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1. Introduction. Let {U,}, O< ¢ <oo, be a one-parameter semi-group

of linear (=everywhere defined additive, continuous) operators from a com-
plex Banach space £ to E:

1.1) U, U=U,,.. Uy=I '(=the identity operator).
(1.2) sup | U | =< 1, |
(1.3) lim U, x=U, x, 0 < 4, <o (lim=strong limit).

>fo
In a preceding note”, the author obtained the following results. i) If
D is the totality of » for which

(1.4) weak hmlt it (Up—=Dx=Ax
exists, thcn D cmncxdes wnth the totality of x for whlch
(1.4)’ lim 2~ (U,—1)x=Ax
AVO

exists and D is dense in E. The differential quotient operator (d.q.0.) A
is a closed additive operator from D to £ with the properties :

(1.5) Up—x =j' U, Az ds for z € D,
0

(1.6) for any positive integer 7, [,= ([-n"" A) ™" exists and || , || < 1
AlL=n(l,—~1), lim AlL.x=Ax for x € D,
a.7) l,.x=j ”n exp (—w)Ux dt and lim L,y=x for x € E.

n-po

(1.8) Uwx=lim exp (¢47,) x, x € E, uniformly in £ for any finite interval
n>o
of t.»

iil) Let conversely A4 be an additive operator from a dense linear subset
D of E such that (1.6) is satisfied for any positive integer #, then there

1) On the differentiability and the representation of the one-parameter semi-group of
linear operators, the Journal of the Math. Soc. of Japan, 1 (1948). '
2) We may obtain, similarly as (1.8), another representation of U :
(1.8)” Uy x=lim ([~n—1 4)-" x.

Nn-r o
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exists a uniquely determined one-parameter semi-group {U,} which satisfies
(1.1) —(1.5). This {U} is given by (1.8). '

The purpose of the present note is to give, as an application of these
results, a characterisation of the #emporally homogencous Markoff process. By
virtue of the composition rules for the d.q.0.”s and the differentiability theorem
(1.4)’, we may determine the explicite form of the d.g.o. A in the special
case where the Markoff process is not only temporally but also spatially
homogeneous. The result may be considered as an operator-theoretical
interpretation of the infinitely divisible law.® The results in 2 are also
applied to the integration of the Fokker-Planck’s equation.

2. A characterisation of the d.qg.o. of the temporally homogencous Markoff
process. Let E be an abstract-L-space® and let, for 120, :

(2.1) U, be a positive operator (Ux=>0 for x=>0) isometric on positive
elements” (|, z ||=|| v || for x=0.) -
Such operator may be called a trausition- operator, and the semi-group §U,}
may be considered as an abstract form of the temporally homogeneous
Markoff process. In this case,

a transition operator.
Conversely it is easy to see that if (2.2) is satisfied for large 7 then
U,x=1im exp (¢47,)x=lim exp( Zn—1))x
n-» o

N> :
=lim exp (—unt) exp (tnl)=x
is also a transition operator. Thus we may construct all the temporally
homogeneous Matkoff process satisfying the continuity condition (1.3).
Let, in particular, £ be the space Z,(— oo, o0)and let x>0 mean x(#)
=0 almost everywhere on (—co, o). Then the additive operators '
(2.3) (4x) () =7r2'(s) (7 real<0),
=ax' (5) (6>0), ,
=A(x(s—u)—x(s)) (A>0, «x0).
satisfy (1.6) aud (2.2). For the proof see the examples below.

Example 1. Let us consider the translatiop :
@4) () ©O=2(+D, () € L(—eo, o).
We have - ’ .

3) P. Lévy: Théorie de ’addition des variables aléatoires, Paris (1937).
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Ia(5) = (nx) (5 #I‘mn exp (n(s—£~)) x(&) dk,

and hence, if #(s) is continuous, .
o' () =nYa(s) = —n 2(5).
Thus
(2.5) (AL2) (s)= (Aya) (s) = ((La— D) ) (s) =’ (5)

= :;; E’n exp (+n(s—4&)) =x(b)dk

and hence the operator A=24, is the differential operator (—;——)
A)

We have, by (1.8) and (1.8)’ two expansions of Taylor’s type®.
Example 2. Consider the integral

@6 U= [ erp(—-=2 )x(k)a% 2(F) € Ly(~o0,00)
corresponding to the Gawussian distribution. We have

In(s) = (Lx) (5) I x(é)déI ‘/_ n exp (—nt— —(s_—t@i) dt

=r Vo exp (—2+ 7] s—E]) z(F)d#,

and hence, if #(s) is continuous,

v (s) =4n y,(s) —4nx(s).

