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On a conformal mapping with certain boundary correspondences.

Akira MORI.

(Received, Oct. 1, 1949)

Given any set of points $L^{\backslash }$ o,n the unit circle $C$ of $\alpha$-plane, we shalf
treat in this paper the problem to map the intelior of $Cconf_{01}ma11y$ on a-
schlicht domain $D$ so that the set $E$ corresponds to a set of accessible
boundary points of $D$ all lying on one and the same point of the plane.

In order to simplify the wording, we call a half straight-line on $’\iota v-$

plane: $\arg w=const.,$ $\infty\geqq|’\iota v|\geqq const$ . $>0$ , an infinite radial slit.
First, we consider the case where the set $E$ is finite.
Theorem 1. $L^{\rho}tZ_{1},\ldots,$? be $n$ points on $C$ associated $’\angle vit^{\prime}m$ positive-

numbers $a_{1},\ldots,r1_{\eta},$
$\prime vf\iota ose$ sum is equal to 1. $T/len$ , there exisls a $fn$nction $’\iota v=$

$zv(\sim r),$ $’\iota vhic\nearrow l$ maps the interior of $C$ conformally on a domain $D$ , so $t_{/l}^{\gamma}at:1$ .
$D$ is the $\ovalbox{\tt\small REJECT} z$vhole w-plane cut $alon_{\wedge^{\circ}}\cdot n$ infinite radial slits, 2. $z_{k}$ corresponds $to^{d}$

the accessille boundary point of $ D[yin_{a^{\circ}}\cdot$ on $’\iota v=\infty,$
$’\angle v1\iota$iclz is determined by

an angnlar domain $bet_{L}^{r}veent_{\mathcal{L}}^{r}vo$ of $t1_{l}es/2$ slits inclnding an $an_{\delta}\sigma le2\pi a_{k}$ at $\prime p\iota$’

$=\infty$ , and 3. $zv(O)=0$ , $’\angle v^{\prime}(O)=1$ . Under lltese conditions the $mapping^{-}$

function is uniquely determined and is $a^{\sigma iven}$ by

(1) $w=’\iota v(z)=2/n\prod_{k=1}(1-)2^{\underline{2_{k}}}2a_{k}$ .

Proof. We construct a potential function $n(z)$ on z-plane, whose
singularities are

$\log|2|$ at $z=0$ ,

$\log\frac{1}{|_{0}\sim|}$ at $ z=\infty$ ,

and $2rx_{k}\log\frac{1}{|_{2-\sim}r_{k}|}$ at $\sim r=\approx k$

Denoting the conjugate potential of $u(\sim r)$ by $v(\sim r)$ , we put

$w(r)=const$ . $exp$ . $|u(z)+iv(2)$ }.
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$\rightarrow v(2)$ is regular in $|z|\leqq 1$ except the $npoi_{I}lts\triangleright_{k}$ and vanishes only at
$2=0$ .

On account of symmetry of singularities, $u(r)$ takes one and the same
value at 2 and its reflection $1/\overline{\ovalbox{\tt\small REJECT}\gamma}i.nC$ Hence, we have, putting $2=re^{i\theta}$ ,
.at $a\dot{n}y$ point on $C$ except $2_{1’\cdots\cdots,.n}’$ ,

$\frac{\partial u}{\partial r}=0$ consequently $\frac{\partial v}{\partial\theta}=0$ .

rvhich $m^{Q}ans$ that $v(\sim)$ is equal to a constant on each of $n$ arcs of $C$ se-
parated by the $n$ points $z_{k}$ . On the other hand, $u(z)$ is bounded below
and unboJnded above on each of these arcs. Hence the image of each of
these arcs by $’\iota v=w(\sim)$ is an infinite radial slit.

The angle at $’\angle v=\infty$ between the images of two arcs forming an angle
$\pi$ at $\approx_{k}$ is equal to $2\pi a_{k}$ , since $’\iota v(i^{\prime})$ has an expansion of the folm

(2) $(2-\approx k)^{-2a_{k}}\{C_{0}+C_{1}(z-\sim^{\prime)+\ldots\ldots\}}r_{k}(C_{0}\neq 0)$

in a neighbourhood of $2=z_{k}$ .
Further, $’\iota v(\phi\sim)$ takes each value $’\angle v_{0}$ , which does not belong to the $n$

slits, once and only once in $|\Leftrightarrow|<1$ . This follows easily from the facts
that $1/’\angle v(2)$ has only one pole in $|z|<1$ and that

$\arg\{\frac{1}{zv(\sim\sim)}-’\frac{1}{\iota v_{0}}\}$

$Te$mains unchanged, when 2 moves on $C$ once around and retums to the
original value. Hence, by suitable determination of constant factor, $w(z)$

constructed above provides the required mapping.
Since the potential function $n(2)$ with required singularities is explicitly

given by

$\iota\iota(z)=\sum_{k=1}^{n}2a_{k}\log\frac{1}{|_{\sim^{-}\sim}^{\nu\sim_{k}}|}+\log|2|+const.$ ,

$\backslash $ve have the mentioned expression (1) for $w(z)$ .
The uniqueness of the mapping function is proved as follows. Let $’\iota v_{1}(2)$

be another mapping function with the properties 1, 2, 3. Since $|w_{1}|$ remains
unchanged by reflection in a radial slit, we obtain a $0_{A}1e$ -valued harmonic
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function $\log|w_{1}(\sigma)|$ with isolated singularit\ddagger es at $2=0,$ $\infty$ and $z_{1’\cdots..,\rightarrow r_{n}}$ ,
while continuing $w_{1}(2)$ analytically across the unit $c\dot{i}rcie$ by the ‘principle
of reflection. Then, by the expansion (2), $\log|w_{1}(z)|$ must $b_{\vee}^{\alpha}$ identical
with $\log|w(2)|$ , save for an additive constant.

