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Abstract. In this paper we characterize 2-dimensional normal Mather-Jacobian log
canonical singularities which are not complete intersections. We prove that a 2-dimensional
normal singularity which is not a complete intersection is a Mather-Jacobian log canonical
singularity if and only if it is a toric singularity with embedding dimension 4.

Introduction. In birational geometry, the notion of discrepancy plays an important
role. By using this discrepancy, we can define canonical, log canonical, terminal and log ter-
minal singularities. Those singularities are all normal Q-Gorenstein singularities and these
conditions are essential in birational geometry. But these conditions seem to be an unneces-
sary restriction for a singularity to be considered as a good singularity.

By using the jet schemes and the Nash blow-up of a variety, Ishii [10], de Fernex and
Docampo [2] independently introduced the notion of Mather-Jacobian log discrepancy, which
is a modification of the classical definition of discrepancy without the restriction of normal Q-
Gorenstein property. This discrepancy was introduced as an alternative discrepancy on which
Inversion of Adjunction holds in full generality, and many good properties are drawn from
this property. Henceforth, in this paper, we denote Mather-Jacobian by MJ for short.

According to this MJ-discrepancy, MJ-canonical and MJ-log canonical are defined in a
similar way as the usual canonical and log canonical singularities (see [10] and [2]). These
singularities have good properties: for example, stability under deformations, lower semi
continuity of MJ-minimal log discrepancies and Shokurov’s conjecture holds ([10], Corollary
3.15 and [2], Corollary 4.15). Then, it is natural to ask what kind of singularities are MJ-
canonical or MJ-log canonical.

In [5], Ein and Ishii determined MJ-canonical singularities of dimension 2. They also
determined complete intersection MJ-log canonical singularities of dimension 2 and showed
that a non-complete intersection MJ-log canonical singularity of dimension 2 is embedded
into an MJ-log canonical complete intersection surface.
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In this paper, we determine normal MJ-log canonical surface singularities which are not
complete intersections. More precisely, we prove that a non-complete intersection normal
MJ-log canonical surface singularity is exactly a rational triple point on a toric surface. By
this, we complete the characterization of a normal MJ-log canonical surface singularity.

The paper is organized as follows:
In Section 2, we state some preliminaries about MJ-singularities and jet schemes for the

convenience of the reader. We refer to [6] for further details. In Section 3, we state and prove
the main result:

THEOREM 0.1 (Theorem 2.1). Let (X, p) be a singularity on a normal surface X. We
assume that (X, p) is not locally a complete intersection. Then the following are equivalent:

(i) (X, p) is MJ-log canonical singularity,
(ii) (X, p) is a toric singularity with multiplicity 3,

(iii) (X, p) is a toric singularity with embedding dimension 4.

In Section 4, we give the appendix about toric varieties: give the defining ideal of a
toric variety with embedding dimension 4 (This description of the ideal is used in Section 3
for the proof of the main theorem) and show that a toric surface singularity with embedding
dimension 4 is MJ-log canonical. We also give an example for a toric singularity of dimension
3 with embedding dimension 6 which is not MJ-log canonical.

Acknowledgment. We are grateful to Prof. Shihoko Ishii for suggesting us this topic, for the
careful reading, many comments and corrections on this paper. We would like to thank Prof. Keiichi
Watanabe for stimulating discussions. We also thank Prof. Dimitrios Dais and Prof. Günter M. Ziegler
for letting us know about a formula expressing the embedding dimension of three-dimensional canonical
toric singularities.

1. Preliminaries on Mather-Jacobian minimal log discrepancy. We start by recall-
ing the definition and basic properties of Mather-Jacobian log discrepancy which is defined in
[6]. We refer to [6] for further details.

Throughout this paper, by a variety we mean a reduced equi-dimensional separated
scheme of finite type over C.