Thus
(2.7) (AL, %) (5) = (Aya) (5) = (n(Lu—1) %) () =4"" y"" (5)
= }1 2|) x(#) dk.
a2

Therefore A=A is the differential operator (% ), and we have, by

ds®
(1.8) and (1.8)’, two expansions, the first of which improves Eddington’s
formal expansion.®

4) G. Birkhoff: Lattice Theory, New York (1940). S. Kakutani; Concrete representation
of abstract (L)-spaces and the mean ergodic theorem, Ann, of Math., 42 (1941).

5) Cf. N. Dunford and I. E. Segal: Semi-groups of operators and the Weierstrass theorem,
Bullet. Amer. Math. Soc., 52 (1946).

8) A. A. Eddington: On a formula for correcting statistics for the effect of a known
probable error of observations, Monthly Notice R. Astr. Soc., 73 (1914).
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Example 3. Let 2>0, ux0 and consider
@8) U W ©=exp (—1H3 %‘)r’l x(s— 1), %(s) € L(— o0,00)

corresponding to fhe Poisson distribution. We have
Ia(s) = (Zux) (5) =j:n exp(— (1421 g‘%%)‘"k x(s—ku) dt

llc
(72+1) k+1
and therefore, when #—>co.

(2.9) () &) = ((La— 1) %) () —> (Ax) (5) =4 (x(s—#) —x(5))-
A=A, is thus the difference operator.

Example 4. T.et 4 be a linear operator defined on the abstract-L-space
E satisfying the condition :

i x (s—ku) ,

(2.10) P=#"' (A+#l) is a transition operator for a certain positive
number 4. :

In this case we may show that (/—#»"" A)~" satisfies, for »> 0, (22) and
(1.6).
Progf. We have

I—n'A=(4e)(I——2  P), a=n""4>0,
, 140

and hence, by |7 =——-—-—-<1_..Hl!
140 | 140

(@11) -t 7= (1+o)—1{f+m%(—-i_”;-;—)mp’"}

exists. It is easy to see that this expansion defines a transition operator
with P. ‘ . (Q.E.D)).
The example 3 surely satisfies (2.10). The criterion (2.10) may also
be used to deduce
Kolmogoroff's theorem.” Let E be the space of the z-dimensional com-

plex vectors x= (&, £5eeeee. ¢,) with the norm || » l]=i} |§:] , and let x >0
. i=1

mean §, >0 (1=1,2,...... ,7). Then the transition operator P on E is re-
présented by the matrix (p,,) satisfying the condition: :

7) A. Kolmogoroff: Die analytische Methoden in der Wahrscheinlichkeitsrechnung, Math.
Ann., 104 (1931).



248 : - K. Yosipa

(2.12) f{jz 0, i‘ Py=1

In this case, the d.q. matrix A= (n“) of the one- p'—u'tmeter semx-group of
transition matrices U (¢) = (#,;(¢)) is characterised by

(2.13) - Eﬂir':O’ 2320 (%)), a, X0.
. =

3. Composition of the d. q. o.'s. We shall give two lemmas which
enable us to construct another d.q.o. of the temporally homogeneous Markoff
process from, for example, the d.q.0/s in 2.

Lemma 1. Let the intersection D of the domains of two additive
operators A4, and 4, satisfying (1.6) and (2.2) be dense in £. Let, moreover,
A4, and A, be commutative in the sense that

3.1) A4, x=A4,A4, x,
if either A4, 4,x or 4,A.x is well defined. Then
32 A=A+ A,
also satisfies (1.6) and (2.2).
| Proof. Put
(3.3) Ln=U—n""4))"", ILp={U—n""4)"".
Then .
(3.4) AP =A, I+ A, I=n(I,y—1) +n(I—T)
satisfies* (2.10) and hence (1.6) and (2.2) too. . Thus the semi-group
(3.5) UM =exp (24™)

constitutes a temporally homogeneous Markoff process satisfying (1.3).
By (3.1), A™ is commutative with {/ V. Hence we have

H =

= [ (@9 am v am—am)) s

” (U @ U‘"’)xJ

(exp ((t—5) A™Y U ™2) s ”

< [JI cam—amyz) a

by || exp(¢4™)|| < 1. Therefore, by (1.6),
Uyy=lim U™y  (y € D)

ny o

exists uniformly in 7 for any finite interval of 2 Since D is dense in £
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and since || UP||<1, we see that U, y exists for all y € £ and satisfies (1.1)
—(1.3). Surely U, is a transition operator with & {. We have, from
U‘,’”x-—x:j.t U™ A™ x ds, x € E.
0
Hence, by letting #—> oo,

U‘x——x_—_f U, Ax ds, x € D,
0

in virtue of (1.6). Therefore A=A,+ A, is the d.q.o. of U,.

