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Introduction
In recent years various kinds of homotopy groups have been $int_{1}$ oduced

as invariants of a topological space. Among others, M. Abe has intro-
duced a group $x_{n}$ , for every integer $n\geqq 2$ , containing subgroups isomorphic
to the n-dimensional homotopy group $\pi_{n}$ and those isomorphic to the funda-
mental group $\pi_{1}$ , in which the operation of $\pi_{1}$ on $\pi_{n}$ forms an inner
automorphism.

It is shown in this paper that this group $x_{r}$ can be extended in a certain
way to obtain a new group $\sigma^{(r,n)}$ , for $r\geqq n>0$ , containing a subgroup iso-
morphic to the r-dimensional homotopy group $\pi_{r}$ . This group $\sigma^{(r,?)}$ will
be called $t/le$ .generali2ed $Abe$ group of the type $(r, n)$ . In a special case,
this group corresponds with $th\ell Ab/\ell omotopy$ group $x^{(r,n)}$ introduced by S.
T. Hu, which has a definite geometrical meaning: the homotopy classes
consisting of mappings $f(S^{r})\subset Z$ such that $f(S^{n})=*$ , where $S^{n}$ denotes
an n-dimensional subsphere of the r-dimensional sphere $S^{r}$, and $x^{\prime}$ is a
base point of a topological space $Z$, constitute a group $x^{(r,n)}$ under a
multiplication defined appropriately among them; while as was shown by M.
Abe, $x_{r}$ is composed of the homotopy classes of mappings which transform
$S^{r}$ into $Z$ and the subsphere $S^{0}$ (two points) $\dot{i}nto$ the base point $*$ .

It has already been shown by Hu that the algebraic structure of the
glOup $\chi^{(r,n)}$ is completely determined in telms of homotopy groups. My
$p_{1}oof$ of this theorem is based upon Abe’s arguments, and is simplified by
utilization of the concept of the function space, which consists of all the
Z-valued functions of r-variables with celtain conditions.

In the latter part of this paper, I shall discuss several relations be-
tween the Abhomotopy $g_{1}oup$ and the torus homotopy group; (i) the
$i_{Somo1}phic$ imbedding of $x^{(r,n)}$ in the r-dimensional torus $\prime_{l}omolo\mathfrak{X}^{\prime}$ group $\tau_{r}$ ,
which was recently introduced by R. H. Fox7) ii) the simplicity in
the sense of Eilenberg.

I have to add here that a considerable part of the results in this paper
happens to be duplicate to the results of S. T. Hu.6) But my method is
quite different from his.
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\S 1. The definition of the generalized Abe group of t/le type $(r,n)$ ,
$\sigma^{(r,n)}(Z)$ .

Let $Z$ be a topological space and $S^{r}$ th $e$ r-dimensional sphere. All
the mappings of the cartesian product of $S^{r-1}$ and the closed intelval I
between $0$ and 1, $ S^{r-1}\times$ [, into $Z$ which transform the subset $\{S^{r-1}\times(0)$

$+S^{r-1}\times(1)+K^{n-1}\times I\}$ of $S^{r-1}$ xl into the base point $*ofZ$, where $K^{n-1}$

is an $(;-1)$ -dimensional fixed subcomplex of $S^{r-1}$ such that the difference
set $S^{r-1}-K^{n-1}$ is an open set, constitute a function space $\sigma^{(\prime,n)1)}$ which is

usually denoted by the symbol $Z^{r^{-\iota_{xI}}}(S^{r-1}\times(0)+S^{r-1}\times(1)+K^{n-1}\times 1, *)$ .
As usual two elements $f$ and $g$ of $\sigma^{(r,n)}$ are defined to be homotopic each
other if there exists a homotopy $h_{\ell}$ , for $1\geqq t\geqq 0$ , belonging to $\sigma^{(r,n)}$ such
that $h_{0}=f$ and $h=g$ , and this relation of homotopy is, of course, an equi-
valence relation so that $\sigma^{(r.n)}$ is divided into homotopy classes, every one
of $w^{1}nich$ consists of homotopic elements. Two elements $f$ and $Jc$ , belonging
to $\sigma^{(\cdot,n)}$ , are multiplied together by the rule:

(1.1) $fg(x, t)=f(x, 2t)$ when $x\in S^{r-1}$ and $\frac{1}{2}\geqq t\geqq 0$

$=g(x, 2t-1)$ when $x\in S^{r-1}$ and $1\geqq t\geqq\frac{1}{2}$

and the resuiting mapping $f\cdot g$ is again a member of the collection $\sigma^{(r,71)}$ .
The multiplication defined by the rule (1.1) induces a multiplication of
homotopy classes, and these classes together with the induced multiplication
constitute a new group $\sigma^{(r.n)}(\prime Z),$ $\prime Lvhic/l1$ call the generalized $Abe$ group
of $t/te$ type $(r, n)$ . The identity is represented by the mapping $f(x, t)=*$

for any $x\in S^{r-1}$ and $0\geqq t\geqq 1$ , and the inverse of an element represented
by a mapping $r$ is also represented by a mapping $f^{-1}$ defined by the formula
$f^{-1}(x, t)=f(x, 1-t)$ .

It is easily seen that when the fixed subcomplex $K^{n-1}$ is the
vacuous set of $S^{r-1}$ , $\sigma^{(r,n)}(Z)$ corresponds with the $r- dime’(ionalAbe$

group $x_{r}(\prime Z)$ and that if $K^{\eta-1}$ is regarded as the $(7l-1)$ -dimensional
subsphere $S^{n-1}$ of $S^{r-1}$ , it coincides with the Abhomotopy group $x^{(r,n)}(Z)$ ,
which was nominated after M. Abe by its discoverer Hu. If $S^{r-1}\times(0)$

and $S^{r-I}\times(1)$ are identified to single points $p_{0}$ and $p_{1}$ respectively,
$S^{r-1}\times I$ and $S^{n-1}\times I$ are reduced to be the r-dimensional sphere $S^{r}$

1) The function space is topologized by the compact-open topology due to R. H. Fox.
Evidently $r\geqq n>0$ is assumed.
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and its subsphere $S^{n}$ respectively. This mapping $\varphi$ of $S^{r-1}\times 1$ onto $S^{r}$

$transf_{01}ms$ the set $\{S^{r-1}(0)+S^{r-1}\times(1)\}$ on two points $p_{0}$ and $p_{1}$ continuously
and elsewhere topological. Then for any mapping $f$ of $\sigma^{(r,n)}\varphi$ induces a
mapping $\overline{f}$ belonging to $Z^{s}(S^{n}, *)$ such $ f=\overline{f}\varphi$ , and this correspondence $\varphi$

between $\sigma^{(r,.?1)}$ and $Z^{s^{r}}(S^{n}, *)$ is verified to be one-to-one and bicontinuous;

two function spaces $Z^{S^{r}}(S^{n}, *)$ and $\sigma^{(r,n)}$ are homeomorphic. Thus the
‘group $x^{(r,n)}(Z)$ may be said that it consists of the homotopy classes of
mappings, which transform $S^{r}$ into $Z$ and the subsphere $S^{n}$ into the base
point $*ofZ$, together with a multiplication defined among them. As was
mentioned in the introduction of this paper, this group is obviously a ge-
neralization of the r-dimensional Abe group $x_{r}(Z)$ .

