, %o, -, %, form
an independent right-basis of A over C.

ProOOF. Suppose, firstly, that vy, v, -, v.» are right-independent
over A, and that y; A, @ ® v,, Ay=Vy (Cg) with a subring C»s1, of
A, over which A possesses an independent right-basis (ay, a,, -, a,), of
rank z#. Then® Vg (Cr)=a;A; @ @ a, A; with «a; e Vi (Cg) defined
by

a3i=3s;; (Kronecker’s 8).

Thus necessarily? m=#» and there exists a regular matrix ( (b; ,-)L) of
degree n in A, such that

(71, 725 Ym) = (g, gy -+, ) ((bij)L) .

Setting x;=a; we have
(x70); 5=(a%); ;= ("p by @3%)=(b )i ; -

Since the matrix ((b,- ,-)L) in A; is regular, the matrix (&;;);; in A is
regular, and the first half of our proposition is proved.

Assume, conversely, that (x%), with a certain set x, %, %, Of
elements in A, possesses an inverse (d;;);;. Putting 8;=3"% v (dir)s,
we obtain (x3))=(d,;) (x7)=1I, the unit z-matrix in A. So we see
readily that we may assume that (x%i)=17 from the beginning. It is
then evident that such wy, 75, -, v. are right-independent over A;. For
an arbitrary element a=9, 2.+ v 2.+ -+ VYm Zmr in 21v; A wWe have
x5=zj, or a=vo (xP).+v (x2)+ - +vm (x5). With Be>v; A, and
yve A, set a=v,y, 8. Then, by the above observation,

a=u,y B=1]v; (x709LP); =" o; (84 ¥° ). =71 (¥*)r .

Thus; v, y. B=v;, (¥*). and

3) Cf. for instance. If m is infinite, then we have merely the inclusion that the
left-hand side contains the right-hand side. But we see immediately that » is equal to m
and is finite.

4) Take for instance, a maximal right-ideal mt of A7 and consider the fully reducible
Aj-right-module Vg (Cr)/ Vg (Cr) m.
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(_',V z')';, )Bzyﬂ 2%
for every ze A. Since 8 is arbitrary in 3)v; A;, this shows that
(2)ge Vo (v AL),

for every ze A. Put Vy (3 y; A;.)=Cpr, with a subring C of A. Our
elements xy, x,,--, x,, are right-independent over C. For, if x; ¢, + %, ¢+
"+ Xm € =0 With ¢;e C, then ¢;=318;;¢c;=3x% c;=3]x; cli=0%=0.
Moreover, for an arbitrary element z in A we have z'ieC, as was
seen above. Putting 2/=x, 2"+ x, 2"+ - +x,,2'm, we get (2 —z)"i=0,
for :=1,2,---,m. Thus (2’—z)"=0 for every ve 3v; A;. In particular,
(f—2)4L=A (2 —2)=0, and 2’—2z=0. This shows that ze x, C+ x, C+
~++x, C. Hence x,, x;,---, x,, form an independent right-basis of A over
C. Clearly Vy (Cg) = Sv; A;,. But it is easy to see, from (x%)=1,
that here Vy (Cr)=3>]+v; A;,. The proposition is thus proved.
PROPOSITION 2. Let A possess an independent finite right-basis
over C. Then Vy (Cg)-allowable submodules a of A are in 1—1 cor-
respondence with left-ideals | of C, according to the correspondence

a—>[=C~a, [—a=ALIl.

PrROOF. Let (ay, @, -, @,) be an independent C-right-basis of A, and
let a; (e Vi (Cg)) be such that a%i=8,;;. Let a be a Vi (Cg)-allowable
submodule of A. If aea and a=a,¢,+a,c;+ -+ a, c, (c; e C), then

ai=afi o+ ajic,+ -+ a% c,=c; .

Since a% ea, we have ¢;(=a"% )ea~C. This shows that a g ®
@Ql® D a,[=A1 with [=a~C. As [ <q, clearly Al=I4L < qa too.
Hence a=Al Here I=a~C is a left-ideal of C, since both a, C are
C;-allowable.

Let, conversely, | be an arbitrary left-ideal of C. Set a=A1. For
every ae Vy (Cg) we have a®=A%[ < Al=q, and a is a Vi (Cg)-allow-
able submodule of A. Hence, by our above consideration, a=a; (a ~C)
@D @ (a~C) @@ a,(a~C). On the other hand, clearly a=Al=a,[ ®
@l ® @ a,l. Since ay, @, -, a, are right-independent, we have [=a~C.
The proposition is thus proved.