Let X be a variety of dimension dim X = d. The sheaf Ωd
X is invertible over the smooth

locus Xreg of X, hence the projection

π : P(Ωd
X) −→ X

is an isomorphism over Xreg. The Nash blow up ̂X −→ X is defined as the closure of π−1(Xreg)
in P(Ωd

X).
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DEFINITION 1.1. Let ϕ : Y −→ X be a resolution of singularities of X that factors
through the Nash blow-up of X. The image of the canonical homomorphism

ϕ∗(Ωd
X) −→ Ωd

Y

is an invertible sheaf of the form Jac fΩ
d
Y , where Jac f is the relative Jacobian which is an

invertible ideal on Y and defines an effective divisor supported on the exceptional locus of ϕ
which is called the Mather discrepancy divisor and denoted by ̂KY/X .

DEFINITION 1.2. Let ϕ : Y −→ X be a log resolution of JacX , where JacX is the
Jacobian ideal of a variety X. We denote by JY/X the effective divisor on Y such that JacXOY =

OY (−JY/X).

Here, we note that every log resolution of JacX factors through the Nash blow-up, see
for example, Remark 2.3, in [6].

DEFINITION 1.3. Let E be a prime divisor over X and ϕ : Y −→ X be a log resolution
of JacX , on which E appears. We define the Mather-Jacobian-log discrepancy at E as

aMJ(E; X) := ordE(̂KY/X − JY/X) + 1 .

Note that the Mather-Jacobian log discrepancy at a prime divisor E does not depend on
the choice of ϕ. We denote ordE ̂KY/X bŷkE .

DEFINITION 1.4. Let W be a closed subset of X such that it does not contain an ir-
reducible component of X. The Mather-Jacobian minimal log discrepancy of X along W is
defined as

mldMJ(W; X) = inf{aMJ(E; X) | E prime divisor over X with center in W}
if dim X ≥ 2, or dim X = 1 and the infimum on the right hand side is non-negative; otherwise,
we set mldMJ(W; X) = −∞.

DEFINITION 1.5. We say that a point p of X is Mather-Jacobian log canonical (MJ-log
canonical for short) singularity of X if the inequality mldMJ(p; X) ≥ 0 holds, i.e., for every
exceptional prime divisor E over X with center {p}, we have inequality aMJ(E; X) ≥ 0.

Here we note that the definition of MJ-log canonical singularity in [6] is different. But it
is equivalent to the above definition by [5], Proposition 2.22, (i).

We will introduce the basic definition of jet schemes and the relation to Mather-Jacobian
minimal log discrepancy. For the theory on jet schemes and arc space, see for example [7].

DEFINITION 1.6. Let X be a k-scheme, K ⊃ k a field extension, and m ∈ Z≥0 a
non-negative integer. A k-morphism Spec K[t]/(tm+1) −→ X is called an m-jet of X and a
k-morphism Spec K[[t]] −→ X is called an arc of X.
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We denote the m-th jet scheme of X by Xm, and the space of arcs by X∞. We have
canonical morphisms ψm : X∞ −→ Xm and πm : Xm −→ X. When we need to specify the
scheme X, we denote them by ψX,m : X∞ −→ Xm and πX,m : Xm −→ X.

The following proposition is given in Proposition 2.14, (2) in [5], which is used in the
next section.

PROPOSITION 1.7. Let X ⊂ AN be a variety of dimension d. Then for a closed point
p ∈ X,

mldMJ(p, X) = mld(p,AN , IN−d
X ) = inf

m
{(m + 1)d − dimπ−1

m (p)} .

2. Normal MJ-log canonical surface singularity. We are going to prove the follow-
ing theorem:

THEOREM 2.1. Let (X, p) be a singularity on a normal surface X. We assume that
(X, p) is not locally a complete intersection. Then the following are equivalent:

(i) (X, p) is an MJ-log canonical singularity,
(ii) (X, p) is a toric singularity with multiplicity 3,

(iii) (X, p) is a toric singularity with embedding dimension 4.

Note that the equivalence (ii)⇔(iii) follows immediately from Artin’s formula
emb(X, p) = multpX + 1 ([1]), because a toric singularity is rational and we can apply the
formula.

The program of the rest of the proof is as follows:
First we prove that a 2-dimensional MJ-log canonical singularity which is not a complete

intersection is a rational triple point (Proposition 2.2). Then by checking Tyurina’s list of
rational triple points, we pick up possible rational triple points for being MJ-log canonical
and we prove that these singularities are toric triple points (Proposition 2.5). This completes
the proof of (i)⇒(ii).

