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' On Integral Invariants and Betti Numbers of Symmetric
B Riemannian Manifolds, I.

Hideyuki IWAIV'[OTO.'I'

(Recéived Nov, 15, 1947)

In his classical paper E. Cartan proved the important theorem that the
 p-th Betti-number of a compact symmetric Riemannian manifold M is equal
to the number of linearly independent invaviant differentials of rank p defined
on"M. Now there exist two kinds of compact symmetric Riemannian mani-
‘folds. The first class consists of the group-manifolds -of -simple compact Lie
groups. The fundamental groups of these manifolds are semi-simple. The
Poincaré-polynomials of compact simple Lie groups of four classe were first
determined by R. graue.r. Pontrjagin investigated the homological pro-
perties of these manifolds and determined their homology basis. 7%e second
class of symmetric Riémannian manifolds are those whose fundamental
.groups .are simple. Among the manifolds of these kinds there exist those
which are at the same time aleebraic varieties. The Betti numbers and the
correspondingly homology basic of these manifolds were determined by C.
Ebhresmann. (The manifolds S(n), C(n), A(n, £))”. In this paper I will
give the complete table of Betti numbers of compact symmetric Riemannian
manifolds by the methode E. Cartan, '

Notations.

R,: n-dimensional real vector space.

P, : n-dimensional complex vector space.

%: The field of all real numbers, K: That of all complex numbers.
E or E,: n-dimensional identity matrix, (%) or 8,: E=08(F).

En/z

I or I,: The skew matrix H__E”/2 ’ e() or ey: I=e(9).

US(n), U(n), USp(n), O(»): unitary unimodular group, unitary group, -
unitary-symplectic group and redl proper orthogonal groip respectively. '

(t) Died June 27, 1948, at the age of twenty-six years, He had been a member of
Department of Mathematics, Nagoya University since 1944.

(1) These are manifolds in which the Betti numbers of odd dimensions are all zero, see
E. Cartan, Selecta, p. 103 ; Ehresmann, [3].
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R(n, %) : The set of all A-dimensional linear subspaces - of R,.

A(#n, £).: THe Set of all ,é—dlmenslonal limear subspaces of P,.

S(#, £) : The set of all £- dimensional linear subspaces of 7, invariant
with respect to the operation r—i=/z, (1 =2m, k=2F).

S(#): The set of all zero systems x—y=3Sxr such that the skew
- matrix S is at the same time orthogonal, S?=—1. (z=2-m). :

C(n) : The set of all m-dimensional linear qubqpaceq of F, such that
93?/\‘172 0, where IR is the transform of M by x>z, (n=2-m).

v Part I .
Representations ; Linear invariants.

Chapter 1.-
The harmonics of the manifold 4* (’n)

l. We denote by A*(u) the set of all unimodular unitary matrices
of # dimensions which are at the same time symmetric: A*=A4. A*(n)
is then a symmetric Riemmanian manifold whose group of displacements is
A—T*AT, where T<t/S (7). The 1dent1ty matrix £, itself is . contained
in A(#). The group of rotations associated with this point is nothing but
_theA real orthogonal group. The automorphism of the group: US(n) as-
sociated with £ is thus T-—)'f’ Vs bein‘& the complex conjugate of 7.
| 2. The generic matrix A of the manifold A4* (7) satisfy the relation
A=A47, 4 is thus a ‘transvection in the sense of E. Cartan. Let us see
that any AcA* (%) can be written in the form :

A=R76R, RcO(x).

where O=¢, +...... +en e;=exp(27+ 10,). We say that a linear sub-
space M/, is a real linear subspace or simply real if it is invariant by
the operation x—x (=the complex conjugate of &) which is invariant under '
the group O(2). Any real linear subspace can be generated by a number
of mutually orthogonal real vectors (the vectors whose components are real).
Now let & be an el(fenvalue of A, x; its corresponding eigenvector :

4 .

Ax"—-— &:X;.

By the relation A~'=/1 we obtain Ar,=¢,x,. The eigenspace of e; is thus
real.  We can thus then # real vectors Xyy eenenn v #, such thalt X2y =0y
- and

.\
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g °
Al xy oot , Lo ll=1l %y e , x,,i[( . _>, Egeevnet g, =1
. En
* We have thus A=R'R, where R=|lx;, ......, x5, ReO(n). -

3. It may be seen that for any AeA*(#) there exists a transvection
6% such tha}t A is the transform of £ &y 6. ‘Indeed, if A=R"'OR, then
by puttmO‘ 6t = ‘O}R(ﬂf—e"' R +e"’—1°") we obtain A=6%E
(0 )*, and, moreever, 6% is a transvection :° (7“—(9}') L

Let A+dA be a point near 4. ,We transform th(‘ d]ftercntldl dA back
to the point £ by the transformation 6 . - 00=0" A6, A simple
calculation shows that ¢6 can be written as

60=R- *[a 19 -+ (86 R0} — 6 “(3]\’0!’)] OR=(dR) R

So that it can easily be seen Lhat 06 is an infinitesimal tlansvectlon
00=—06. The (¢, 7)-elements of this matrix is