THEOREM 1. Let A possess an independent finite right-basis over
its subring C. Let M be a finitely generated vight-module of Vy (Cg),
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possessing the unit element 1, (=1z) of Vy (Cr) as an identity operator.
Let M, be the totality of elements w in M such that

(w x)*=w (x*),

for every xe A and ae Vy (Cgr). Then M is, considered as an Ap
( < V,X(CR))-rz'ght-module, the Kronecker product, over C., of the C;-
right-module M, and the C,-A;-module A,.

PrROOF. We have M=u, Vy (Cg)+v: Vi (Cr)+--- +vs Vi (Cg) with
some elements vy, vo,--+, v, of M. Each V, (Cg)-right-module v, Vi (Cg)
is a homomorphic image of Vi (Cg), while Vy (Cg) is, as a Vyu (Cg)-
module, isomorphic to the direct sum A” of n copies of A, » being
the C-right-rank of A as before. Thus M is a sum of some ( Vi (Cr))-
submodules which are homomorphic images of A. Set thus

M=A%"+A%+ -+ A%

with Vi (Cgr)-homomorphic mappings @, of A onto submodules A% of
M.

Let M, be the submodule of M defined in our theorem. It is a
C,-right-module. For, if we M, and ce C, then

(w e 2)*=(w (x ))*=w((x ¢)*)L=w (x* ¢),=w ¢ (x*),

for every xe A. Further, for each ¢, C% is contained in M,. For, if
ce C, we have, on putting ¢=¢;,

(c? 2)*=((c*L)?)* =(x c)** =(x O)**=(x" c)*=c (x*)*=c*(x").. .
Since A% =(A C)¥ =C4L% =C% A,;, we have
M=M,A,=M,a,+M,a,+ - +Mya,,

where (ay, @, -, @,) is an independent C-right-basis of A (Whence (ayr,
@, -, @n) is an independent C;-left-basis of A;). Moreover, if w, @y
+ W, @y + - +Wy @,; =0 with some w,, w,, - ,w, e M, then

w (af)L +wz (@3) L+ - +wy (a7).=0%=0.
On setting a=«; (with a3 =3§;; a;), we have

w; 1,=0, or, w;=0.
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This shows that ay;, a,, -, @, are Mjyleft-independent, and M=2M,
Xcr Aj.

Remark. As (wxp)y,=w(x.y.)=w(y x),=w (xL), for every
weM and x,ye A, our M, is characterized also as the totality of
elements w in M such that

(wa)(Yi:w(xyi )L (i:]-’ 27'”; n),

where Ay (Cr)=>11v; Ay

§ 2. Weakly normal rings.

Let A, C be as in §1. If then an independent right-basis vy, s, -,
vn Of Vo (Cg) over A; can be so taken as each v; is an A;-semilinear
endomorphism of A, belonging to a (ring)-automorphism 6; of A, we
say that C is a weakly normal subrving of A and that A is weakly

normal over C.
PrOPOSITION 3. A is weakly normal over C if and only if the
Kronecker product Ax A over C is a divect sum

Ax A= AP U, A @ - Du, A,

where wuy, s, -, y, Gre A-(vight-, say) independent over A and satisfy
au,=u; a’i (CZGA)

with some automorphisms =, 7, -, ™ 0f A. In fact, if this is the case,
we can choose Ap-semilinear endomorphisms vy, e -, vn of A forming
an independent (right-) basis of Vy (Cr) over A, so that they belong to
the automorphisms 6,,80,,--,0, of A; given by

(a )i =(a™i ).,
and conversely.