Then, in Proposition 2.6 we prove (iii)⇒(i) by determining the defining ideal of a toric
variety with embedding dimension 4 and apply Theorem 5.6 in [5].

PROPOSITION 2.2. Let (X, p) be a normal MJ-log canonical surface singularity. Then
(X, p) is a log terminal singularity with multiplicity 3 or a complete intersection log canonical
singularity.

PROOF. By Theorem 3.19 in [5], X is log canonical in the sense of de Fernex and
Hacon. De fernex and Hacon proved that for a normal surface, log canonical in their sense is
equivalent to log canonical in the usual sense (Corollary 7.15 in [3]). Thus X is log canonical
in the usual sense.

We assume that (X, p) is not a complete intersection singularity. Let r be a positive integer
such that rKX is Cartier and let dr,X be the lci-defect ideal of level r of X. Then ordE(dr,X) ≥ 1
for every prime divisor E over X whose center is p. By Proposition 3.4 in [2], for every prime
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divisor E over X whose center is x, we have

̂kE(X) − ordE(JacX) = kE(X) − 1
r

ordE(dr,X) .

Thus we have kE(X) > −1 for every prime divisor E over X whose center is p. This implies
that X is log terminal. Since log terminal singularities are rational singularities, p is a rational
singularity.

By Proposition 1.7, we have 0 ≤ mldMJ(p, X) ≤ 2(m + 1) − dimπ−1
m (p) for every m ∈ N.

By substituting m = 1, we obtain dimπ−1
1 (p) ≤ 4. This implies that emb(X, p) ≤ 4. Since

(X, x) is not a complete intersection singularity, emb(X, p) = 4. As X is rational at p, we can
apply Artin’s formulain in [1] multp(X) = emb(X, p) − 1 = 3. �

The rational triple singularities are defined by 3 equations in C4 and classified into 9
types. The explicit equations were first obtained by Tyurina in [13].

PROPOSITION 2.3 ([13]). Let (X, p) be a rational triple point on a surface in C4. The
defining ideal of X in C4 is one of the following (1) − (9) :
(1) Ak−1,l−1,m−1, k ≥ l ≥ m ≥ 1

(x(y + wk) − ywm, yz − (y + wk)wl, xz − wl+m) .

(2) Bm,n,m ≥ 0
n = 2k − 1, k ≥ 2

(xz − ym+1(yk + yw), (yk + yw)w − z2, xw − ym+1z) ,

n = 2k, k ≥ 2

(x(z + yk) − ym+2w, yw2 − z(z + yk), xw − ym+1z) .

(3) Cm,n,m ≥ 3, n ≥ 0

(xz − yn+1(y2 + wm−1), (y2 + wm−1)w − z2, xw − yn+1z) .

(4) Dn, n ≥ 0

(x(y2 + z) − yn+1w2, w3 − z(y2 + z), xw − yn+1z) .

(5) E6,0

(x2z − (y + w2)y, yw − z2, x2w − (y + w2)z) .

(6) E0,7

((x2 + w3)z − y2, yw − z2, (x2 + w3)w − yz) .

(7) E7,0

(w2z − (y + x2)y, yw − z2, w3 − (y + x2)z) .

(8) Fn, n ≥ 0

(xz − yn+1(y3 + w3), (y3 + w3)w − z2, xw − yn+1z) .
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(9) Hn

n = 3k − 1, k ≥ 2

((xw + xk)z − y2, yw − z2, (xw + xk)w − yz) ,

n = 3k, k ≥ 2

(xwz − (y + xk)y, yw − z2, xw2 − (y + xk)z) ,

n = 3k + 1, k ≥ 2

(xw(z + xk) − y2, yw − (z + xk)z, xw2 − yz) .

LEMMA 2.4. Let X = SpecC[x1, . . . , x2n]/( f1, . . . , fr) be an n-dimensional variety
with emb(X, p) = 2n, where p is the origin. Let IY = (in( f1), . . . , in( fr)), where in( f j)
is the initial term of f j, i.e. the sum of all monomials in f j of smallest degree. Let
Y = SpecC[x1, . . . , x2n]/IY and q ∈ Y be the origin. If X is MJ-log canonical at p, then
mld(q,A2n, In

Y) ≥ 0.