The main purpose of this paper consists in researching for some
$prope\iota$ ties of the generalized Abe groups, especially interesting relations
between these groups and homotopy groups.

\S 2 The isomorphic imbedding of $\pi_{r}(Z)$ in $\sigma^{(r,n)}(Z)$

First of all we prove the following theorem, the proof of which is not
so easy as $e$ xpected.

Theorem 1. The generalized Abe gloup $\sigma^{(r.n)}(Z)$ , for $r\geqq n>0$ , contains
a subgroup isomorphic to the r-dimensional homotopy group $\pi_{r}(Z)$ .

Proof. Let $K^{r-1}$ be an $(r-1)$ -dimensional contractible subcomplex of $S^{r-1}$

such that $K^{n-1}\subset 1<r-1\subset\neq S^{r-1}$ and $S^{r-1}-K^{l-- 1}$ is an open set. The assump-
tions assigned to $K^{l-1}$ assure the existence of such a complex $K^{r-1}$ . Now
let $\Pi_{r}$ be the function space $Z^{S^{r-1}xI}$ $(S^{r-}‘ \times(0)+S^{r-1}\times(1)+K^{r-1}\times I, *)$ .
It is easily verified that the r-dimensional homotopy group is obtained if
both homotopy and multiplication are defined as usual in $\Pi_{f}$ , for $K^{r-1}$ can
be contracted to a point. From the considerations that $\Pi_{r}$ is a subspace
of $\sigma^{(r,n)}$ , and two mappings $a$ and $\beta$ belonging to $\Pi_{r}$ represent the same
element of $\sigma^{(r,n)}(Z)$ if they are homotopic each other in $\Pi_{7}.$ , it follows that
each of some homotopy classes of $\sigma^{(r,n)}$ contains at least one homotopy
class of $\Pi_{r}$ . In order to complete the proof it is sufficient to show that
each of them includes at most one homotopy class of $\Pi_{r}$ ; two mappings $a$

and $\beta$ belonging to $\Pi_{r}$ represent th $e$ same element of $\pi_{r}(Z)$ if they are
homotopic in $\sigma^{(r,n)}$ .

Now let $P$ be an albitrary point of $A^{\nearrow n-1}$ , then $a$ is, of course, homotopic
to $\beta$ relative to $\{P\times I^{\epsilon}\}$ , for they are homotopic each other relative to

$|K_{\backslash }^{n-1}\times\check{1^{l_{/}}},$ . Therefore there exists a homotopy $h(x, s, t)$ for $x\in S^{r-1},$
$s\in\check{1^{\epsilon},}$
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and
$t\in\check{1^{\ell}}$

such that

(21) $\{$ $ii^{i_{i)}^{i)}}i$) $1^{l}(xh_{l}(x1(x’, sss, t)=0)=_{*^{a(x,s)_{)_{\chi}}}}1)=\beta(x_{for^{S}}.’\epsilon K^{n-1},$

$s\in\check{1^{l},}$ and
$t\in\check{1^{\ell}}$.

Since $P$ can be regarded as a deformation retract of $K^{r-1}$, a deformatio.$n$
$\rho_{u}(x),$ $1\geqq u\geqq 0$ , is defined such that

(2.2) $\left\{\begin{array}{l}i) \rho_{u}(x)\epsilon K^{r-1}\\ii) \rho_{0}(x)=x\\iii) \rho_{l}(x)=P\end{array}\right.$ $forforforex_{V}\epsilon K_{x^{r-}\epsilon K^{1_{r-}>}}^{1}x\epsilon_{e}K_{ry^{r-}}a_{1}nd=_{1}^{u\geqq 0}$

’

As is easily seen $K^{r-1}\times\check{1^{l}}\times\check{1}$ can be pushed onto $\{P\}\times\check{1^{1}}\times\check{I^{t}}$ by a defor-
mation $D(x, s, t, u)$ such that

(2.3) $D(t, s, t, u)=(\rho_{u}(x), s, t)$ .
Then we have from (2.2) and (2.3)

(2.4) $\left\{\begin{array}{l}i)\\ii)\end{array}\right.$ $D(xD(x, ss, tt, 1)=(Po)=(x, s,. t)s,t)$

.

Now $w_{*}edefine_{u}$ a $mappin_{l}g\Psi$ of $T=u\{(S^{r-1}\times\check{1^{l}}\times\check{1}\times(0)+K^{r-1}\times\check{1}\times\check{1}\times\check{1}+\epsilon\prime u$

$S^{r-I}\times\check{1}\times(0)\times\check{1}+S^{r-1}\times l\vee\times(1)\times\check{1}$ { into $Z$ continuouly such that

$\vee$

$n$

$-$

(2.5) $\left\{\begin{array}{l}i) \Psi(x,s,t,u)=\gamma_{l}D(x,s,t,u)x\epsilon K^{r-1},s\epsilon 1,t\epsilon 1andu\epsilon 1,\\ii) \Psi(x,s,t,o)=/z(x,s,t)forx\epsilon S^{r-l},s\epsilon\check{1},andt\epsilon 1^{t}\epsilon\vee\\iii) \Psi(x,s,o,u)=,h(x,s,o) x\epsilon S^{/-1},s\epsilon 1^{*},and_{ll}\vee\epsilon u\check{1},\\iv) \Psi(x,s,1,u)=\gamma_{l}(x,s,1) x\epsilon S^{r-1},s\epsilon\check{1},andu\delta\epsilon^{?J}\dot{I}.\end{array}\right.$

The continuity of the mapping $\Psi$ defined on $T$ can be verified from the
following considerations; putting $u=0$ in (2.5) (i), $hD(x, s, t, 0)=h(x, s, t)$

from (2.4) (i) and hence $\Psi$ is defined continuously on $S^{r-1}\times 1^{\epsilon}\times 1^{t}\times\vee\vee(0)$ ;
from (2.3), (2.1) (i), and (2.2) (i), $hD(x, s, 0, u)=h(\rho_{u}(x), s, 0)=a(\downarrow 0_{u}$

$s$

$(x),$ $s$) $=*$ , for $a(x, s)=*ifl\in K^{r-1}$ and $s\in\check{1,}$ so that the continuity of
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$\Psi$ on $S^{r-1}\times\check{1}\times l(0)\times\check{I}u$ is verified together with (2.5) (iii); and similar is
the case of (2.5) (iv).

Here we must point out a property of the mapping $\Psi$ ;
$\iota$ $t$

(2.6) $\Psi(x, s, t, 1)=$ ee for $x\in K^{r-1},$ $s\epsilon 1\vee,$ $ t\in 1\vee$,

for when $x\in K^{r-1},$
$s\in\check{I}s$ and $t\in\check{J}t$ $\Psi(x, s, t, 1)=hD(x, s, t, 1)=$

$h(P, s, t)=r$ from (2.5) (i), (2.4) (ii), and (2.1) (iii).