2"/ T 30, i=j;  $08,=0
2+ 1 'sin iéﬁ Bu,j, i==7

The representation of 4 in the form ROR is unique in some neirr};bour-
hood and we find as the volume-clement of the manifold 4*(#) the follow—

ing expression : : ‘ : ‘ -

w=d[@]db,......d0,_,, d=II sin i’iszif’t

' i<
4. Let a(iy) be the elements of the generic matrix Aed* (),
a(tf) =a(ji). We construct the quantities ,
a(ty, ... NPT R I =e(Pa(ifn)-.....a(igy), (1éf:4_:7z——‘,l)

where €(P) is the sign of the permutation P: 12...f—12'...f" and the
summmation is extended over all 2. By means of the generic element of

the group US(#n), a(...... S o ) are transformed according to the irre-
ducible representation of the group US(7) of signature (2, ...... y 2,0, ... ,
0), where 2 appears £ times. The quantity
(lf:=2 [{(Z’I, ...... ’ Zf) tl’ ...... s Zf)
e iy

stays invariant under the group O(u) and we have
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S a,=3" TR e
o E, e
where ¢, ...... , &, are the roots of 4.

5. We call “zonal” a function defined .on 4*(#) wh;ch is invariant
under the group g. We see that for any A4 the roots &y ...... , €, are,
determined uniquely except theu order and the #—1 quantities {;, ...... ,
Cn-1 thh _ B

Cr=2) €ty «onen , Eiy (1 éfg 1n—1)
75< enens iy N

constitute a table of basic mvarunts of the group g Any zonal can thus
be expanded in thc form '

where the right side is a linear combination of the monormials

C¥(fos ooovies Sam) = (Ln) @ (Laz) ®ennee (Y
We write this monomial as {*(f, .-...- s fuc1)s where (fiy oveee , fu-1) is the |

aly uan-—

conjugate diagram of (n:1, ...... cn—1, 1, .. 1). We say that the
monomial Z*(f, ...... , fa_1) is Higher than {*(/, ...... , Jazi') if and only
if (A, -..... , fa1) is higher than (A, -..... , Ja=i') in the usual sense..
The angles (60, ...... , 0,_,) and (0/, ...... , 0._,) are said to be homo-
logous if the (e, ...... , €) and (&/, -..... , €.') constructed from 6. and ¢’
differ only by their order. There exists a polygon P in (72—1)-space of
@, ...... , 0._,) such that no two pomts of P are homologous and that for .
any (0, ...... , 0,_,) there exists a point of 7 which is homologous with
(8) ; this 2 may be defined by |

0, <0,<...... <Op; 0,—0,<1; O+...... +6,=0

Two zonals &, ¢’ are said to be orthogonal if

f ¢ &' ddb,......db, =0

Let Z(fi, --ee-- y fo—1) be zonals obtamed from *(fy, -.--- ¢y fa—sy) by means
of othogonalization. Then _ *

C(fiy ceenen s Sa)=CF(fay oeeens s Jao1) + (Lormms lower than
R ' <l O/ TRPS ’ jfn—l)‘)
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\ 6. We have already seen that 7—1 quantities a( ...... , ) con-
stitute harmonic sets. We X -multiply these quantities and construct the
followmg repreaentatxon which is also a harmonic "set :

Z*( Ay, ...__...,f;,_l) 28, eeeens , 29l
This representation’ contains ‘only one irreducible representalion of type
(fiy -+++=es Ja-1). This is the irreducible representation of the highest weight
contained in Z*. The components of Z may be written in the form
Aty ee.e.. s Ep s fir weneeny Jpay ceeees 3 Ry eeens s Bfn1)
th1e A is skew symmetric “with respect to the indices iy J1s veeeeey Ri;
Zoy seenen } eeeees reéspectively. A’ are polynomials of « (4, ...... gy Jay eeees , .

77) and the components 4 of the irreducible: representation Z may be _ob-
tained from A4 by means of a dcfinite process cantaining only symmetrization
and alternation corresponding to the operator of Young operating on (4,
...... y %3 +-.-..) in this natural order. Tt can readily be seen that Z admits
a linear invariant with respect to the subgroup g. .Indeed, by using the
fact that £, SRR fu_y are all even we see that

0(418s) ceveee O(F2) eveer A(dy wrnnn S e eeeen ) eerees )

_is invariant. This is a linear combinatior® of the monomials &*(f/, ...-.. ,
/o-{'). The highest term may be obtained from Ay 2200005 e, >
which is equal to {*(f, -....%, fo—1). Thus this invariant is of the form '

c(fj, coves Sad) =CE(foy oo y Jo—1)
\ + (terms lower than C*(fiy weeeres fact)-)
~ Because (A, «---- ., fa—1) are mutually orthogonal, we see easily that this

coincides with £(fq, ......, fu_1) except a constant factor.