PROOF. In this proof we will use the formula in Proposition 1.7. So we need
the description of the fiber of πX,m : Xm −→ X. We use the notation in ([5],
2.11, Remark 2.12) which provides with basic facts on the fiber of πX,m. We have
π−1

X,m(p) = SpecC[x(1), . . . , x(m)]/( f (i)
j )1≤ j≤r,1≤i≤m, where x(i) denotes the collection of variables

x(i)
1 , . . . , x(i)

2n and Σ∞i=1 f (i)
j ti is the Taylor expansion of f j(Σ∞i=1x(i)ti). By the assumption that the

embedding dimension is 2n, we have all monomials of f j are of degree ≥ 2. Therefore we
have f (i)

j ∈ C[x(1), . . . , x(i−1)]. Let Im be the defining ideal of π−1
X,m(p) in C[x(1), . . . , x(m)].

Let l be a positive integer. Let us denote f the function obtained by substituting the
values x(1)

1 = · · · = x(1)
2n = · · · = x(l−1)

1 = · · · = x(l−1)
2n = 0 into f ∈ C[x(1), . . . , x(m)].

CLAIM 1. For a monomial h = x j1 · · · x jd ∈ C[x1, . . . , x2n] of degree d ≥ 3, it follows

that h(i) = 0 (1 ≤ i ≤ 3l − 1).
In fact, h(i) is a sum of monomials x(l1)

j1
· · · x(ld )

jd
with l1 + · · · + ld = i ≤ 3l − 1. For each

monomial x(l1)
j1
· · · x(ld)

jd
, there is k (1 ≤ k ≤ d) such that lk < l, because Σd

t=1lt ≤ 3l − 1 and

d ≥ 3. This yields that h(i) = 0 for 1 ≤ i ≤ 3l − 1 as claimed.
CLAIM 2. For a polynomial h ∈ C[x1, . . . , x2n] whose monomials are all of degree ≥ 2,

it follows that

h(i) = in(h)(i) (1 ≤ i ≤ 3l − 1) .

In fact, when all monomials of h have degree ≥ 3, the both sides are zero by Claim 1.
On the other hand, when there is a monomial of degree 2 in h, then all monomials of degree
≥ 3 vanish in h(i) by Claim 1 and only the monomials of degree 2 survive in h(i). Anyway the
required equality holds.

Now we return to the proof of the lemma. Note that all monomials of f j are of degree
≥ 2. Therefore, by the claims, we obtain

{ f (2l)
1 , . . . , f (2l)

r , . . . , f (3l−1)
1 , . . . , f (3l−1)

r }
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= {in( f1)(2l), . . . , in( fr)(2l), . . . , in( f1)(3l−1), . . . , in( fr)(3l−1)} .
We replace x(m) by x(m−(l−1)) for every m ≥ l. Then in( f j)(m) becomes in( f j)(m−2(l−1)) for f j

with ord( f j) = 2. Indeed, this follows from the fact that in( f j)(Σ∞i=1x(i)ti) = Σ∞i=1in( f j)(i)ti and

in( f j)(Σ∞i=lx
(i)ti) = Σ∞i=2lin( f j)(i)ti for f j with ord( f j) = 2. Thus we get

ht(in( f1)(2), . . . , in( fr)
(2), . . . , in( f1)(l+1), . . . , in( fr)

(l+1))

≥ ht( f (2l)
1 , . . . , f (2l)

r , . . . , f (3l−1)
1 , . . . , f (3l−1)

r ) .

Next we will prove that

ht(in( f1)(2), . . . , in( fr)
(2), . . . , in( f1)(l+1), . . . , in( fr)

(l+1)) ≥ nl .