$\overline{x}=\{K^{r-1}\times I^{s}\vee\times 1^{t}\vee+s’-1\times\check{I^{\epsilon}}\times(0)+S^{r-1}\times I^{s}\times\vee(1)$ \dagger is a subcomplex of

$X=S^{r-1}\times\check{1^{l}}\times\check{1}t$

and $T=X\times(0)+\overline{X}\times 1\vee u$ is a deformation retract of $X\times\check{1}u$ Hence the

mapping $\Psi$ of $T$ into $Z$ can be extended continuously onto
$ X\times I^{u}\vee$ Let

$\mathcal{O}(x, s, t)\equiv\Psi(x, s, t, 1)$ , where $\Psi$ is now the extended mapping, then we have

(2.7) $\left\{\begin{array}{lllll} & & & & i) \Phi(x,s,0)=a(x,s)forx\epsilon S^{r-1},ands\epsilon 1^{\vee^{*}}\\ & & & & s\\ & & & & ii) \Phi(x,s,1)=\beta(x,s)forx\epsilon S^{-1},ands\epsilon\check{1},\\ & & & & iii) \Phi(x,s,t,)=*forx\epsilon K^{r-1},s\epsilon\check{1^{l},}andt\epsilon\check{1}\epsilon\end{array}\right.$

For $\Phi(x, s, 0)=\Psi(x, s, 0,1)=h(x, s, 0)=a$ ($x$, s) $froml$ $(2.5)_{t}$ (iii) and

(2.1) (i); $\Phi(x, s, t)=\Psi(x, s, t, 1)=*$ , for $x\in K^{\prime\cdot-1},$ $s\in\check{1,}$ and $t\in\check{I,}from(2.6)$ .
It follows from (2.7) that $a$ and $\beta$ are homotopic each other in $lI_{r}$

if they represents the same element of $\sigma^{(r,n)}(Z)$ . Thus the theorem has
been established.

As was mentioned in th $e$ previou $s$ paragraph, both the r-dimensional
Abe group $x_{r}(Z)$ and the Abhomotopy group $x^{(r,n)}(Z)$ are contained, as
special cases, in the generalized Abe group $\sigma^{(r,n)}(Z)$ , and hence we have
the following corollaries.

Corollary 1.1. The r-dimensional Abe group $x,(Z)$ , for $r>0$, contains a
subgroup isomorphic to the r-dimensional homotopy group $\pi_{r}(Z)$ .

Corollary 1.2. The Abhomotopy group $x^{(r,n)}(Z)$ , for $r\geqq n>0$, contains a
subgroup isomorphic to the r-dimensional homotopy group $\pi_{r}(Z)$ .

In order to $d$etermine the algebraic structure of the group $x^{(r\cdot n)}(\prime Z)$

more accurately, we intend to follow M. Abe’s arguments in some respects,
and before this we make some preliminary arrangements for function spaces
in the two following paragraphs.
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\S 3. Some prelimjnary arrangements for function spaces
Let $Z$ be a topological space with a base point $*andS^{\prime}$ the r-dimen-

sional sphere. All the mippings of $S^{r}$ into $Z$ constitute the points of the

function space which is usually designated by th $e$ symbol $Z^{s}$ The space
is topologized by the compact-open topology introduced by R. H. FOX.
$Z_{0}^{s^{r}}(x_{0}, *)$ denotes the subspace of $Z^{s^{r}}and$ of all the inessential mappings which
transform a fixed point $x_{0}\in S^{r}$ into the base $point*of\nearrow^{\prime}\vee\cdot$ Then according
to Hurewicz’s definition the $r$-dimensional homotopy group

(3.1) $\pi,(Z)\equiv\pi_{1}(Z_{0}^{s^{r-1}}(x_{0}, *))$ .
As a generalization of this formula the following theorem holds true
Theorem 2.

$\pi_{r}(Z)\cong\pi_{n}(Z_{0}^{s^{-\prime\iota}}’(x_{0}, \backslash ,|^{\prime}.))$ $r\geqq;l>0$ .
Proof. Let $E^{r}$ be th $e$ r-dimensional cube $E^{r}=E^{n}\times E_{n}^{r1)}$ , then the boundary

$E^{r},\dot{E}^{r}$ is the union of $E^{n}\times E_{n}^{r}$ and $E^{n}\times E^{r_{l}}$ . Now a mapping $f$representing
an element of $\pi_{n}(Z_{0}^{s^{r-n}}(x_{0}, *))$ satisfies the conditions;

$ f(x^{r})=\star$ when $x^{r}\in\dot{E}^{n}\times E_{n}^{r}$

(3.2)
$=*$ when $x^{\prime}\epsilon E^{n}\times\dot{E}_{n}^{r}$

Then $f$ represents an element of $\pi_{r}(Z)$ , and the proof is practically
established.

Now that the group $\pi_{n}(Z_{0}^{s^{r-\}\}}}(x_{0}, * ))$ is analysed to be a generalization
of Hurewicz’s formula, it is quite natural that the algebraic structure and $\cdot$

the geometric structure of th $e$ groups $\pi_{:},(Z_{0}^{s^{r-?1}}),$ $x_{n}(Z_{0}^{s^{r-n}} (x_{0}, * ))$ , and
$x_{21}(Z_{0}^{s^{r-n}})$ should be also examined. Judging from the fact that M. Abe has
defined the r-dimensional $Abe$ group as

(3.3) $x_{r}(Z)\equiv\pi_{1}(Z_{0}^{s^{r-1}})$ ,

we can imagine with ease that they $m\lambda y$ be regarded as generalizations of
Abe groups. The reasonable conjectures like this will be verified and
relat$ed$ to Abhomotopy groups in the following paragraph.

1) $E^{n}=\{x^{n}=(x_{0}, x_{1},\cdots, x_{n-1}) ; 1\geqq xt\geqq 0, n-1\geqq i\geqq 0\}$

$E^{r_{n}}=\{x_{n}^{r}=(x_{n}^{r}, x_{n+l},\cdots, x_{r-l}) ; 1\geqq x_{i}\geqq 0, r-1\geqq i\geqq n\}$

and also $E^{n}xE_{n}^{r}$ denotes the cartesian product of $E^{n}$ and $E_{n}^{r}$ .
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\S 4. The geometric strnctures of the groups $\pi_{n}(Z_{0}^{s^{r-n}})$ and $x_{n}(Z_{0}^{s^{r-n}}(x_{0},*))$ .
It can be seen from the following theorem that th $e$ groups $\pi_{n}(Z_{0}^{s^{r-?l}})$ and

$x_{n}(Z_{0}^{s}(x_{0}r-n*))$ may be regarded to be the same in the algebraic point
of view.

Ttheorem 3. $x_{n}(Z_{0}^{s^{r-n}}(x_{0}, *))\cong\pi_{r-n+1}(Z_{0}^{s^{n-1}})$ for $r\geqq n>0$ .

Proof An element of $x_{n}(Z_{0}^{s^{r-n}}(x_{0}, *))$ is represented by a continuous $Z-$

valued function $f$ of the r-real variables $x_{i},$ $1\geqq x_{t}>0=$ for $i=0,1,\cdots,$ $;-1_{r}$
,

which satisfies the condition:

$f(x^{r})=*$ when $x_{0}(x_{0}-1)\Pi^{r-1}x_{i}(x_{i}-1)=0$ ,
(4.1) $i=n$

$=P(x_{0}, x_{n}^{r})$ when $\prod_{n=1}^{n-1}\chi_{i}(x_{i}-1)=0$ ,

where $P(x_{0}, x_{n}^{r})$ denotes a point in $Z$ which depends only on the partial
coordinates $x_{0}$ and $x_{n}^{r}$ of $x$

’ ; while a mapping representing an element of
$\pi_{r-n+1}(Z_{0}^{s^{n-1}})$ is also characterized by the condition (4.1). Hence by
further simple considerations the theorem is established.