ProoF. We repeat our proof in [9], for the sake of completeness.
Assume first that A is weakly normal over C and let «;, 6; be as
above. Since Vy (Cr)=m AL ® v, A; ®---@® v, AL is the relation-module
of the A-double-module A x c.A with respect to #,=1x1, it follows (cf.
[8]) that there exists an independent A-right-basis (u,, #,, -, #,) of
AxcA such that



160 T. NAKAYAMA
XUg=> u; x% (xe A).

Define the automorphisms ; of A by means of the automorphisms 6;
of A, as is indicated in our proposition. We have 3]u; (@ x)" =0 u;
a’i x% . The left-hand side is equal to @xwy=3au; x" =>%;pj;
(a) x"i , where we set e¢u;=> u;pj; (a) (pj,- (a)eA). Thus a7 x%i =
Sl pji(@) x%, whence v;afi=3v;p;i(a). Since v, vy, v, are in-
dependent over A;, we have pj; (@).=38; afi, or p;; (@)=5 jia@”’. Hence
au;=wu; @i, which proves a one-half of our proposition. _

To prove the other half, assume the existence of an independent
right-basis (%), %z, --, u,) of AxcA over A satisfying our condition.
The relation-module Vi (Cg) of A xcA with respect to #,=1x1 has
a form >7v; A, with v; satisfying x #,=> u; " (x e A). Here Vi, Y2yt
v» are right-independent over A;, because A x4 has an independent
right-basis over A contained in A #,=A x 1, derived from an indepen-
dent right-basis of A over C; cf. [8] We have axw,=3u;(ax).
But also axuy=a>lu; x"i = Jju;a" x"i. Hence (ax)" = a% x"% and
apvi=v;afi. Thus A is weakly normal over C, which completes our
proof.

Remark. The set {6),6,,-,6,} of automorphisms of A, (or the
set {m, s, -, T} Of automorphisms of A (as in [Proposition 3)) is not
at all unique, in general. But it is unique up to inner automorphisms,
provided that A satisfies the double chain condition for two-sided ideals
(or any other condition which makes the Krull-Remak-Schmidt theorem
applicable to the A double-module A4 x cA="#; A).

PROPOSITION 4. Let A be weakly normal over its subring C. If,
and only if, C satisfies the right (left) minimum condition, A satisfies
the right (left) minimum condition, and if, moreover, C is semisimple
(vesp. simple), then A is semisimple (resp. semisimple with mutually
isomorphic simple components).

PROOF. We have Vy (Cg)= é v; Ar=>1A;v; with A;-semilinear

endomorphisms v; of A. On the other hand, V (Cg) is a matric ring,
of degree », over a ring inversely isomorphic to C. If A satisfies the
right (left) minimum condition then V, (C) satisfies the minimum
condition for its A;-left (right) submodules, hence much the more the
left (right) minimum condition. Then we have the left (right) minimum




Wedderburn's theorem, weakly normal rings 161

condition in the ring inversely isomorphic to C, whence the right (left)
minimum condition in C. (The left minimum condition assertion is
indeed an immediate consequence of [Proposition 2 and may also be
treated directly by considering 3" ;! for left ideals I in C (where (@;)
is an independent C-right-basis of A)®). It is clear,” on the other
hand, that the right minimum condition in C implies the same condition
in A. Further, the left minimum condition in C implies the right
minimum condition in Vy (Cg), which in turn implies the right minimum
condition in A; (or the left minimum condition in A); observe that
if I is a right ideal in A; then 31, v; is a right ideal in Vi (Cr).
Let N be the radical of A. Then Sy; N; is contained in the radical
of Vy (Cg). But, if C is semisimple, then V, (Cg) is semisimple too,
whence 3}v; N;=0 and we have N=0. Take, then, a simple com-
ponent of A and construct the sum A, of all the simple components
which are isomorphic to the chosen one. This sum A, is a two-sided
ideal of A invariant under any automorphism of A, and we see readily
that > y; Ay, is a two-sided ideal in V, (Cg). If, on the other hand,
C is simple, then Vy (Cg) is so too. Thus 3v; Aor=Vy (Cr), whence
A=A, then.

Remark. Minimum conditions may be replaced by maximum con-
ditions throughout in the first half of our [Proposition 4. Further, that
the semisimplicity of C implies the semisimplicity of A, in
4, is valid generally, without the assumption of minimum condition,
semisimplicity being understood in the sense of Jacobson For, we
have generally, besides that a matric ring (of finite degree) over a semi-
simple ring is semisimple, that” S7+; N, is contained in the radical of
V&r (CR)ZZ vi Ar. ‘

§ 3. Innerly weakly normal rings.