' 7.. By the theory of E. Cartan we readily conclude that for any mono-
mial - Z*(f, ... o ~ 1) there exists an uniquely determined irréduciblé
harmonic set admlttmo a linear invariant with respect to the’ suboxoup g
which is a pelynomial in &, ...... , &u_y such that its highest terms is ¢*( /5,
ceeens , fo_1) and that any harmonic of the. manifold 4* (%) can be obtained
in this manner. We thus have the following

Theovem 1. The quantitics AT , fu1) constitute a complete liarmo- .
nic sct of the manifold A*(un). An irveducible representation of the group
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.

US(n) of signature L(f, ...... s Juo1) s contained in a /zarmou*c sct of the
mmzzfola’ A (n) &f and only zf f1 f =...... =0 mod. .
Chapter IIL

The harmonics of the mamfold A~ (n)

1. The manifold A*(n) is the set of all’ skew symmetric unitary uni-
modular matrices: A4A*4+A4=0. The group of displécements is A>T*AT,
TeUS(n). The skew matrix [ is contained in A~(#) and the group’ of
rotation g with center the point 7 is the group USp(n) consisting of.all
the elements of the group US(») which are invariant under the involutive

automorphism 7—/7'77/. A transvection is an element of US(/[) such that

6-'=/"'6]. Therc exists a one to onc correspondence between the pomts
of A=(n) and the¢ sct of transvections described by
A: 6[, - = '—A[ '

Let € be a transvection. By the same argument as in the case of the
manifold A4*(#) it is possible to show that if ¢ is an eigenvalue of 6, then
the corresponding eigenspace' is invariant with respect to the operation
‘x—-;[;.r(’=:r) ‘which is invariant. under thc group /Sp(z) and that 6 can.
be written as ' ' '

O=R"R, RUSp(n); H=0,+41b,

where O,=¢,+..uv.. &, e;=exp(2rv — 1 0;). We call ¢, ...... , &, the.

roots of A. For given 4, ¢, ...... , €, arc determined unifuely except their
order and we sce that the quantities TR y Cm—1 with (= Z SZy eeennn , Eif
) 2 A
N ] \\Zf

are fundamental- derlants of A with respect to the group g
2. We now construct the harmonic set of A~ (%) correspondlmT to

the mvarlant ¢, Instead of a(id...... 5 Jieeeeens) of A*(#) we define
Zp: A(tyenenn. z'2f)=§‘_, e(P) Pa(4by)...... a(i,_35), (s=2f)

where a(i/) are the elements of the matrix 4, P is the permutation
12...(2f)—1/2...(2f)" and the summation is extended over all P. The -
quantities Z, constitute a harmonic set and give an irreducible representa-
tion of signature (1, 1, ...... ,. L0, . 0), where 1 appears 27 times.

We X -multiply thesc quantntlcs and construct : ’
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Z: Z""

"=

oo X P

Z contains 61}1y one irreducible 1‘epresex1tati011 of the highest weight. This
is of signature (f5, ......, fue), where (f5, ...... y+foez) is thé conjugate of -
. ay ' A —1
- /—‘_/‘\——_\ O A . 7
R@(m—1), ...... y 2Qim—1), ... y 2y e , 2). We denote this by Z(f,
eeeees , f,,_.); Tln, components of Z are umquely dctermmed and can be

written as A(igy ...... S T2 eeenes P oeenees ), A’ are skew symmetric with
respect to i1, 2y, cevern s J1y Jor weeenn ) eenens respectxvely. The zonale.of A~ (%)
c_orresponding to Zis '

e(zlz,)e(m) ..... - (e (i) enene z(zw ...... 3 Jifareeiee s enens )

which is a- lmear combination - of the Il]OllOmlllb Cm Loereon Q’f‘"‘“/.‘ ..... , the
highest term bemff obtamed from ‘4(17...:..; 12...... ; ) . We denote
. this by ¢(fifs..... ). '

3. We erte 6 in the form =R 0R. If we put 0%’—-18"(9%]\’ where
the angles of 6% are just the halves of those.of 6, then it can readily be
seen that the point A=6/ corresponding to € is just the transform of /
. by 0% Let @+d6 be a transvection cerresponding to the point A4+ A4

ncar A. W(. transform 26 back to the point / by the transformation -
6':660=67%.46.67% . Then

50=R- [0 1J0+(0* N Ra’:*)], SR=(dR) R,

Now the representation of € in the form R-'0R is not unique.  Different
R’ give the samhe 6 if they are of the form pR. For generic' € p must be

of the form ‘//=A1'+...,.‘ .. +4,, where A, are matrices of the form.
I a & | B
" - - i aa+bb=1
J—0 a |
. (We arrangé t'he indices in the order 1, m+1, 2, m+2, ......, m, m+m

=#). By means of this .uncertainty we can' normalize 66 such that O,
=0y s mi:=0, (z'.=‘1-"2, ...... s W)y Oltp s =020, :,=0, (=1, 2, ...... , M),
R has.then a definite sense.” The (77)-elements of the matrix 36 are

6”2‘{:8”"1:41,‘. s =27 */“:[“30{; ‘ > 00,=0 ,
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Sttemay=—Oltmpsy= v =T sin (0,—0,/2)a  (i==7)
‘5”4_;:5””_:44. Y v —1sin (&""@)/2){”{3 (14:/)
The volume element of the manifold A=(#) is thus ‘

w=Ad[w,]dl,......40,,_, -

where

R -
d=[] sin* =%
| a sin 5

Theorem 1. 2. The quantities Z(fi, «..... , Sfa_2) constitute a complete
harmonic set of the manifold A~(n). The irveducible representation of the
group US(n) of signature (fiy «oevevy fuey) ts contained in a harmmonic set of
the manifold A= (n) if and only if the columns of the diagram (fy, ..... y Jue1)

are all even, In particular, f,-.,=0.