Now we intend to discuss the close relations between $\pi_{n}(Z_{0}^{s^{r-n}})$ and
the Abhomotopy, and the geometric structures of the groups $\pi_{n}(Z_{0}^{s^{r-n}})and$

$x_{n}(\mathcal{Z}_{0}^{s^{r-n}}(x_{0}, *))$ are clearly explained as soon as the relations aoe given
in the following. It is no exaggeration to say that these groups are worth
while investigating merely because they can be treated in the background
of the generalized Abe groups.

Tlleorcm 4. $\pi_{n}(Z_{0}s^{r-nr-n+\sigma})\pi_{\rho}(Z_{0}^{\wedge s}(S^{\sigma-1}, *))$ for $r\geqq n>\sigma\geqq 0$ .

Especially, if $\sigma=n-1,$
$\pi_{n}(Z_{0}^{s^{r-n}})\cong\pi_{1}(Z_{0}^{s^{r-1}}(S^{\prime\iota-\underline{9}}, \dagger_{\backslash }^{\prime}))$ .

Proof. The proof shown here is th $e$ same as Hu’s one.
, then from Theorem 2 $\pi_{7l}(l^{\prime})_{s^{1}}=\sim\pi_{n-1}$Let $Y=Z_{0}^{s^{r-n}}$ then from Theorem 2 $(Y_{0}^{s^{1}}(y_{0}, \xi_{0})),$ whele $y_{(\}}$

$\epsilon S^{1}$ and $\xi_{0}(S^{\Gamma-n})=*$ . An element $f\in Yo(y_{0}, \backslash ^{\wedge}0’)$ is a mapping $f(S^{r-r}$ “

$\times I)\subset Z$, such that$f(S^{;-?l}\times(0)+S^{r-n}\times(1))=*$ . If $S^{r-n}\times(0)$ and $S^{r-n}\times(1)$

are identified to single points $p_{0}$ and $p_{1}$ respectively, $S^{r-n}\times 1$ becomes
the $(r-n+1)$ -dimensonal sphere $S^{r-n+1}$ . This mapping $\theta$ of $S^{r-n}\times I$ onto
$S^{r-n+I}$ transforms the set { $S^{r-n}\times(0)+S^{r-n}\times(1)|$ on two points $p_{0}$ and
$p_{1}$ continuously and elsewhere topological. Let $ f=\overline{f}\theta$, then $\overline{f}\in Z_{0}s^{r+1}(\overline{S}^{n_{0}},*)^{1}$ ;

two spaces $Y_{0}^{s^{\prime}}S^{r-n}(y_{0}, \xi_{0})$ and $Z_{0}^{s^{r-n+1_{0}}}($

” $*)$ are homeomorphic. Thus we
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have

(4.2) $\pi_{n}(Z_{0}s^{r-nr-n+1})\cong\pi_{n-1}(Z_{0}^{s}(S^{0}, \backslash ,\cdot\wedge^{\prime}))$ .

Again, let $Z_{0}^{s^{r-n+1}}(S^{0}, \star)=X$, then $\pi_{n-1}(X)\cong\pi_{n-2}(X_{0}^{s^{1}}(x_{0}, \eta_{0}))$ where $x_{0}\in S^{1}$

and $\eta_{0}$ is a constant mapping $\eta_{0}(S^{r-n+1})=*$ . An element $f\epsilon X^{s^{1}}(x_{0}, \eta_{0})$

is a mapping of $S^{r-n+1}\times 1$ into $Z$ such that $f(S^{r-n+1}\times(0)+S^{r-n+1}\times(1)+$

$S^{o}\times 1)=*$ . If we identify $S^{r-n+1}\times(0)$ and $S^{r-n+1}\times(1)$ to single points
$q_{0}$ and $q_{1}$ respectively, then $S^{r-n+1}\times 1$ and $S^{0}\times 1$ are reduced to $S^{r-n+2}$ and
$S^{1}$ respectively. If we denote this mapping of $S^{r-n+1}\times 1$ onto $S^{r-n+2}$ by

$\rho$ , then $f=\overline{f}\cdot(’$ such that $\overline{f}$ belongs to $Z_{0}^{s^{r-n+2}}(S^{1}, *)$ and by this corre-
spondence $\rho$ two spaces $X_{0}^{s^{\rceil}}(x_{0}, \eta_{0})$ and $Z_{0}^{s^{r-n+2}}(S^{1}, *)$ are $h_{omeomo1}phi_{C}$ .
Thus we have

(4.3) $\pi_{n-1}(Z_{0}^{s^{r-n+1}}(S^{0}, \star))\cong\pi_{n-2}(X_{0}^{s^{1}}(x_{0}, \eta_{0}))\cong\pi_{n-2}(Z^{J}\omega^{r-n+2}(S^{\prime}, \star)$ ,

and from (4.2) and (4.3)

(4.4) $\pi_{n}(Z_{0}^{s^{r-n}})\cong\pi_{n-2}(Z_{0}s^{r-n+2}(S^{1}\star))$

Repeating the same process, we have the following general formula

(4.5) $\pi_{n}(Z_{0}s^{r-n\cdot-n+\sigma})\cong\pi_{n-\sigma\cong}Z_{0}^{J}’(S^{\sigma-1}, \star)$ for $n>\sigma\geqq 1$ .
In a special case $\sigma=0$ , if we agree that $S^{-1}$ is vacuous, the right side

of (4.5) is equal to $\pi_{n}(Z_{0}^{s^{r-n}})$ . Thus (4.5) holds true for $r\geqq n>\sigma\geqq 0$ .
$T/leorem5$ . $\pi_{n}(Z_{0}^{s^{r-*}})\cong x^{(r,n-1)}(Z)$ for $r\geqq n>0$ .

Proof. From Theorem 4 $\pi_{n}(Z_{0}^{s^{r-n}})\cong\pi_{1}(Z_{0}^{s^{r-1}}(S^{n-2}, \star))$ . It is evident from
$r-1$

the definition of $x^{(r,n-1)}(Z)$ that $x^{(r.n-1)}(Z)\cong\pi_{1}(Z_{0}^{s} (S^{n-2}, *))$ , and hence
the Theorem has been established.

Theorem 6. $x_{n}(Z_{0}^{s^{r-n}}(x_{0}, *))\cong x^{(r_{r}-n)}(Z)$ for $r\geqq n>0$ .
Proof. From Theorem 3 $x_{n}(Z_{0}^{s^{rn}}\overline{(}x_{0}, *))\cong^{\pi_{r-n+1}(Z_{0}^{s^{\eta t}}\overline{)}^{1}and}$ from Theorem 5

$\pi_{r-n+1}(Z_{0}^{s^{n-t}})\cong x^{(r.r-n)}(Z’)$ .
Remark. It is worthy of note that $x^{(r.n)}(Z)$ is abelian if $r\geqq n>0$ though

$x_{r}(Z)$ is not generally abelian.