We know, if $w(\sim\alpha)$ is schlicht and star-shap $ed$ in $|z|<1$ with respect
to $w(O)=0$ being normalised by $w^{t}(0)=1$ , it is expressed in the form

(3) $w(’\cdot)=z\cdot exp$ . $2\int_{C}\log\frac{\zeta}{\zeta-\approx}d\mu(\zeta)$

and vice versa, where $fz$ is a positIve distribution of total mass 1 on $C$

determined by the non-decreasing function of $\theta$

$\frac{1}{2\pi}1_{r^{l}\rightarrow}^{\prime}m_{1}arg’\angle v(r_{\iota^{i0}}^{\eta})$ .

This can easily be proved by applying Herglotz’ formula to $\approx’\iota v^{\prime}/’\iota\ell!$ and in-
tegrating it.

The mapping function (1) of Theorem 1 is in fact merely a special
case of this formula, where $\mu$ vanishes ontside the $n$ points $\approx_{1},\ldots\ldots,?_{n}$ .

Next, we consider the case where the given set $E$ is infinite. In case
$E$ consists of an enumerable infinity of points, we can construct a mapping
function analogous to that of Theorem 1 by taking the limes of functions
of the $f\dot{o}$ rm (1), or, simply by (3), while we give a positive $\mu$-mass to
each point of $E$ . But then, the boundary of the resulting image domain is
in general very much complicated.

No matter whether $E$ be enumerable or not, we have in the following
case an image domain whose boundary is fairly simple.

Theorem 2. If the closure $\overline{E}$ of $E$ is of logarithmic $capac,’ ty$ zero, and
$onl_{J^{\prime}}$ in such a case, there exists a function $w(z),$ $rl\ell/hich$ maps $t_{l}^{l_{l}}e$ interior of
$C$ conformally on a domain $D$, so $tf_{l}at:1$ . $D$ is $t1\iota ew\nearrow\iota ole$ w-plane cut along
an enumerable infnily of infinite radial slits, $!_{\tilde{\prime}}vhicl_{l}$ cluster to $ w=\infty$ only, 2.
every point of $E$ corresponds to an accessible lpundary point of $D$ lying on
$ w=\infty$ , \’and 3. $w(O)=0$ .

Proof. If $\overline{E}$ is of logarithmic $capac|ty$ zero, there exists,. by Evans’
theorem,1) a positive distribution $\mu$ of total mass 1 on $\overline{E,}$ such that the
logarithmic potential

$\int_{\overline{F}}\log\frac{1\backslash }{|\zeta-z|}d\mu(\zeta)$
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tends to. $+\infty,$
$\ovalbox{\tt\small REJECT} whenz$ tends to any point of $\overline{E}$. Then the star-shaped func-

tion (3) constructed with this $\mu$ tends to $\infty$ , whenever 2 tends to $\overline{E}$, and
provides the required mapping.

On the contrary, if $\overline{E}$ is of positive capacity, there exists, for any
positive mass distribution $\mu$ on $C$, at least one point $\zeta_{0}$ on $\overline{E}$, such that

$\varliminf_{\epsilon\rightarrow\zeta_{0}}\int_{C}\log\frac{1}{|\zeta-\approx|}d\mu(\zeta)<+\infty$ ,

and we have

$\varliminf_{z\rightarrow\zeta 0}|’\iota v(2)|<+\infty$
.

On the other hand, if $\prime v(2)$ satisfies the condition 2, we have

$\varlimsup_{z\rightarrow T\circ}|_{\mathcal{L}}\prime v(2)|=+\infty$

for any point $\zeta_{0}$ on $E$, so that it can not satisfy the condition 1.
Let $\Delta$ be a simply connected schlicht domain, and $e$ be a closed set

of accessible boundary points of $\Delta$ , which is of logarithmic capacity zero.
Then M. Ts $nji^{\underline{\phi}}$

) prove $d$ the following extention cf Beurling’s theorem3) on
exceptional sets: if we map $\Delta$ conformally on the interior of the unit circle
$C$, then the set $E$ of points on $C$, which corresponds to the set $e$, is of
logarithmic capacity zero.

By this theorem, we have fiom Theorem 2 the following
Theorem 3. $1f$ each primary end of $\Delta$ in $Carat1\iota\acute{e}odory’ s$ sense, $\prime \mathcal{L}vhic\gamma_{t}$

contains a point of $e$ , consists of only one point, $t\prime_{l}en$ we can map $\Delta$ conformally
on a domain $Dsatisfyir;g$ the condition 1 of $T/leorem2$ , so $t\nearrow_{l}at$ eaclt point
of $e$ corresponds to the point at infinity.

Proof. From the hypothesis we see easily that $E$ is closed, so that
the result follows from Tsuji’s theorem and Theorem 2.
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