Since X is MJ-log canonical at p, mldMJ(p, X) ≥ 0. By Proposition 1.7, we have n(m + 1) −
dimπ−1

X,m(p) ≥ 0 for any m ∈ N. This implies that ht(Im) ≥ n(m − 1). When we consider the
case m = 3l − 1, we have htI3l−1 ≥ n(3l − 2). On the other hand it follows that

I3l−1 ⊂ (x(1), . . . , x(l−1), f (2l)
1 , . . . , f (2l)

r , . . . , f (3l−1)
1 , . . . , f (3l−1)

r ) ,

because every monomial in f (i) (1 ≤ i ≤ 2l − 1) has a factor in x( j), j ≤ l − 1. Thus we have

ht(x(1), . . . , x(l−1), f (2l)
1 , . . . , f (2l)

r , . . . , f (3l−1)
1 , . . . , f (3l−1)

r ) ≥ n(3l − 2) .

This implies that

ht( f (2l)
1 , . . . , f (2l)

r , . . . , f (3l−1)
1 , . . . , f (3l−1)

r ) ≥ nl ,

since ht(x(1), . . . , x(l−1)) = 2n(l−1) and f (i)
j ∈ C[x(l), . . . , x(m)] for 1 ≤ j ≤ r, 2l ≤ i ≤ 3l−1,m ≥

l. Thus we have

ht(in( f1)(2), . . . , in( fr)(2), . . . , in( f1)(l+1), . . . , in( fr)(l+1)) ≥ nl ,

as required.
Note that all monomials of f j are of degree ≥ 2. Therefor we have

π−1
Y,m(q) = SpecC[x(1), . . . , x(m)]/(in( f j)(i))1≤ j≤r,2≤i≤m .

By Proposition 1.7, we have

mld(q,A2n, In
Y) = inf

m
{n(m + 1) − dimπ−1

Y,m(q)}
= inf

m
{n(m + 1) − 2nm + ht(in( f1)(2), . . . , in( fr)

(2), . . . , in( f1)(m), . . . , in( fr)
(m))}

≥ inf
m
{n(m + 1) − 2nm + n(m − 1)} ≥ 0 .

�

Note that here Y is not necessarily the tangent cone of X at p.

PROPOSITION 2.5. Let (X, p) be a normal MJ-log canonical surface singularity. If p
is a log terminal singularity with multiplicity 3, then it is a toric singularity.
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PROOF. Since p is a log terminal singularity with multiplicity 3, p is a rational triple
point. We may assume that the defining ideals IX of X in C4 is one of the ideals (1) − (9). Let
IX = ( f1, f2, f3) and IY = (in( f1), in( f2), in( f3)). Let Y = SpecC[x, y, z, w]/IY and q ∈ Y be the
origin.

(1) Let X be Ak−1,l−1,m−1, k ≥ l ≥ m ≥ 1, the defining ideal of X is

IX = (x(y + wk) − ywm, yz − (y + wk)wl, xz − wl+m) .

We assume m ≥ 2. Then we have IY = (xy, yz, xz). Let

(πY
3 )−1(q) = C[x(1), y(1), z(1), w(1), . . . , x(3), y(3), z(3), w(3)]/I3 .

Since I3 ⊂ (x(1), y(1), z(1)), by the form of the generators of IY , we have
dim(πY,3)−1(q) ≥ 9. By Proposition 1.7,

mld(q,A4, I2
Y ) = inf

m
{2(m + 1) − dimπ−1

Y,m(q)}
≤ 8 − dim(πY,3)−1(q) ≤ −1 .

This implies that mld(q,A4, I2
Y) = −∞. It follows by Proposition 2.4 that X is not

MJ-log canonical at p. Therefore, for X to be MJ-log canonical at p, m must be 1.
(2) Let X be Bm,n, m ≥ 0.

If n = 2k − 1, k ≥ 2, then the defining ideal of X is

IX = (xz − ym+1(yk + yw), (yk + yw)w − z2, xw − ym+1z) .

If n = 2k, k ≥ 2, then the defining ideal of X is

IX = (x(z + yk) − ym+2w, yw2 − z(z + yk), xw − ym+1z) .

We assume that m = 0. Then we have IY = (xz, z2, xw − yz). Let
(πY,4)−1(q) = C[x(1), y(1), z(1), w(1), . . . , x(4), y(4), z(4), w(4)]/I4. Since I4 ⊂ (x(1), x(2), z(1),

z(2), x(3)w(1) − y(1)z(3)), we have dim(πY,4)−1(q) ≥ 11. By Proposition 1.7,

mld(q,A4, I2
Y ) = inf

m
{2(m + 1) − dimπ−1

Y,m(q)}
≤ 10 − dim(πY,4)−1(q) ≤ −1 .