\S 5. The algebraic structure of $x^{(r,n)}(Z)$

The subsequent discussions will be developed in parallel with M. Abe’s
arguments; M. Abe has shown that the r-dimensional Abe group $x_{r}(Z)$
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is a group extension of $\pi_{r}(Z)$ by the fundamental group $\pi_{1}(Z)$ , and that
$x_{r}(Z)$ is actually the direct product of $\pi_{r}(Z)$ and $\pi_{1}(Z)$ if and only only
if $Z$ is r-simple in th $e$ sense of Eilenberg. By analogy with this
statement we obtain the following theorem.

$\tau/leorem7$ . $r_{n}(Z_{0}^{s^{r-n}})$ , for $r_{r-n}=^{n>}>1$ , is isomorpkic to the direct sum of the

groups $\pi_{r}(Z)$ and $\pi_{n}(\partial;\pi_{n}(Z_{0}^{s} )\cong\pi_{r}(Z)\oplus\pi_{n}(Z)$ .
Proof. From Corollary 2 of Theorem 1 and Theorem 5 $\pi_{n}(Z_{0}^{s^{r-}})$ contains

a normal subgroup $\overline{\pi}_{r}(Z)$ isomorphic to $\pi_{r}(Z)$ . At first a slight $re$ laxed

statement is proved; $\pi_{n}(Z_{0}^{s^{r-n}})$ is a group extension of $\pi_{r}(Z)$ by $\pi_{n}(Z)$ ;

namely the difference group $\pi_{n}(Z_{0}^{s^{r-n}})-\pi_{r}(Z)$ is isomorphic to $\pi_{n}(Z)$ . This
$extensi\underline{o}_{n}n$ is shown to be of special type, which I call split, meaning that
$\pi_{n}$ $(Z_{0}^{s} )$ contains a normal subgroup $\overline{\overline{\pi}}_{n}(Z)$ isomorphic to $\pi_{n}(Z)$ . For
$r\geqq n>1$ the groups $\pi_{n}(Z_{0}^{r\rightarrow n}),\pi^{n}(Z)and\pi_{r}(Z)$ are all abelian, so that $\pi_{n}(Z_{0}^{s^{r-n}})$ ,
being an abelian split extension of an abelian group by an abelian group,
is actually the direct sum of $\pi_{r}(Z)$ and $\pi_{n}(Z)$ .

Let $f$ be a mapping representing an element $\alpha$ of $\pi_{n}(Z_{0}^{s^{r-n}})$ .
As was considered in (4.1),

$f(x^{r})=*$ when $x^{r}\in\dot{E}^{n}\times E_{n}^{r}(\prod_{i-0}^{n-1}xi(x_{i}-1)=0)$ ,

(5.1) $=P(x^{n})$ when $x^{r}\in E^{n}\times\dot{B}_{n}^{r}(\prod_{i\Rightarrow n}^{r-1}x_{i}(x_{i}-1)=0)$ .

Putting $f(x^{n}, 0\ldots 0)=\overline{f}(x^{n})$ , then $\overline{f}(x^{n})=^{\backslash },\triangleright$ for $x^{n}\in E^{n}$ , and hence $\overline{f}$

represents an element of $\pi_{n}(Z)$ . If two elements $f$ and $g$ represent the same

element of $\pi_{n}(Z_{0}^{s^{r-n}}),\overline{f}$ is homotopic to $g$ ; it may also be verified that
$f\cdot g=\overline{f}\cdot\overline{g}-$, and from these two facts it follows immediately that the

rransformation $f$ into $\overline{f}$ induces a homomorphism $\Gamma$ of $\pi_{n}(Z_{0}^{s^{r-n}})$ onto $\pi_{n}(Z)$ .
Now let $a$ be any element of $\pi_{n}(Z_{0}^{s^{r-n}})$ , which belongs to the kernel of $\Gamma$,

$s_{-}o$ that $\Gamma a=0$ . Thus $a$ must be represented by a mapping $f$ for which
$\nearrow(x^{n})=f(x_{n},0\cdots 0)=*for$ any $x^{n}\in E^{n}$, so that according to the condition
(2.6) $f(x^{r})=*wheneverx^{r}$ belongs to the boundary $\dot{E}^{r}$. Therefore the

kern $e1$ of $\Gamma$ is involved in the subgroup $\pi_{r}(Z)$ of $\overline{\pi}_{n}(Z_{0}^{s^{r-n}})$ . Conversely
any mapping $g$ representing an element $\beta$ of $\overline{\pi}_{r}(Z)$ satisfies the condition
$\tilde{q}(x^{n})=*forx^{n}\in E^{n}$, so that $\Gamma\beta=0$ for every $\beta\in\overline{\pi}_{r}(Z)$ . It follows from
these verifications that the kernel of $\Gamma$ is $\pi_{r}(Z)$ . Thus $\pi_{n}(Z_{0}^{s^{r-n}} )$ is a
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group extension of $\overline{\pi}_{r}(Z)$ by the group $\pi_{n}(Z)$ . Now it remains not to be
shown that this extension is split. Let $f$ be a mapping representing an
element $\alpha$ of $\pi_{n}(Z)$ . To every mapping $f$ there is assigned a mapping $f^{\varphi}$

which is defined by the rule

$f^{\varphi}(x^{r})\equiv f(x^{n})$

It is obvIous that $f^{\prime p}$ satisfies the condition (5.1) and hence represents an
$r-n$

element of $\pi_{n}(Z_{0}^{s} )$ . That this correspondence between mappings induces
a correspondence between homotopy classes of mappings and that this
homotopy class correspondence is really a homomorphism $\Phi$ of the group
$\pi_{n}$ into the group $\pi_{n}(Z_{0}^{s^{r-n}})$ are immediate from the definition. Since
$\Gamma\Phi a=\alpha$ for any element $a$ $\epsilon\pi_{n}(Z),$ $\Gamma\Phi$ is the identity transformation of
$\pi_{n}(Z)$ into itself, and hence $\Phi$ is an isomorphism of $\pi_{n}(Z)$ into the group
$\pi_{n}(Z_{0}^{s^{r-n}})$ . Now it is concluded from these considerations that $\pi_{n}(Z)$ is
imbedded isomorphically in the group $\pi_{n}(Z_{0}^{s^{r-n}})$ . The proof has been
completed.

Now from Theorem 5 and Theorem 7 just obtained above the
algebraic structure of the group $x^{(r.n)}(Z)$ , for $r\geqq n>0$ , is completely
determined in terms of homotopy groups. As a theorem we have.

Theorem 8. $x^{(r,n)}(Z)$ , for $r\geqq n>0$ , is isomorplzic to $tJ_{l}e$ direct sum of the
$gro\prime lps\pi,.(Z)$ and $\pi_{n+1}(Z);x^{(r,n)}(2)\cong\pi_{r}(2)\oplus\pi_{n+1}(Z)$ .

Proof. $x^{(r.n)}(Z)\cong\pi_{n+1}(Z_{0}^{s^{r-n-1}})\cong\pi_{r}(Z)\oplus\pi_{n+1}(Z)$ .
Theorem 9. $ x_{n}(Z_{0}^{s^{r-n}}(x_{0}, *))\cong\pi_{r}(Z)\oplus$ $\pi_{r-n+1}(Z)lfr>n>0$ .
Proof. $x_{n}(Z_{0}s^{r-n+1}(x_{0}, \neq))\pi_{r-n+1}(Z_{0}^{s^{n-}})^{1}\sim\pi_{r}(Z)\oplus\pi_{r-n+1}(Z)$ from Theorem

3 and Theorem 7.
$Cor_{L}llary9$ . $t$ . The funclion space $Z_{0}^{s^{r-n}}(x_{0}, *)$ , for $r>n>0$ , is n-simple

in $t/le$ sense of Eilenberg.