' Chapter 111 , .
The harmonics of the manifold A(n, k) ; kK < h(=n—k).

1. The manifold A(#, %) is the set of all Z-dimensional linear sub-
spaces of P, Let MM be an linear subspace of 7, which is contained in
A(n, ,é)'. A uﬁitary coordinate system ¢;, ......, €, is said to be as-
sociated with' I if ¢;, ..g.., &€  With respect to this coordinate system
the gfoup of rotations consist of all transformations of the form Tt T
The involution of the group US(n) associated with MM is A—/A4/, where
J=E,+ —E,.

Let M, be two linear subspaces of 7, where dim I, =, dim M, =m,,
my < m,. Then we can take unitary frames #y, «..... s Xmg s Jis ovvevry Yma Of
M, dand M. such that (x,y;) =cos 0,:, (=1, 2...... m2;), and that all other
(x7) vanish. In fact, let P, M2 be linear subspaces of M, and IN; whose
vectors are all perpendicular with 9, and 9, respectively. - Then the sub-
spaces My =T, — PV, W=D, — M are of the same dimension, say .
Let Pﬂ—n'l, PS—U—?-_. be orthogonal projections on m, _and M, respectively. ’_I‘l)e
operator /g , P&i)Tz leaves invariant the subspace P4, and is hermitian in ;.
Let x4 oeeee. , Xm be eigenvectors of Pgy Fgy in M. The projections of
x; into M., are not zero, and if we denote by 8; the angle between x; and
Pﬁzz“-:?i, then cos® 0; are eigenvalues of Pﬁll)ﬁz in M,. The vectors
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’ yi-—(cos 0, )"‘yi constitute 'a certains frame of M, and mmeover, a systegqn
of eigenvectors of Pg; P, in M,. The corresponding eigenvalues are again
cos? by, ......, cos?l,. If we take in I} and- Wy orthogonal frames ...,
...... s Xmy ANA - Pigms  ieeeer; Fmg arbitrarily, then it can readily be seen that
‘these vectors satisfy the conditions of the assertion, This can -be carried
out by purely elemental geometric device. '

. 2. A transvection is a transformation 6 of U S(») satisfying Jj8/=6"",
‘There exists an one to one correspondence between the set of transvections
and the linear subspaces of arbitrary dimensions of the, space P, described
by ‘

| S=6), 6=

where S denotes the reflexion with respect to the subspace M. The cor-
respondense between S and It may be described as:

M=(z;. 22=(S+1)x) ; S=2Pn—1.

Iet MW, N be two Imedr subspaces of P dnd let dim M,=4#, dim

N=wm. Then there exisis a coordinate systemt €q, ie.... , €, associated with
Wo({€1y +ovee- , =) such that the trausvection associated with N take the
\ fbrm‘ '
| : ooyl B ,
D) b +D(.0k)+l _E, H

Suppose first that 2 < m < 1/y then there exists a system of vectors =z, -
...... . xktimo, KXy =045 5 Vir eeneeey Ity Jidy= 5,, such that x,7;=cos #; and
thut all other x, y vanish., We take cartesian frame associated with
such that:

Then the subspace N is generated by m vectors which.are two rows of the

matrix . - ,
[ cosl, sinb, .
B: cosl, sinb, ...... 1

| ' | | By O

where the index is. arranged in the order 1, £+1, 2, 242, ......, £ 24,
24+1, ..., 2. The reflexion with respect to N is S=2B*B—1, and the



100 H. Iwamoro.

cprresponding  transvection® is 6= S/. The exphcxte calculation gives the
desired result. The case £>m can be treated in analogous manner. ’

8. Let M be a 4-dimensional linear subspace of P, € be the corres-
- ponding transvection. The reflexion with respect to 9 is then 6/, Now
we have seen that any € associated with M, dim M=~ can be written as

O=ROR, 0=D(0)+...... +D(6)) 4 Epy_op
‘w.ere R=7;+73(tg). Consider the transvection 6* defined by
F=ROR, O =D@B,/2)}...... +D(0,,/2)+E,,_ok

Then the subspace M is the transform of MWy=1{e¢,, ......, } by o, Indeed,
the reflection  Wwith respect to the transform of IR, by o is '

/() = 6L)(8Y) 4] =6} 6L /= 6=

Now let O+ 0 be a transvection associated with -Em+d93£(/1(71, £) near
M. " We transform 6 back to m, by the transformation 6% :

80=6" *de R

This shows that 86 is an mﬁmtesunal t.’ransvectlon _/39]: —06. We have,
in the same manner as in 4% and 47, as the volurne-element betwcen'’ two.