This implies that mld(q,A4, I2
Y) = −∞. It follows by Proposition 2.4 that X

is not MJ-log canonical at p. We assume that m ≥ 1. Then we have IY =

(xz, z2, xw). Let (πY,3)−1(q) = C[x(1), y(1), z(1), w(1), . . . , x(3), y(3), z(3), w(3)]/I3. Since
I3 ⊂ (x(1), z(1), w(1)), we have dim(πY,3)−1(q) ≥ 9. By Proposition 1.7,

mld(q,A4, I2
Y ) = inf

m
{2(m + 1) − dimπ−1

Y,m(q)}
≤ 8 − dim(πY,3)−1(q) ≤ −1 .

This implies that mld(q,A4, I2
Y) = −∞. It follows by Proposition 2.4 that X is not

MJ-log canonical at p.
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(3) Let X be Cm,n, m ≥ 3, n ≥ 0, then the defining ideal of X is

IX = (xz − yn+1(y2 + wm−1), (y2 + wm−1)w − z2, xw − yn+1z) .

We assume that n = 0, then we have IY = (xz, z2, xw − yz). In (2) we proved
mld(q,A4, I2

Y) = −∞. It follows by Proposition 2.4 that X is not MJ-log canonical
at p. Next we assume that n ≥ 1, then we have IY = (xz, z2, xw). In (2) we proved
mld(q,A4, I2

Y) = −∞. It follows by Proposition 2.4 that X is not MJ-log canonical at
p.

(4) Let X be Dn, n ≥ 0, then the defining ideal of X is

IX = (x(y2 + z) − yn+1w2, w3 − z(y2 + z), xw − yn+1z) .

We assume that n = 0, then we have IY = (xz, z2, xw − yz). In (2) we proved
mld(q,A4, I2

Y) = −∞. It follows by Proposition 2.4 that X is not MJ-log canonical
at p. We assume that n ≥ 1. Then we have IY = (xz, z2, xw). In (2) we proved
mld(q,A4, I2

Y) = −∞. It follows by Proposition 2.4 that X is not MJ-log canonical at
p.

(5) Let X be E6,0, then the defining ideal of X is

IX = (x2z − (y + w2)y, yw − z2, x2w − (y + w2)z) .

Then we have IY = (y2, yw − z2, yz).
Let (πY,3)−1(q) = C[x(1), y(1), z(1), w(1), . . . , x(3), y(3), z(3), w(3)]/I3. Since I3 ⊂
(y(1), z(1), w(1)), we have dim(πY,3)−1(q) ≥ 9. By Proposition 1.7,

mld(q,A4, I2
Y) = inf

m
{2(m + 1) − dimπ−1

Y,m(q)}
≤ 8 − dim(πY,3)−1(q) ≤ −1 .

This implies that mld(q,A4, I2
Y) = −∞. It follows by Proposition 2.4 that X is not

MJ-log canonical at p.
(6) Let X be E0,7, then the defining ideal of X is

IX = ((x2 + w3)z − y2, yw − z2, (x2 + w3)w − yz) .

Then we have IY = (y2, yw − z2, yz).
In (5) we proved mld(q,A4, I2

Y ) = −∞. It follows by Proposition 2.4 that X is not
MJ-log canonical at p.

(7) Let X be E7,0, then the defining ideal of X is

IX = (w2z − (y + x2)y, yw − z2, w3 − (y + x2)z) .

Then we have IY = (y2, yw − z2, yz).
In (5) we proved mld(q,A4, I2

Y ) = −∞. It follows by Proposition 2.4 that X is not
MJ-log canonical at p.
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(8) Let X be Fn, n ≥ 0, then the defining ideal of X is

IX = (xz − yn+1(y3 + w3), (y3 + w3)w − z2, xw − yn+1z) .