If A is weakly normal over its subring C and if the A,-semilinear
endomorphisms vy, z,---, v, of A, forming an independent A;-right-basis
of Vi (Cg), can be so chosen that the belonging automorphisms 6,, 6,---,

5) And has been mentioned in the footnote 1) too.
6) Cf. again the footnote 1).
7) This I owe to Azumaya.
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6, of A; are inner automorphisms® (i. e. the automorphisms =, 7, -, 7
of A, as in [Proposition 3, are inner automorphisms), then we say that
A is innerly weakly normal over C. In this case, we can choose our
elements «,, y,,--, v, Of Vi (Cg), forming an independent A,-right-basis
of Vi (Cg), so as they are A;-linear, i.e. 6,=6,=---=0,=1 (identity
automorphisms of A); multiply the original v, v, -, v» by some regular
elements (inverse to the regular elements effecting the (original) inner
automorphisms 6y, 6,,---,6,). Then v;e Vy (A)=Axr and «v;=k;z with
k;c A. Let K be the module generated by Fk,, k., -, k, over the center
Z of A. We have thus

Vsa (CR):E Yi AL:KR AL.

‘The product K; A, is the Kronecker product over Zx( =Z,), since
kg, kog,, kag are independent over A;. Further, Cr=V, (Vy(Cg))
=Vu (Kr AL)=Vy (Kg)~ Ar=Vag, (Kg), or

C=V,(K).
We have moreover? Kr=Ar~Kr A;=Ar~Vy(Cr)=Va,(Cg), or
K= VA (C) .

In particular, K is a 7ing which possesses (kj, k., -, k,) as an in-
dependent basis over Z.

PROPOSITION 5. Let C be a subring of A such that C=V,(V4(C)).
In order that A is innerly weakly normal over C, it is necessary and
sufficient that there exist a finite set of elements ki, ks, ky in V4(C)
such that k) Z+ky Z+ ---+k,Z is a ring, where Z is the center of A,
and that the matrix

8) If this is the case, then any other set of Ay -semilinear endomorphisms of A form-
ing an independent Aj -right-basis of Vi (Cpr) consists of thosz belonging to inner auto-
morphisms of A, provided that A satisfies the double chain condition for two-.sided ideals,
for instance.

9) Express each element of Kp A7 as a linear combination of kg, ko, -, kur with
coefficients from A7, and observe that if it is (e Ap whence) commutative with all ele-
ments of A; then the coefficients must be in the center Z1. =Zp of Ar.
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with suitable n elements a, a, -, a, in A is regular.

PrROOF. We get the sufficiency from Proposition 1 on putting
vi=Fk;z. The necessity follows from the same proposition combined
with the above consideration.

PROPOSITION 6. Let A be innerly weakly normal over C, and let
K be the commuter V, (C)of C in A. Then, A-left and K-right-
submodules a of A are in 1—1 correspondence with left-ideals | of C
according to the correspondence

a—>[=C~a, [—a=ATf.

Proor. As Va(Cr)=Kg A;. the assertion follows from Proposi-
tion 2. .

THEOREM 2. Let A be innerly weakly normal over C, and let
K=V,(C). With any finitely generated right-module M of the ring
K A,, which bossesses the unit element of K AL as an identity operator,
we have

M:MO X CLAL ’

where M, is the totality of elements w in M such that wkp=w k, for
every ke K.

PROOF. Immediate from Theorem 1 and the accompanying Re-
mark, for wkr=wk, gives waLkr=wkra;=wk, a,=w(a k), for
every ae A (and conversely, since 1 e A).

THEOREM 3. Let A, K be as in Theorem 2. If Sis aring which
contains A as ils subring, whose center contains the center Z of A and
which possesses the unit element of A as its unit element, then

S=AxcVs(K).
PROOF. We consider S as a K & A;-right-module on defining!®

vkr=vk, va,=av (veS, keK, acA).

The module M, in Theorem 2, with M=S is the totality of elements
w in S such that wkp=w ky, or wk=Fkw, for every ke K. Thus
MOZVS (K), and S= VS (K) x CAL°

10) This is allowed, as Kp~Lp=Zp (=ZL) and Z is contained in the center of S.
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PROPOSITION 7. Let A, K and S be as in Theorem 3. Then S
is innerly weakly normal over its subring Vs (K).

PROOF. K possesses an independent basis (%, k»,---, k,) over the
center Z of A. There exists a system of » elements @, @, --,a, in A,
forming in fact an independent right-basis of A over C, such that the
matrix (a; k;);; in A is regular. It is regular also as an matrix in S.
Hence, by Proposition 5, S is innerly weakly normal over its subring
Vs (K).