zones (#,, ...... , 0.) and (0,440, ...... , 0 +d0,) the following expression ;
4de....... a’(fk ; d=1II(cos 0,—cos ;)11 sin 0, JT sin**~*¥(4,/2)
4. The sonales are functions depending on 4 arguments cos? 0,/2, ..i...,

cos® 0,/2 invariant with respect to any permutation. among them and thus
are expressible by means of £ quantities . '

¢y= 3 cos (0,1/2)....:.cos—((f,-,/z). (<r _<;zz)
Let p(4, ..... ., zk) be Pluckex cooxdmates of A(u A) Consider £
quantities 27, ...... s e '
Z, -ijp(z', ...... Lp Jyeeeens N2 (Ko Ry Jreeeeaiy)

These quantities constitute harmonic sets of the manifold A(x, £). The
zonale of Z, is just {, Any harmonic set of the manifold A(n, £) may
thus be .obtained from Z,...... » Zr by means of x -multiplication. Let
YA/ - /%) be the representation of the highest weight contained in
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‘

ZPonen. ZH

where '(f, ..... %) is the conjugate of (Aéll) The.zdnalc ot

’ ' a; ’ arkl T ’
. Z(f;,...\... ﬂ) is .

C(fieeee-. ) =()a...... (&) ew + (terms lowwer than {3......07%)
~ The representation given by Z( A, ...... ,f,c) is of"’signature Gyeveisdtny) e
hi=fi+/1, (’z'-;l,Q, ...... VB Jigr=.. —/lfn—”L'—f;
R Jrs+ /fn;i+1=2f1 ‘
and we obtain: the fbllowing.‘ T G
Theorem 1. 3. The g;’/mztz'tz'fs'
CZ(for oo fi) f>f; ....;.g_fk:>:o

u)lt/l any fi, f,, ey fo constitme a complete harmonic set of the manifold
A (71, ).  The irreducible representation of the group US(n) of signature

(Y1) eeneeny ltu_y) is contained in a harmonic set of the manifold A(n, £) if »

and only if :
=ttty =i =lipt Sy g1 =21 =r.n. =2/, 4.

Chapter IV.
Some lemmas on linear invariants.

1. Iet 47 be a co.mpact vhomogeriious‘manifplvd with fundamental group
- G, and suppose that G is a Lie group. . Let /I'(G) be an irreducible re-
presentation of G, I (£)* be the représentation of the group of rotations
g(c @) derived from I’(G). E. Cartan established the following theorem :

I'(G) is* containid in a /zfzrmomc set of the manifold M if and only if
['(¢) contains a linear invariant. [f their exist h lincar invariants af I'(g),
then there exists It different harmonic sets belongm 20 the yepresentation ['\G).
(see E. Cartan, [2])." '

Now we have constructed in the pi‘ecedincr chapters the harmonic sets
‘of the manifolds A*, A~ by the explicit computation of the zonales. Thus
the problemq of finding the 111educxble representations of the group US(#)
admitting a linear invariant with respect to its proper subgroups 0(#) or
{/S(n) are completly solved, (This methode may afford a most natural
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approach to this problem.) We have the following :
- Theoremn 1. 4. The representation of the group US(n) of signature
(Sfay eveene v Jfno1) admils a linear invariant with vespect to the proper subgroups
0(2) and USp(n) if and only if fi=fi=......==0 mod. 2 for 0(x), and
Si=fr=...... =0 mod. 2 for USp(n) respectively, where gy, gay ove.. ts the
congugate of fiyfo, coviee. In each cases therve exists only one lincar 'invariant.
In this chapter 1 will give a direct verification of this fact. ,
Lemma. Let P(f, ...... fa—1) be an irreducible representatxon of thc
real unimodular group SZ(#) of signature (fi,f, ...... ). P(fie..... ) admits
- a linear invariant with respect to its proper subgroup O(z) if and only
if all £; are even. Proof. Let (i, g, ---.-.) be the conjugate of (fi, fo «+s--).
We take g=g; vectors xy, %o, ...... in R,. The components of x; may be
denoted by, (4,(1),...... x:(7)). The tensors

2N x(z.',‘, ...... y 1) =21 el P)Pr(4y)...... x‘(il)

are skew symmetric with respect to 7, ...... ,z,\' and the tensors defined by

Xg‘XXg‘_,X ...... XXg/ (f—"f;)

or o t

constitute a basis of the invariant subspace P(f, ...... yJa—1). Now the
quantities X, does not change if we replace the veltors zy, ...... , ¥, by

=%y, y2=xg+121x,, ...... ,)/,J=xy+lg,x1 + ..‘.-u +lggxg .