Proof. Utilizing Abe’s result, we have Corollary 9.1. because $x_{n}(Z_{0}s^{r-n}(x_{0}, *))$

$\cong^{\pi_{r}(Z)}\oplus\pi_{r-n+1}(Z)\cong\pi_{n}(Z_{0}^{s^{r-n}} (x_{0}, *))\oplus\pi_{1}$ $(Z_{0}^{s^{r-n}}(x_{0}, *))$ ; namely
$x_{n}(Y)\cong\pi_{n}(Y)\oplus\pi_{1}(Y)$ if we put $Y=Z_{0}^{s^{r-n}}(x_{0}, *)$ .

\S 6. The determination of the algebraic structures of the groups $x_{n}(Z_{0}^{s^{r-n}})$ and
$\tau_{r-n}(\nearrow_{\rightarrow}^{s_{0}^{n}} (x_{0}, *))$ .

In this paragraph I want to research for determinating the aIgebraic

structures of $x_{n}(Z_{0}^{s^{r-n}})$ and $\tau_{r-n}(Z_{0}^{s^{n}} (x_{0}, *))$ .
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Tedious as this work is, it seems to me that it can not be neglected.
Thus I intend to summarize this paragraph in the following theorem.

$\mathcal{I}heorem10$ . The group $x_{n}(\prime Z_{0}^{s^{r-n}})$ , for $r\geqq n>0$, has several properties.
i) Tlte group contains normal subgroups isomorpkic to the groups

$r-n$

$\pi_{n}(Z_{0}^{s} )$ and $x_{r-n+1}(Z)$ .
ii) $x_{n}(Z_{0}^{s^{r-n}})$ is a group extension of $\pi_{n}(z^{s_{0}^{r-n}})$ by $x_{r-n+1}(Z)$ .

iii) $1fZ_{0}^{s^{r-n}}is$ n-simple in the sense of Eilenberg, $x_{n}(Z_{0}^{s^{r-n}})_{\cong}$

$(Z_{0}^{s^{r-n}})\otimes x_{r-n+1}(Z)$

iv) $1fZ$ is $(r-n+l)$ -simple and $Z_{0}^{s^{r-n}}is$ n-simple, $ x_{n}(Z_{0}s^{r-n})\cong\pi_{r}(Z\rangle$

$\otimes\pi_{n}(Z)\otimes\pi_{1}(Z)\otimes\pi_{r-n+1}(Z)$ .

Proof: According to M. Abe’s result, it is immediate that $x_{n}(Z_{0}^{s^{r-n}})$

contains a normal subgroup isomorphic to $\pi_{n}(Z_{0}^{s^{r-n}})$ . Now we proceed to,

show that $x_{r-n+1}(Z)$ is imbedded isomorphically in $x_{n}(Z_{0}^{s^{r-n}})$ . Let $f$ be a
$r-n$

mapping representing any element of $x_{n}(Z_{0}^{s} )$ . Then the Z-valued
function $f$ of r-variables satisfies the conditions:

$f(x^{r})=*$ when $x_{0}(x_{0}-1)=0$

(6.1) $=P(x_{0}, x_{n}^{r})$ when $\prod_{t=1}^{n-1}x_{i}(x_{i}-1)=0$

$=P(x^{n})$ when $\prod_{i=1}^{r-1}x_{i}(x_{i}-1)=0$ ,

while any mapping $g$ representing an element $a$ of $x_{r-n+1}(Z)$ satisfies the
condition:

$g(x_{0}, x_{n}^{r})=*$ when $x_{0}(x_{0}-1)=0$ ,
(6.2)

$=P(x_{0})$ when $\prod_{i=n}^{r-1}x_{i}(x_{t}-1)=0$ .
Put $f^{\varphi}(x^{r})=f(x_{0}, x_{n}^{r})$ . It is verified that $f^{\varphi}$ satisfies (6.1) and hence
represents an element of $x_{n}(Z_{0}^{s^{r-n}})$ and that this correspondence $\varphi$ induces

$r-n$

a homomorphism $\Phi$ of the group $x_{r-n+1}(Z)$ into the group $x_{n}(Z_{0}^{s} )$ . In
order to complete the proof it is sufficient to prove that $\Phi$ is an isomor-
phism. To every function $f$ representing an element $a$ of $x_{n}(Z_{0}^{s^{r-n}})$ there
corresponds an element $f^{u\prime}$ , which represents an element of $x_{r-n+1}(Z)_{r}$

defined by the rule

(6.3) $f^{\Psi}(x_{0}, \chi_{n}^{r})-\neq(X_{0},0\cdots\cdots 0, x_{n}^{r})$ .
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This correspondence induces the homomorphism $\Psi$ of $x_{n}(Z_{0}^{s^{r-n}})$ into $x_{r-\cdot+1}(Z)$ .
Since $\Psi\Phi a=a$ for any $a$ $\epsilon x_{r-n+1}(Z),$ $\Psi\Phi$ is an identity transformation of
$x_{r-n+1}(Z)$ into itself. It follows that $\Phi$ is an isomorphism of $x_{r-n+1}(Z)$

into $x_{n}(Z_{0}^{s^{r-n}})$ , and hence the proof has been completed.

According to M. Abe’s result $x_{n}(Z_{0}^{s^{r-n}})\cong\pi_{n}(Z_{0}^{s^{r-n}})\otimes\pi_{1}(Z_{0}s^{r-n}),$ $ifZ_{0}^{s^{r-n}}$

is n-simple in the sense of Eilenberg. From the definition of Abe group
$\pi_{1}(Z_{0}^{s^{r-n}})=\pi_{1}(Z_{0}^{s^{(r-n+1)-1}})\equiv x_{r-n+1}(Z)$ , and hence the third statement of
this theorem has been established.

Moreover, if $Z$ is $(r-n+1)$ -simple, $x_{r-n+1}(Z)\cong\pi_{r-n+1}(Z)\otimes\pi_{1}(Z)$ and

from Theorem 7 $\pi_{n}(Z_{0}\iota^{r-n})\cong\pi_{n}(Z)\otimes\pi_{r}(\prime Z)$ . Taking into consideration of
the third proposition, we have the last one;

$x_{n}(Z_{0}^{s^{r-n}})\cong\pi_{r-n+1}\otimes\pi_{1}\otimes\pi_{n}\otimes\pi_{r}$ .
Thus the proof of this Theorem has been completed.

In the next place we shall analyse the algebraic structure of the group
$\tau_{r-n}(’’\nearrow_{0}^{n}(x_{0}, *),$

$*$), for $r\geqq n>0$, which is the $(r-n)$ -dimensional absolute

torus homotopy group of the function space $Z_{0}^{s^{n}}(x_{0}, *)$ . In some sense
this group has been investigated by R. H. Fox (See Fox’s paper (7)).
Therefore we shall give only an outline of the group in this paper.