Similarly we may prove the .
Lemma 2. Let {A™} be a sequence of mutually commutative linear
operators satisfying (1.6) and (2.2), and let

(3.6) lim A™x=Ax
R-» 0
exist for a dense linear subset D of £Z. Then
3.7 Ux=lim exp (tA™)x
. n-y o

exists uniformly in ¢ for any finite interval of 2 Thus §{U,} defines a tem-
porally homogeneous Markoff process satisfying (1.3) whose d.q.o. is given
by A. ‘

4. Temporally and spatially Jomogencous Markoff process. As an
application of the above results, we shall give an operator-theoretical inter-
pretation of the infinitely divisible law, to the effect that the examples
given in 2 exhaust, in a certain sense, the d. q. 0. A of the temporally
and spatially homogeneous Markoff process.

Let U, be defined by

(4.1 (U @):j:x(s_u)du F(tw) , 2(s) € Li(—o, ),

where F(¢,) is, for any #>0, a distribution function of . Then, for any
z(s) from the domain of the d.q.o. A,

(4.2) (Az) (s) =’strong limit 7 (jf 2 (s—u)dy F(n) —2(s)).

Hence, by the Fourier transformation,

43) X j:(exP(izu)-l)n dF(n,""u), (X(z)=712n_

R j";exp G 4 5)x(s)ds)
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converges, as n—»co, uniformly in 4. Since the domain of 4 is dense in
L, (—oo, o), it is easy to see that
(4.4) lim|\ (exp (GAu)—1)n d, F(n"u)
n-»{) —

exists uniformly in any finite interval of A." We put
(4.9) Gn(u) = j‘ﬂ a’ F(n ).
Then, following after A. Khintchine's arguments’, we may prove that the

suquence {G,(#)! of the monotone increasing functions contains a subse- .
) t=]
quence $G, ()} such that

(4.6) a bounded lim G, (%) =G (%) exists,

4.7) lim | 4G, (u) =0 uniformly in 7/,
a—’w‘v'\a

(4.8) a finite lim T oum dG, (1) =y exists.

Thus, by G(0) =0, we have, for continuous function x(s) € L,(— c0,0)
whose continuous second derivative 1’/ (s) is also contained in Z, (— o0,0),

(4.9) weak lim (7' (Us—1)4) (s) = (42) ()
=72 (s) 402 (5)

+1im j(x(s—ﬂ) ——1(5)+ wr! () y 1+

adG (n),
142 o ()

]u >c
where

(4.10) rr==511;n3 (G(e) -G (—¥)).

Conversely we see, by the two lemmas in 3, that the operator A defined
by (4.9) is the d.q.o. of a temporally and spatially homogeneous Markoff
process. Here we make use of the fact that the operators are all
the d.q.0.’s of the temporally and spatially homogeneous Markoff processes.

S. On the z'ﬂtfg‘raz‘z'o;z of the Fobker-Planck's equation” Consider

8) A. Khmtchme Déduction nouvelle d'une formule de P. I.évy, Bullet. de I'université
d’état A Moscow, Sect. A, 1 (1937).

9) Cf. W. Feller: Zur Theorie der stochastischen Prozesse, Math. Ann., 113 (1936). K.
It6 : On stochastic processes (II), to appear in the Mem. of the Am. Math, Soc. Our method of integra-
tion may be extended to the Fokker-Planck’s equation in homogeneous Riemannian spaces. For
example, we may determine the ‘“ Brownian motion” on the surface of the sphere. The details
will be published elsewhere. Here I express my hearty thanks to Dr. K. Itd for his friendly
criticism during the preparation of the present note.
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6.1) W(sd) _8a©r(h) , EG6))
: or 9s 9 s
_ . 3y (s,2) B(s) (s
=0(5)y (s,2) +7(s) 3 T 3

where £2>0, — o0 < s < oo, with positive &(s) and
B2) 3 =d )+ (), 7 () =a(s) +20 (), A =45().
If we assume _‘
(®3) 0(s), r(s), B(s)™ and B (s) are all bounded and continuous,