So that we can rep]ac'e X1y eeeeery &, by mutually orthogonal vectors without
vcha{nging X. Any tensor of signature (fi, -s..-- s Jn=1) is then a linear com-
" bination of the form X'=3] A ./, where %, are basic vectors of P(f;, ...... )
which are of the form

The vectors a7, ...... , X, are mutualy orthogonal. The only way' of con-
structing orthogonal invariants is the contraction with respect to o(z]) “We
thus obtain as a necessary condition /N=even. Any orthogonal invariant
is thus a linear combination of the terms
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If we use the relation xx;=0, (z =}= 7), then:

"‘—vz /\¢(x]x])sl(xgxo) 2ieecee (xx) 9, 251=f-1. oooooo » 2Sg=f0
where v(1'2...... N?’) is a number depending only on the permutation 12,
...... N—-1'2......N'. From which we conclude at once f;==25, ...... That
1S, fiy eevees ,fa_i are all even. We also see that only one’ linear "invariant
can exist. Under this condition the required linear invariant is

'0(2,25) 0(4sty) o ev o O/ o) ee-- X(i,jl.....’. 3 Tafaeeeces ST
This is certainly not identically ' zero. (Consider, the tensor whose com-
ponents are all zero except X(12...... ;5 12...... T3 eennnn ) and its homolog).
_The irreducible representation of the group /S(z) of signa-
ture ( Siy cetoes ,,_,) admits a 11near invariant with respect to the subgroup
- USp(») if and only if all.g; are even. .
- We ‘take a generic tensor X of P(fi, «-.... y,Ja-1) in the form

DM E T P | BT P72 N .
4 .

Any invariant may be obtained by contraction with respect to e(7/). ‘If the
term [z, ......x][x, cooeez]onnen. does not vanish by this contraction, then it
is possible to show that x,...... x can be taken such that: .- '

Xi14e™= 7’1+u 1)*1—,72+f+""+h Zoyg L. {J’Q;J’n ------ :J’?M,J/Ht} J’2+t=1j’1+s
(z=0,2, ...... ).

From: this follows at once the required result.

From these lemmas we conclude not only the theorem 1. 4, but also
the followmc

Theorem 1. 5. The irrediicible representation of the group GL(n,K) of
signature (Fiy +eeenes Fa) admits a linear invariant with vespect to its proper
subgroups 07 (n) or Sp(n) if aud only if fi—f, =0 mod 2 for 0(n) and
si=g=.....==0 mod 2 for Sp(n).

‘Part 1I.
The Betti-numbers.

Chapter I
Formal preperation,

1. We consider a set (2) of all (%4, %) matrices in kor K.:
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2: (wa), IZish 1Z2A4).
In 9 we consider a group I” isomorphic with GL(%)'x GL(%) :

2 — AYB*, Ac¢GL(k), B« GL(%)

The outer products of- 2 elements of £:
Ly wiidgen v iy,

give a representation bf.the group I Concerning the decomposition -of
I'(p) the following fact is known' (Ehresmann, (3D : .
I(p) decomnpascs into the irreducible re p;'c’smzz(ztzmzs according to’ the

i =

Jollowing sheme :

L(p) ~32 P(fiy eveene AR £ (.Y

where P( _/,, ...... ﬁ) is the trreducible represmmtzou of the groztj) GL &) of
signature f, ...... e (A== =/e=0), Pla, -..... L Su) is the
irreducible rz’p;'esmmz‘zo;z of the group GL(k) of signature (g, ...... v Sy (A=
G = &= 2 g0 2= 0. Moreover, (f,y «e-enns Su) and (g, -..... » &n) are mutually
conjugate, The term of the highest wheight in P(f, ...... W Jo) X P(gy,y ennn.n,
&) is : .. '

F, ;X we X ..., X "’m‘ X Wyoeeees o X Wpy X '. . X Wy, X Wopyensen. X Wy, .
The components of 7(...... ) xP( ...... ) may be obtained from wg,,......wi,

by operating the opelator of Young according to the definite manner in-
dicated by the leading term .7, .By the aid of theorem 1.5. we obtain
the following.

Lemma 1. By descendmO‘ from- GL(%) x GL(/Z) to its subgroups 0(4)

X0(/%) or Sp(#) x Sp(/) the representation P(f,, «..... Jo) X P(ghy ennn.. L &n)
admits a linear invariant if and only if i—fo= f—-f}c ...... =0 mod. 2,
i O,‘ = g — g ==euuen. =0 mod. 2 for 0(£) x0(£) and fi=f=......==0

mod. 2, ¢ =¢,=..'...= 0 mod. 2 for Sp(#) x Sp(%) respectxvely.
2. ‘We denote by (£) the set of all skew symmetric ‘matrices £ in
K ‘ | .
| L=(w,;), wzj+(uj,-—.0 (z ...... =1,2, ...... 7).
Consider in (£) the group Pisomorphic withbGL(n) : 8>A*QA, AGL(>%).
- Concerning the representation given by the. outer products I'(2) : wgy X ,..
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s f : . P ' : '
...wjyj, the following fact is k'no‘wnu (3D P