Tkeorem 1L

$\tau_{r-n}(Z_{0}^{s^{n}}(x_{0}, *),$
$*$ ) is abelian if $r\geqq n>0$ .

Proof: Refer to the proof of the Theorem (8.1) in Fox) $s$ paper (7).
Theorem 12.

$\tau_{r-n}(Z_{0}^{s^{n}}(x_{0}, *),$
$*$) $\sim=\pi_{n+1}(Z)\oplus\pi_{n+2}(Z)\oplus\cdots\cdots\oplus\pi_{r}(Z)$ .

Proof: Let $f$ be a mapping representing an element of the group
$\tau_{r-n}(Z_{0}^{s^{n}}(x_{0}. *), *)$ . Then $f$ satisfies the condition:

$f(x_{0}, x_{1}^{n}, x_{n}^{r})=*$ when $x_{0}(x_{0}-1)\prod_{i-n}^{r-1}x_{i}(x_{i}-1)=0$ ,

$=P(x_{0}\cdots\cdots\hat{x}_{i}\cdots\cdots x_{n-1}, x_{n}^{r})$ when $x_{i}(x_{i}-1)=0(i=1\cdots n-1)$ .
Put $f^{\varphi}(x_{0}, x_{2}^{r})=f(x_{0},0, x_{2}^{r})$ . It is easily verified that $f^{\varphi}$ represents an

element of $\tau_{r-n-1}(Z_{0}^{s^{n}}(x_{0}, *),$ $*$ ) and that this correspondence induces the

homomorphism $\Phi$ of $\tau_{r-n}(Z_{0}^{s^{\hslash}}(x_{0}, *),$
$\$^{\prime}\cdot$) onto $\tau_{r-n-1}(Z_{0}^{s^{n}}(x_{0}, t^{r_{\backslash }}),$

$*$ ). The
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kernel of $\Phi$ is $\tau_{r-n-1}(Z_{0}^{s^{n+1}}(x_{0}, *),$
$*$), so that $\tau_{r-n}(z\prime s_{0}^{n} (x_{0}, *),$

$*$ ) is a

group extension of the group $\tau_{r-n-1}(Z_{0}^{s^{n\vdash 1}} (x_{0}, *)*)$ by the group
$\tau_{r-n-1}(Z_{0}^{s^{n}}(x_{0}, *),*)$ . Moreover, it can be proved that $\tau_{0}^{s^{n}}(x_{0}, \wedge^{\prime}),$

$*$) is actually

the direct sum of the groups $\tau_{r-n-1}(Z_{0}^{s^{n+1}}(x_{0}, *),$
$*$) and $\tau_{r-n_{-\rceil}}(Z_{0}^{s^{n}}(x_{0}, *)\rangle$

Continuing the similar process, we have the desired result.
Corollary 12. $\dot{1^{\wedge}}$ .
$\tau_{r-n}(Z_{0}^{s^{n}}(x_{0}, *),$

$*$ ) imbeds $isornorpI\iota icallyx_{r-n}(\mathcal{Z}_{0}^{s^{n}}(x_{0}, r))$ .
Proof: Evident.

\S 7. The isomorphic imbedding of $x^{(r,n)}(Z)$ in the torus homolopy group $\tau_{r}(Z)$ .
R. H. Fox has shown in his paper (7) “ that the r-dimensional torus
homotopy group $\tau_{r}(Z)$ imbeds. isomorphically the n-dimensional homotopy
group $\pi_{n}(r\geqq n>0)$ and the r-dimensional Abe group $x_{r}(Z)$ . But the
isomorphic imbedding of the Abhomotopy groups $x^{(r,n)}(Z)$ in the torus
homotopy group $\tau_{r}(Z)$ was not treated by Fox. This isomorphism is
proved in an analogous way as the case of the Abe groups.

Theorem 13. The r-di,mensionaf torus homotopy group $\tau_{r}(Z)$ contains a
subgroup isomorphic to $x^{(r,n)}(Z)$ .

Proof: From Theorem 5 $x^{(r,n)}(Z)\cong\pi_{n+1}(Z_{0}^{s^{r-n}})^{-1}$ As in (5.1) a mapping
$f$ representing an element of $x^{(r,n)}(Z)$ satisfies the conditions $\backslash $

$f(x^{r})=*$ when $\prod_{i=0}^{n}x_{l}(x_{i}-1)=0$ ,
(7.1)

$=P(x^{n+1})$ when $\prod_{i\approx n+}^{r-1}x_{1}i(x_{i}-1)=0$ .

Such a mapping represents an element of r-dimensional torus homotopy
group $\tau_{r}$ ; if two mappings $f$ and $g$ represent the same element of $x^{(r,n)}(Z)$ ,

then $f$ and $g$ are equivalent elements of $Z^{x^{r,1}}w$here $T^{r,1}$ is a r-dimensional
pinched torus, and hence the transformation $x^{(r,n)}(Z)$ into $\tau_{r}(Z)$ , which is
induced by making correspondence to every function $f$ satisfying (7.1) the
element defined by the same formula, is a homomorphism. Let us denote
this homomorphism by $\Gamma$.

In order that $\Gamma$ may be an isomorphism, we utilize the homomorphism
$\Psi$ of $\tau_{r}$ onto $\tau_{r-1}$ which is defined by the rule; given a representatve $f$ of
$\beta\in\tau_{r}$ , a repesentative of $\Psi\beta\in\tau_{r-1}$ is the mapping $f^{\Psi}=|f|\{x_{r-1}=0\}$ . By
iteration of this homomorphism we may define a homomorphism of $\tau$, onto
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$\tau_{n+1}$ . Let us denote this homomorphism also by $\Psi$ . Now $\alpha$ denotes any
element of $x^{(r,n)}(Z)$ which belongs to the kernel of $\Gamma$ so that $I^{\tau}a=1$ , and
hence $\Psi\Gamma a=1$ . Thus $a$ must be represented by a mapping for which

$f(x^{n+1},0\cdots\cdots 0)=*$ so that according to the condition (7.1) $f(x^{r})=*$

whenever $x^{r}\in\prod_{i=0}^{r-1}x_{i}(x_{i}-1)---0$ . Hence $a$ belongs to $\pi_{r}(Z)$ . That $\overline{\pi}_{r}(Z)$

is normal in $x^{(r,n)}(Z)$ , was shown in Corollary 1.2. Since $\Gamma|\pi_{r}(Z)$ was
proved to be an isomorphism by Fox in his paper, it follows that $a=1$ if
$I^{7}a=1$ . This proves that $\Gamma$ is an isomorphism.

Remark: It is easily seen from the definition of $\Gamma$ that there are $\left(\begin{array}{ll}r & -1\\ & n\end{array}\right)$

different isomorphisms of $x^{(r,n)}(Z)$ into $\tau_{r}$ and that the isomorphisms are
induced by celtain automorphisms of $\sim_{r}$ -those automorphisms are induced
by the permutations of the indices 1, 2, $\cdots$ $\cdots,r-1$ .