PROPOSITION 8. Let A be innerly weakly normal over its subring
C. If C is simple, both A and K are simple. If C satisfies the right
(or left) minimum condition and is primary, both A and K are primary.

ProOF. We have Vy (Cr)=Kgxz, A;=> kjr A, where Z is the
center of A and kg, kg, -, Exg are independent over A;. If a i3 a
proper ideal of A, Kra; is a proper ideal of V, (Cg). Now, if C is
simple, then Vy (Cg), a matric ring (of finite degree ) over a ring in-
versely isomorphic to C, is simple too. It follows that A is simple too.
Its center Z is a field then, and A possesses an independent (possibly
infinite) basis over Z. We see, similarly as above, that K is simple
too. Suppose next that C satisfies the right (left) minimum condition
and is primary. Then Vy (Cg) (satisfies the left (right) minimum con-
dition and) is primary. Let N be the radical of A. If A/N were (two-
sided) directly decomposable, then Vy (Cr)/Kx Ny=Kg A;/Kx N; would
be directly decomposable. So A must be primary. Further, K is
semi-primary, as the endomorphism ring of a module with composition-
.series. A proper direct decomposition of its residue-ring K/ module
its radical @ would entail a such of Vi, (Cr)/Qr AL.=Kr A;/QrAL;
consider orthogonal central idempotent elements in K/Q. Thus K
must be primary too.

PROPOSITION 9. Let A satisfy the minimum condition and be
Dprimary and innerly weakly normal over its subving C. Let B be a
subring of A which contains C and over which A possesses an in-
dependent right-basis. Then A is innerly weakly normal over B.

This was proved in Theorem (3. 2).

THEOREM 4. Let A, and B be as in Proposition 9, and assume
that B is primary (together with A). If « is an isomorphism of B
into A leaving C elementwise fiexd, and if A has an independent

!
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right-basis over B® too, then « can be extended to an inner automor-
phism of A. In particular, every automorphism of A leaving C element-
wise fixed is inner.

This is a generalization of Theorem 1. We shall not prove
the theorem here, since we shall give, and prove, a further generaliza-
tion in a paper sequel to [6]

§4. Inner weak normality over (a subring
contained in) the center.

We now consider the case where the subring C (containing the
unit element 1 of A) is contained in the center Z of A. We again
assume that A has an independent finite basis over C. On generalizing
~the notion of maximally central algebras introduced in the joint paper
Azumaya-Nakayama the former author called, in A to be proper
maximally central over C when the Cy(=C;)-endomorphism ring
Va(Cgr) of A is the Kronecker product Aj,x A; over Cg. This is
nothing but the present case C < Z of our inner weak normality. For,
the proper maximal centrality of A over C evidently implies that A4 is
innerly weakly normal over C. The converse follows from our Pro-
position 5 and Azumaya’s Theorem 12.

We observe that K=V ,(C)=A for C < Z, and we see, when A4
is innerly weakly normal (i.e. proper maximally central) over C, that
C=Va4(K)=V,4(A)=Z, that is, C coincides with the center Z. Further,
submodules of A allowable with respect to Vy (C)=Ax A, are nothing
but two-sided ideals of A. Thus our Proposition 6 is a generalization
of Azumaya’s Theorem 13. Our Theorem 2 generalizes his Theorem
16, whence it (or its corollary Theorem 3) forms a generalization of a
well-known theorem of Wedderburn alluded to in the introduction (that
if, a central simple finite-dimensional algebra A, over a field C, is
contained, as a subalgebra, in an algebra S, over C, and contains the
unit element of S, then S is the Kronecker product Vs(A)xA. On
the other hand, our is of a nature rather different from
Theorem 18 of Azumaya[1] (though it has also as a corollary the
Corollary to Azumaya Theorem 18).
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§5. Semigroup of weakly normal rings over
a commutative ring.

In this section we again consider the case where the underlying
subring is (commutative and) contained in the center.

PROPOSITION 10. If two rings A, B are weakly normal over their
common subring C contained in their centers, then the Kronecker pro-
duct ring A x B over C is weakly normal over C. If A, B are innerly
weakly normal cver C, then Ax:B is innerly weakly normal over C
too.