1'(p) decomposes inio the trreductble yepresentations according to

< . P(P)~Z ]—'(/i’ """ "o/l') : [
 where w>[> > .. >6>0. p=fi+...... +f.  The representation I'(f;, ...
wes ) is of signature (fi, fot 1, oo, it =1, 103, Jogy o ) I 0/ 7N ) is the
congugate of (fi—=I+ 1,f;—1+ 2, con J1). The highest terim in (fyy .oonefit) s
];‘0 . (Ul‘_’ X (013 D S, X (Ul f1+1 X (02«-‘ ------ X (Ut_)f2+c_; X oteeaeo X (l).gl+1 X eeoaee X (()‘ l+!l
The components of I'(f, ...... ,/:) may be obtained from () by means

of the definite process indicated by the leading term . By descending
. from GL(n) to its subgroup Sp(7) this representation admits a linear in-

variant if and only if the columns of the diagram (£, /241, ...... J Ay oy eanenn )
are all even. Under this condition the numbers '
Pyt foy Ro=fat Sy cenens s By = fopr S ((=2p)

Bi=fit for Fo=fo Sy eernne s B =FoniF o Kms1i=Somr1 ([=2p+1)

are all odd numbers satisfying the condition

P=ly=...... =1 mod. 4, and By =fop1=1,"1 £, < 2m.

By. this fei(_:t‘ we readily see the following.

- Lemma II. By wecending from GL(#) to i's subgroup Sp(#) the
representation I'(f....../;) admits 5, linear invariants. 75, is the coefficients ’
" of the Polynomial - :

P()=1+z)A+2)...... (142 =2y

. . ' . .
Let (£), be thg set of all skew symmetric matrices in K satisfying

‘the relation 37 €,,w;;=0. This relation is invariant with respect to the group .
Sp(#) and we have the \
Lemma 1. By descending from GL(7) to its subgroup Sp(z) the
number of linear invariants contained in the product I'(p) : i, x cevees X Wipjyp

is the coefficient of s” in the polynomial

P()=1+2)(1+2%)...... (142", n=20

Proof. Cd_nsider the invariant decomposition of w,;, where w; are the .
elements of the generic matrix of (£):
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Y

o 1
(1} ’ ’ )
W =Wyt wy, Oy=E 0, W= e 2 W '

The product I(p) is

"The two terms in the rlcht side of this equation are unitary orthogonal, so
. that if we denote by P, P°, P1 the vector spaces spanned by w, ji...... Wiy s
‘"i,j, ------ wgpjp ------ and [wz, /,(Uzq Gaeernes ] respectively, then P=P°4+ Pl Let
% ¥ x* be the characters of the group Sp(#) induced in P, P°, P'. Then
r=x"+x By integrating over the unitary restricted group Sp(gz) we have

e {

The left side of this equation indicates the number of linear invariants con-

- tained in I(p), say B, The first term of the right side indicates the

required number, say Bj. It is easy to see that the second term of the

right side is just B_,. Thus we see B,=5Ly+ 5 _,. B, is thus the coe-
fficient of the Polynomial P(2)/(1 +2). ’

The adjoint group of the group OL(7) is just £—A*QA, where Ac

OL(#). The representation 1°(f, ...... ,/2) admits a linear invariant with
respect to this group if and anly if the numbers Soht 1, o s i+ l—1 5 Jny,
f1y «e-... are all congruent with each other. We have thus as in the case

of lemma II the
T Jeeorem I1. The Poincaré Polynomzal of the group OL(n) is

P()=(L4+2Y(L45) e (L 2™ 1) =2 1.
P()=1+s)(14+5)...... (L42")(1+227) =2,

3. In this paragraph (&) is the set of all symmetric matrices in X.
£: (wy);. 2,700 =1,2,..... G, W=
The outer product

P(p) (Uzljl ...... (Uz'pjp

decomposes according to the following sheme :

I(p)~2 I(fay-one o .,ﬁ) 21> fi> o> > £>0.
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I(f], ...... ARG the 1rleduc1b1e representation of the group GL(n) of s;gna-,
ture (f5+1, .'.....,f+[ Y/ TR y tny), where /iy eunen. , /1., is the conjugate
of (fi—14, faiml—1,.ccuu fi—1). ‘The highest term in (f, ---ee, /5) is

Wy X eueen X Wgy X g X sevrvely g1 X oovine X WX verere X @I fi+0—1

By theorémi 1.5 we have the following
Lemma III. By descending from GZL(z) to its subcrroup O(n) the.
representation I'(p) admits 5, linear invariants, where B, is the coefficient

of _
P(2)=(1+’”)(1+C’5)- v (L2 (142%) for n=2v.
])(")'“‘(1-*-")(1-}— 5) ...... (1+Z4V+1) for 72=2v+1

Let (.Q)o be the set of all symmetric matrices in K satlsfymd the rela-’
+ tion 3} wy,;=0 which is invariant ‘under the group OL(n). By using the
invariant dccomposmon W= @+ wiy, where nw”-—b‘uzwm, we have in
the same way as in Lemma II’ the followin "
Lemma III'. The Polynomial 7(Z) cmrespondmOr to w;, is given by
I(z)=1(2)/(1+z), where P('r) is the Polynomial of LLemma IIL.
. The adjoint group of the group USp(n) can be reduced to the form
2—A*YA, AcUSp(n). The representation I'(f, ------ ,/;) admits a linear
invariant with respect to this subgroup if and only if the columns of the
diagram (f;+1, fo+2....... N/ o A/ T , 2ea_;) are even. We thus see
that the numbers A =74/, A=/at [z coeeer are all odd numbers such that
LA =y =...... =—1 mod 4; 2%> 4, >3, and we have the following
Theorem III. The Poincaré Polynomial of the group Sp(#) is

PY=(1+) (L&) (L4577,

- Chapter 1II.
The determination of Betti-numbers.