We assume that n = 0, then we have IY = (xz, z2, xw − yz).
In (2) we proved mld(q,A4, I2

Y ) = −∞. It follows by Proposition 2.4 that X is not
MJ-log canonical at p. We assume that n ≥ 1. Then we have IY = (xz, z2, xw). In (2)
we proved mld(q,A4, I2

Y) = −∞. It follows by Proposition 2.4 that X is not MJ-log
canonical at p.

(9) Let X be Hn.
If n = 3k − 1, k ≥ 2, then the defining ideal of X is

IX = ((xw + xk)z − y2, yw − z2, (xw + xk)w − yz) .

If n = 3k, k ≥ 2, then the defining ideal of X is

IX = (xwz − (y + xk)y, yw − z2, xw2 − (y + xk)z) .

If n = 3k + 1, k ≥ 2, then the defining ideal of X is

IX = (xw(z + xk) − y2, yw − (z + xk)z, xw2 − yz) .

Then, in any case, we have IY = (y2, yw − z2, yz), which is the same ideal as in (5).
In (5) we proved mld(q,A4, I2

Y ) = −∞. It follows by Proposition 2.4 that X is not
MJ-log canonical at p.

By these discussions, we have that (X, p) is Ak−1,l−1,0 for some k ≥ l ≥ 1. Tyurina proved
in [13] that the exceptional curve on the minimal resolution of this singularity is a chain
of P1’s. It is well known that such a singularity is a toric singularity (see, for example [9],
Theorem 7.4.17) .

�

PROPOSITION 2.6. Let (X, p) be a toric singularity of embedding dimension 4, then X
is MJ-log canonical at p.

PROOF. According to the Theorem 5.6, in [5], we have the folllowing :

(i) In case (X, p) is locally a complete intersection:
X is MJ-log canonical at p if and only if ̂OX ,p � k[[x1, x2, x3, x4]]/( f , g), where f , g
satisfy the conditions that multp f = multp g = 2 and V(in( f ), in(g)) ⊂ P3 is a re-
duced curve with at worst ordinary double points. Here in( f ) is the initial form of f
according to the degree.

(ii) In case (X, p) is not locally a complete intersection: X is MJ-log canonical at p if and
only if X is a subscheme of a 2-dimensional locally complete intersection scheme M
which is MJ-log canonical at p.
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We will see in Proposition 3.2 in the next section, that a toric variety X with embedding
dimension 4 at p is described as

X = SpecC[x, y, z, w]/(xz − yn+2, yw − zm+2, xw − yn+1zm+1) (m ≥ 0, n ≥ 0) .

Let

W = SpecC[x, y, z, w]/(xz− yn+2, yw − zm+2) .

Then W is a complete intersection surface containing X. By (ii), it is enough to show that W
is MJ-log canonical at p. Since V(in(xz − yn+2), in(yw − zm+2)) ⊂ P3 is a reduced curve with
at worst ordinary nodes, W is MJ-log canonical at p by (i). �

This completes the proof of Theorem 2.1.

3. Appendix on toric varieties. In this section, we give a description of a toric sur-
face singularity, with embedding dimension 4, and we also give a direct proof of the implica-
tion (iii)⇒(i) in Theorem 2.1.

The proof of (iii)⇒(i) in the previous section used the result of [5] which is based on the
classification of space curves. So we think that it makes sense for us to give a direct proof
based on toric discussions.

Let σ ⊂ Rn be a strongly convex rational polyhedral cone of maximal dimension. H is
called the Hilbert basis of σ∨ ∩Zn ifH is the minimal generating set of σ∨ ∩Zn with respect
to inclusion.

LEMMA 3.1. Let σ be a 2-dimensional strongly convex cone in standard form

σ = Cone(e2, de1 − ke2)

where e1 = (1, 0), e2 = (0, 1), d > 0, 0 ≤ k < d, and gcd(d, k) = 1.
Then the algebra Aσ = C[S σ] has Hilbert basis XsiYti for i = 1, . . . , e where e is the embed-
ding dimension and the exponents are defined as:
Let d/(d − k) = [[b2, . . . , be−1]] be the Hirzebrunch-Jung continued fraction expansion with
bi ≥ 2, then

s1 = d, t1 = 0 ,
s2 = d − k, t2 = 1 ,
si+1 = bisi − si−1, ti+1 = biti − ti−1, i = 2, . . . , e − 1 .