PROOF. We have Vy,(Cr)=v1 AL T v AL ® - F v, A, with A,-
semilinear endomorphisms vy, v, -y, of A. Similary

Vi(Crs)=8 Brg, ® 8: Brg, ®® 8, Breg

with B, gy,-semilinear endomorphisms §,, &;,---,8,, of B, where ¥ is the
absolute endomorphism ring of B and Cggy, Bi(g, denote the right (or
left) and left multiplication rings of C and B, respectively, onto B.
Identifying C with Cgz and Cgs,, we may consider C as a common
subring of ¥ and ¥. Then the C-endomorphism ring of A x B is the
Kronecker product of Vi, (Cz) and Vi (Cges,) over C, and is thus

217185 (AL > cBrp)) .

Here v; 8, are A, x ¢B; p,-semilinear endomorphisms of A xcB. Fur-
thermore, A; X B, 5, may be identified with the left-multiplication ring
of AxcB. Thus A x:B is weakly normal over C. If moreover A, B
are innerly weakly normal over C, then v; and &; may be chosen to
be A;- and B, g, linear, respectively. Then v; §; are A; % cB;p),-linear
and A x B is innerly weakly normal over C.

COROLLARY. Let A be (innerly) weakly normal over a subring
C contained in the center. Then a matric ring (A), of a finite degree
k is (innerly) weakly normal over C ( C being considered as a subring

of (A)).V

11) As a matter of fact, the converse is true too, provided that we assume that A4
possesses an independent basis over C; see below. Moreover, this last pre-
assumption is unnecessary if C satisfies the minimum condition (or if the residue-ring of
C modulo its radical satisfies the minimum condition; cf. Corollary to Theorem 3 in
Azumaya [17).
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For, the matric ring (C), is innerly weakly normal over C, as one
readily sees by means of [Proposition 5, for instance.

Clearly the Kronecker product over C of the matric rings (C)k
and (C), is the matric ring (C),;. Azumaya [1] classified rings innerly
weakly normal over C and possessing C as their center (i.e. proper
maximally central over C) by means of the semigroup of matric rings
over C, to the effect to have a generalization of the celebrated Brauer
group of algebra-classes (of central simple algebras over a field). We
are led, by the above observations, to consider, more generally, the
following semigroups of rings.

Let, namely, C be a commutative ring, with unit element. We
denote by ‘R; (C) the semigroup of all rings containing C in their
center, possessing the unit element of C as their unit element and
possessing independent finite bases over C; the multiplication being the
Kronecker product multiplication over C, and rings isomorphic over C
being considered as identical. Let h,(C) and R; (C) be the subsemi-
groups of N; (C) consisting of those rings which are weakly normal
and innerly weakly normal over C, respectively. Let, further, R, (C)
be the semigroup of matric rings, of finite degrees, over C; W, (C)
=2 R (C) 2 N3(C) 2 R (C).

Then the factor-semigroup® N; (C)/N, (C) is actually a group (cf.
Azumaya [1]). For, if Ae R;(C) then ArxcA; is Vyu(Cg) and is a
matric ring (of finite degree) over C. Here Ay is isomorphic, over C,
to A (and A; is inversely isomorphic to A). Now we have

THEOREM 5. Let C be a commutalive ring with unit element
whose rvesidue-ring module the radical satisfies the minimum condilion.
Then, N3 (C)/ Ry (C) is the largest subgroup of the semigroup W,(C)/
R (C). In fact, in the semigroup N, (C)/N;(C) the wunit element
R3 (CY N3 (C) is the largest subgroup. More precisely, if A, Be M (C)
and A x :BeWR;(C), then necessarily A, Be R; (C).

PrOOF. Let A,Be R;(C), and let

Vyu(Cr)=m1 AL D v; AL B D v. AL,

Vi (Cres)) =81 Brgy ® & Brgy ® - ®8m Bres) »

12) Two elements A, B in 93 (C) are set to be equivalent when there are Aj, Bj in
Ny (C) such that A xAy;=Bx B,
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where v; and &§; are some elements of the absolute endomorphism rings
A and B of A and B, respectively, and Cgis (=Crs,), Brg, are the
right and left multiplication rings of C, B onto B, Then the C-endo-
morphism ring of A x B is Vy (Cg) x Vi3 (Cres)), as before. Considered
as an Az (< Vi (Cg))-two-sided module, it is thus isomorphic to the
direct sum of m? isomorphic copies of V, (Cr). Now, suppose that
A x ¢B is innerly weakly normal over C, i.e. AxcBe R;(C). Then the
C-endomorphism ring of A x B is a direct sum of submodules of form
wr (A cB)rcaxp, With o, elementwise commutative with (A x c¢B)rcaxn)
=A; X cBrp) the left multiplication ring of AxB. Thus it is, con-
sidered as an A;-two-sided module, isomorphic to a direct sum Of
isomorphic copies of A;. It follows™ that the A,-two-sided module
Vi (Cg) is isomorphic to a direct sum of isomorphic copies of A;.
This means however that A is innerly weakly normal over C. Simil-
arly Be R;(C). Our theorem is thus proved.