(64) s—j — ﬁd,,_wﬁm as s— oo, and ;_——Sz 7%—»—% as s—>—on

()
then the additive Operator 4 defined by
(5.5) (A7) () = (@3 () + G ()"

=0(5)y(s) +7()3 () +47'B(s)1" (5)
in L, (—oo, o) is the d.q.o. of a temporally homogeous Markoff process.
Progf. We have only to show that A4 satisfies (1.6) and (2.2) for

large 7.
The above example 2 suggests us that the solution 7,(s) of
(6.6) Iu() —n (Ayn) () =x(5)

will be given by the integral equation

(5_’7) J;n(3)=jfw,\/7 exp (_2«/—’2 j - ‘B(u) \)( 87’(13) ,3’([) n(/)
+ B(f) Tu (B)+2(£) - gf/)

That (5.7) admits solution y,(s) for continuous x(s) € L, (— oo, ) will
be seen as follows. Put

(5.8) =sup (8787 () —=F ()],]3() ],
Then, for the successive approximations

I =" v u exp (<2vu

“/ﬂ() .

In@=|" v exp 2 UN & 1)(87(4) —#®)
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3(13)

Vam-1(£) + =" Jnm1 (£)) e

10N ﬁ(é)

we easily obtain
sup [Fur () | = sup | 2(s) |, sup [Vag X 2v 4 C ssup}x(s)l,
sup | Vam ()| 27'C (Sup | ¥ nm-s (5) | +5Up | mos ()];

27 C?
P [V nin ()| S 2 (5p | ames ()] 5P Fmcs ().

Hence, for large #, the two series

AN ONIS ARG

are uniformly and absolutely convergent to bounded continuous functions.
Therefore

(6.9) In(S) =m§1 nm (5)
satisfies (6.7) and hence (6.6).
That this y,(s) belongs to L,(—eo, ) with x(s) will be seen as
follows. If Sw 2(s)|ds<oo , then

—c

"1 ©1&=[" 2016 [(yu@ld 2vac|]| x©|ds)
[ 70| Fumes D15 [ | Jrmes (] 45,
5 | 7 am (5)] a’sSL (j‘ |ynm~1(s)|ds+J | Ynme1 ()| d5s).

Hence we easily see that y,,(s)=2 Ynm(s) € Ly(—eo,00). Moreover, the
m=1

above inequalities show that
In($) =In1 () =2 Inm(s)

converges to zero strongly in L;(— 0, ). Since the strong lim y, =z,
nyo

we see that strong lim y,=x.
npoo

On the other hand we see that, for large #,

() —n"t (Ay) (=0
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implies y(s)=0, because such | 2(s) cannot have negative minimum by the
positivity of 4(s). Thus if x(s)=>0 satisﬁesj [2(s) |ds <o and y 2 (s)]

 ds <o, then the solution 7,(s) € L, (— o0, o) obtained above of
satisfies

B O PO N IO
because

|73 O ds=[a)7a() J2a + [(B()7(5)) T2 =0.

Since x(s) € L; (— oo, o) satisfying ‘r| x(s)| ds < oo are dense in Z,

(— 0, o), the above results shows that 7,=(/—7""4)"" exists and satisfies
(2.2). Since Al,x=171,4x if x is in the domain D of A, we have (1.6) by
_strong lim y,=x, viz. lim I, x=ux.

Thus we may integrate the original equation by virtue of (1.8)
or (1.8)". ’ :
) Mathematical Institute,

Nagoya University, Nagoya, Japan.

Added during the proof. On reading the manuscript of the present note,
Prof. E. Hille kindly remarked me that essentially the same results as
‘stated in 1 was already obtained by him by a different method. See his
book : Functional Analysis and Semi-groups, New York (1948). He also
kindly sent to me his manuscript ¢ On the integration problem for Fokker-
Planck’s equation in theory of stochastic processes” which, replacing my
analysis by a simpler argument, extends the results in 5. After the present
note was presented to the M. S. of Japan, I published two notes concern-
ing the integration of F—P equation: Brownian motion on the surface of
the 2—sphere, Ann. of Math, Stat., 20, No. 2 (1949) ; Integration of Fokker-
Planck’s equation in a compact Riemannian space, Arkiv fér Math. 1, No.
9 (1949).
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