\S 8. The simplicity of a topological space.
The simplicity of the function spaces $Z_{0}^{s^{r-n}}(x_{0}, *)$ and $Z_{0}^{s^{r-n}}$ was

considered in this paper. Needless to say we need not confine ourselves within
the concept of the simplicity in the sense of Eilenberg. We intend
to introduce an idea “ r-simplicity in the sense of the torus homotopy
group “. Let $T^{r}$ be an r-dimensional torus and $T^{r,1}$ an r-dimensional pinched

$?^{r}’ 1$

torus. $Z$ denotes the function space consisting of all th $e$ Z-valued
functions of $r$ variables $x_{i},$ $1\geqq x_{i}\geqq 0(i=0,\cdots\cdots, r-1)$ , which satisfy the
condition,

(8.1) $\left\{\begin{array}{l}f(x_{0},0^{1},x_{2}^{r})=f(f(0,x^{r})--f(1,x_{X_{0}^{1}}^{r})=_{l^{*}x_{\underline{o}}^{r})}\\\ldots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\\ f(x^{r-1},0)--f(x^{r-1},1)\end{array}\right.$

while $z^{z^{r}}$ is a collection of all the mappings which can be extended with
period 1 in each of $r$ variables $x_{0},\cdots\cdots,x_{r-1}$ .

Two elements $f$ and $g$ belonging to $Z^{7^{\gamma}}$ are defined to be ” $lfreely$

homotopic ) each other if there exsists a homotopy $/\iota_{t}\in Z^{l^{\prime}}(1\geqq t\geqq 0)r$ such
$z^{\gamma,1}$

that $/l_{0}=f$, and $h_{1}=g$ ; two elements $f$ and $g$ of $Z$ are “ homotopic “ or
” equivalent ,, if there $e$ xsists a homotopy $h_{t}\in Z_{\ell}^{T^{r,1}}(1\geqq t\geqq 0)$ such that
$/l_{0^{=f}}$ and $h_{1}=g$ . It is evident that any two equivalent elements belonging

$z^{r.1}$

to $Z$ are freely homotopic. But the converse of this statement is not
always true. Thus if $Z$ is arcwise connected, each of some homotopy
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classes of $Z^{\tau^{r}}$ contains at least one homotopy ciass of $Z^{T^{r,1}}$ An arcwise
connected topological space is called “ r-simple in $ th\ell$ sense ofthe lorus homolopy

group “ when each of homotopy classes of $Z^{T^{2}}$ if it contains homotopy
$J^{\prime r}1$ $T^{r,1}$

chasses of $Z$, contains just one homotopy class of $Z$

Tkeorem 14. Two elements $f$ and $g$ belonging to $Z^{q\prime}arer,1$ freely komotopic

$lf$ and only if there exsists an element $h\in Z^{pr,1}$ such lltat $[f]=[h]$

$[g]$ $[h]^{-1}$ , where $[f]$ , $\lfloor g$ ], and $[/\iota]$ denote the komotopy classes $re-$

presented by $fg$ , and $h$ respeetiz $ely$ .
Proof: Since $f$ and $g$ are freely homotopic, there exsists a homotopy

$a(t, x^{r})\in Z^{\tau^{r}}$ for $1\geqq t\geqq 0$ such that $a(O, x^{r})=f(x^{r})$ and $a(1, x^{r})=g(x^{r})$ . Now
let $a(t, 0, x_{1}^{r},)=h(t, x_{1}^{r})$ , then $h(t, x_{1}^{r})$ represents an element of $Z^{\tau^{r,1}}$.
For $h(t, x_{1}^{r})$ satisfies the condition (8.1);

$\left\{\begin{array}{l}h(o,x_{1}^{r})=h(1,x_{1}^{r})=*\\h(t,o,x_{2}^{r})=1_{l}(t,1,x_{2}^{r})\\\ldots\cdots\ldots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\\ h(t,x_{I}^{r-1},o)=h(l,x_{I}^{r-1},1)\end{array}\right.$

If the point sets drawn in dotted lines (see Fig. 1) are mapped by the
homotopy $a$ , it is verified that $f$ and $hgh^{-1}$ are $e$quivalent elements of

$Z^{\tau^{r}}$ 1and hence $[f]=[h][g][h]^{-1}$ . Necessity of the theorem has been
established.

Conversely, it is shown that $f$ and $g$ are freely homotopic, if $f$ is
equivalent to $hgh^{-1}$ . Since $f$ and $hgh^{-1}al\cdot\cdot e$ equivalent, there exsists a

homotopy $\beta$ ( $x^{r}$, t) $\epsilon$

$Z^{T^{r,1}}$ for $1=>t\geqq 0$ such that $\beta(x^{r}, 1)=f(x^{r})$ and
$\beta(x^{r}, O)=hgh^{-1}(x^{r})$ , namely

$\beta(x^{r}, 0)=\left\{h(i3-3x,x_{1}^{r})for1\geqq^{0}x^{0}>h(3x_{0},x_{0^{l}})for\not\equiv\geqq x_{-}\geqq_{0}o_{=}h(3x^{0}-1^{r},x^{r}1)f_{O\Gamma}\ovalbox{\tt\small REJECT}\geqq x\geqq_{\frac{2}{3}}\not\in\right.$

Again, if the figures drawn in dotted lines (See Fig. 2) are mapped by
the mapping $\beta$, it can be easily seen that $f$ and $g$ are freely homotopic,
noting that $\beta(0, x_{1}^{r}, t)=\beta(1, x_{1}^{r}, t)=*$ . The proof has been completed.

From Theorem 14 the following theorem is obtained.
$T/\iota e$orem 15. A topological space $Z$ is r-simple in the sense of the torus

$f_{l}omotopy$ group, if and only $lf$ r-dimensional torus $ homotop\gamma$ group $\tau_{r}$ is
abelian.

Proof: Let $\lceil f$ ] and $[g]$ be any elements of $\tau_{r}$ which are represented by
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the mappings $f$ and $g$ respectively. Two elements $f$ and $gfg^{-1}$ are freely
homotopic, for $f\sim g^{-1}(gfg^{-1})g$ . From the simplicity of the space $[f]$

$=[q ]$ $[f][g]^{-1}$ and hence $[f][g]=[g][f]$ . This proves that $\tau_{r}$ is
abelian. Conversely it is obvious that if $\tau_{r}$ is abelian, $Z$ is r-simple in the
sense of the torus homotopy group.

In the last part of this paragraph we remark the relation between the
simplicity of a space in the sense of Eilenberg and the simplicity in the
sense of the torus homotopy group.

77eore$m16$ . $1f$ a space is r-simple in $t/le$ se$nse$ of $t/le$ torus lzomotopy
group, il is r-simple in $l/\iota e$ ordinary sense.

Proof: In order to prove this theorem it is sufficient to show that if r-di-
mensional torus homotopy group $\tau_{r}(Z)$ is abelian, the r-dimensional Abe
group $x_{r}(Z)$ is isomorphic to the direct product of the r-dimensional
homotopy group $\pi_{r}$ and the fundamental group $\pi_{1}$ . According to M. Abe’s
results, $x_{r}$ is a split extension of $\pi_{r}$ by $\pi_{1}$ . Now since $\tau_{r}$ is abelian, $\pi_{r}$

and $\pi_{1}$ are all abelian. Hence $x_{r}$ is an abelian split group extension of an
abelian group $\pi_{r}$ by an abelian group $\pi_{1}$ , so that $x_{r}$ is actually the direct
sum of $\pi_{r}$ and $\pi_{1}$ . This proves the theorem.

Nagoya University
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