Let, next D be a commutative ring which contains C as its sub-
ring and possesses the unit element of C as its unit element. As the
usual coefficient field extension for algebras, we may form from each
ring A in R, (C) a ring AxDeR(D). In this way we obtain a
natural homomorphic mapping of R, (C) into R; (D), and it is clear
that R, (C), R; (C) and R, (C) are mapped into R, (D), R; (D) and R, (D),
respectively, by this homomorphism. Now, provided that C satisfies the
same condition as in and that D possesses an independent
finite!’ basis over C, the mapping of R;(C)/R;(C) into R, (D)/R; (D) is
an (into-) isomorphic mapping. This we can see in similar manner as
above, considering that the D-endomorphism ring of A x oD is the ring
Vi (Cr) % cDrpy, Where Dy, is the right multiplication ring of D (onto
D). :
Note that A x D can belong to R, (D) even when A ¢ R, (C); let
for example A be a non-normal (but separable) finite extension of a
field C and D be the splitting Galois field of A over C ;*® or, we may
take as C, A, D respectively the rational number field, C (3" 2), and

13) Azumaya Corollary to

14) If C satisfies the minimum condition, the finiteness assumption is unnecessary.
15) If AxcD=e1D@® ez D DD ep D with mutually orthogonal (primitive) indepen-
dent elements e;, then the cyclic permutations of (ey, es,--,ex) over D generate over
(A x cD)rcaxp) the endomorphism ring of A x ¢D.
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C(w), @ being a primitive 3rd root of unity.’” The same examples
serve to show!” in connection of that A x B can belong
to R, (C) even when at least one of A, B does not belong to R,(C);
let B=D. Moreover, A x B may belong to R, (C) even when both A,
and B fail to belong to M, (C). Consider for example a Galois extension
over a field C whose Galois group is a product of two mutually disjoint,
mutually permutable, non-normal subgroups, and let A, B be the fields
belonging to these subgroups.

Appendix. Inverse of Wedderburn’s theorem.

The following inverse of Wedderburn’s theorem has been com-
municated to the writer by N. Jacobson :

Let A be a (finite- or infinite-dimensional) algebra with unit ele-
ment 1 over a field C, and suppose that every algebra S over C contain-
ing A, as a subalgebra, and having as its unit element the unit ele-
ment 1 of A is decomposed into a Kronecker product, over C, of A
and a second subalgebra. Then A is simple, central and finite-dimen-
sional (i.e. innerly weakly normal) over C.

We shall give here a simple proof to this theorem. Let, to do so,
9, be the ring of all C-endomorphisms of A. The right and left
multiplication rings Az and A; of A are subrings of 2, and they are
the commuters of each other. As Ay is isomorphic to A (over C),
9, must be decomposable into a Kronecker product, over C, of A, and
a second subalgebra, say B: U=ArxcB. Here B <V, (Ar)=A;.
So (U:C)=(Ar:C)(V:C)=(Ar:C)(AL:C)=(A:C)F We assert
that the rank (A:C) is finite. For, if (A:C) were infinite, then the
(infinite) rank (2, : C) (of the full column-finite matric ring ;) of di-
mension (A :C) over C) would be greater than (A:CP=(A:C) (in
virtue of the fact that 2 > a for every cardinal a). Thus (A:C) is
finite, and (the full matric ring of dimension (A:C) over C) ¥, is a

16) Observe that the field C(w, 32 ) is the Kronecker product of C(w), C(32)

over C and is normal over C (while C(3/2 ) is not normal over C).

17) In the first example, consider the automorphism group of A x cD over C generated
by the cyclic permutations of (ej. ez, en) and the Galois group of D/C. In constructing
these examples I owe a kind remark to G. Hochschild. ‘
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central simple algebra, over C. Hence its Kronecker factor Ay is a
central simple algebra too. As Ay is isomorphic to A, this proves our
theorem.
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