1

1. R(n,#) Infinitesimal transvection is
26 ( '5) Se(wn)y 1<:i<h 1<A< A
‘=5 ) =W )y == ._. ’ = -

The adjoint trans{ormation. is S—73*S7;, where 7,¢0(%), TheO(k).
(The case of lewna I.)
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S(n, #). Infinitesimal transvection is of the same form as‘R(n, £) but
s=(_4 L) a=(ws), B=(3a), 1<i<t2, 1<ISH2

This is also reduced to #ie case of lemuma I, because the adjoint transforma-
tions are defined by S—7,*S7;, where 7}, 7, are unitary symplectic.

A(n, £). The adjoint transformations are S—77*S7’,, where 7%, 7, are
unitary.  Zis case was treated b by Elresmann, ,

"By lemma.l we obtain the following -

Theorem IV.- T he p-th Betti- mzm&cr of the mamjbla’s R(n, /é) S(n, #),
A(n, £) are

R(n, k) : The number of partz'tions =S+ eees +/, such that f,,——ﬁ,
£:—g3 are all even, where (g3, go------ g») is the conjugate of (A, foe--.-- ).

S(n, &) : B,=0 if p=4s. For p==4s B, is equal to the number of
partitions of S in k/2 non negative intcrgers Iess than or equal to /2 : S=
Siteeenen Ffm B2 == o = = JSr2 = 0.

A(n, k) : B,=0 if p==2s. For p=2s B, is cqual to the numbcr of
partitions of s in k non negative intcgers less than h+ 1. v

2. The adjoint transformations of the manifolds 4*, 4, S, C are |

A*(n): R->T*LT, TeO(n), where 2=(my;), wy=wy; w0,;=0.
A~ (n): K-T*QT, TeUSp(n), where 2=(wy), wy+wv;=0, and
2 &0y, =0 (The cases of lemma [1I' and lemmna JI' respectively.)
S(n): @oUQU*, 24 9%=0; UeU(n/2), o
C(n): Q-UQU*, 2=90%; UcU(n/2),
' : (The cases treated by Elnesmann).

By lemma II and III we obtain the following -
Theorenn V. The Pozﬂca;e Polynomials of the 77za7zzﬁ7/a'5 A+, 4-, S, C are

A () : (L4+22)(1+3") e (L5, =241
(I+2)(1+27)......2 +“'4"'_3).(1+2'2"), n=32. .
A () A+ +5") . (L+2™7)
S():  (A+2°)(1+2")...... (14 520-1),
e Cx): A+ +2)...... (1+25%).

3. We denote by A4*(#), A~(n) the set of all symmettic or skew
symmetric unitary matrices. These are also symmetric Riemannian mani-
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folds and the Betti numbers of these manifolds can be determined in the
same manner as above by the aid of lemmas II and IIL: '
Theorem VI. The Foincaré polynomials of the mamfola’s A+(»), A-(»)
can be represented as P(3)=DPy(2) /(1 +2), where Fo(2) are the Pomcare poly-
nomials of A* () and A~ (n) re’spectwdy
4. The adJomt transformations of the group GL(#) are

L4104, L= ((uj)

consider the outer product I(p) : wh:.....wip/p. We c)perate the operator

of Young corresponding ‘to the partition (f#,------ ., Ja) to the indices

L1y gy eonee- , 2y . The result is riot zerro if and only if #2=>fi. With respect
to the indices f, ....--j, this quantity gives the irreducible representation
" of signature (—gy, ------ , —g1). Thus I'(p) decomposes as I'( ) ~233 P(fi---

. N fi=eeees = ,,_0

e fa) X P(—Gny oeeee , —g1). By the lemma stated in Ehresmann, 3 we see

that LP(fy, corveoey fo) X EX — Ly cenver , —g1) admits a linear invariant if and

only if the diagram "(fi. £, ---.-- , /) is self-conjugate. By examining the

property of the self-conjugate diagram we readily see the following

Theorem I. The Poincaré polykomz’cals of the groups GL(n) and SL(n)
are \ :
(1+ (L 45%) e (1 42%570)
and

(1+'>3)(l+ 5) ...... (142271,

Remark. After all the discussions given above it remains finally to
show that the invariants given above does not vanish identically. But this
can easily bc carried out by means of the leading term Z. Consider, for
example the case of the group GL(#). ‘The leading term of-the repre-

7 sentation P(fy veeees o) X P(—foy cvenne, —f1) i
' wlwi...... wl! . .
F: Xxohad...... wl? (fi=gp -o--- )
X (r),,l 0? ......

Consider the infinitesimal matrix £ in which all @} are zero except those
~appearing in F,. The only non vanishing term is F, and this gives at ‘the
 same time the value of the corresponding invariant.

. Mathematical' Institute
‘Nagoya University.
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