PROOF. See Proposition 2.8, in [14], or Section 2.6 in [8]. �

PROPOSITION 3.2. Let Xσ be the toric variety defined by the cone σ. Then Xσ has
embedding dimension 4 at 0 if and only if the Hirzebruch-Jung continued fraction expansion
of d/(d − k) = [[2 + n, 2 + m]] where m, n ≥ 0. In that case, we have

Aσ =C[X(n+2)(m+2)−1, Xm+2Y, XYn+2, Y (n+2)(m+2)−1]

=C[x, y, z, w]/(xz− yn+2, yw − zm+2, xw − yn+1zm+1) .

PROOF. Apply the previous lemma when e = 4 and let b2 = n + 2, b3 = m + 2,
m, n ≥ 0. �
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In the following, we will give a direct proof of (iii)⇒(i) in Theorem 3.1.

LEMMA 3.3. Let d/k = [[a1, . . . , as]] be the Hirzebruch-Jung continued fraction of
d/k. And define k[Ui,Vi], i = 0, . . . , s as follows

U0 = Xd , V0 = Y/Xk

Ui = V−1
i−1 , Vi = Ui−1Vai

i−1 , i = 1, . . . , s .

Let Ai := C[Ui,Vi], and Yi = SpecC[Ui,Vi] then the ring homorphisms Aσ → Ai define
a resolution of singularities Y = Y1 ∪ · · · ∪ Ys → X of X.

PROOF. See Section 3 in [12]. �

PROPOSITION 3.4. Let d/(d − k) = [[2 + n, 2 + m]], then Ui,Vi is defined as:

U0 = X(n+2)(m+2)−1 , V0 = Y/X(n+1)(m+2)−1

Ui = X(n+2−i)(m+2)−1/Yi , Vi = Yi+1/X(n+1−i)(m+2)−1 , i = 1, . . . , n
Un+1 = Xm+1/Y (n+2)−1 , Vn+1 = Y2(n+2)−1/Xm

Un+1+i = X(m+1)−i/Y (i+1)(n+2)−1 , Vn+1+i = Y (i+2)(n+2)−1/Xm−i , i = 1, . . . ,m .

PROOF. If d/(d − k) = [[2 + n, 2 + m]], then by induction on n and m, we have d/k =
[[2, 2, . . . , 2, 3, 2, . . . , 2]] where the first group of twos has n elements, and the second group
has m elements. Then by applying the previous lemma we have the formula for Ui, Vi as
above. �

LEMMA 3.5. The ring homomorphisms Aσ → Ai are defined as the canonical inclu-
sions:

C[Ui+1
i Vi

i ,UiVi,U
n+1−i
i Vn+2−i

i ,U (n+1−i)(m+2)−1
i V (n+2−i)(m+2)−1

i ]→ C[Ui,Vi]

for i = 0, . . . , n.

C[U (i+2)(n+2)−1
n+1+i V (i+1)(n+2)−1

n+1+i ,Ui+2
n+1+iV

i+1
n+1+i,Un+1+iVn+1+i,U

m−i
n+1+iV

m+1−i
n+1+i ]

→ C[Un+1+i,Vn+1+i]

for i = 0, . . . ,m .

From this lemma, we have that the ring homomorphisms Aσ → Ai is one of the following
forms:

(i) C[U,UV,UαVβ,UγVδ]→ C[U,V];
(ii) C[UαVβ,UV,UγVδ,UζVη]→ C[U,V];

(iii) C[UαVβ,UγVδ,UV,UζVη]→ C[U,V];
(iv) C[UαVβ,UγVδ,UV,V]→ C[U,V] .

LEMMA 3.6. For every prime divisor E over X, we have the Mather-Jacobian log
discrepancy at E:

aMJ(E; X) := ordE(̂KY/X − JY/X) + 1 ≥ 0 .
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PROOF. We have

X = SpecC[X(n+2)(m+2)−1, Xm+2Y, XYn+2, Y (n+2)(m+2)−1]

= SpecC[x, y, z, w]/(xz − yn+2, yw − zm+2, xw − yn+1zm+1) .

Then the Jacobian ideal of X is:

JacX = (x2, xy, xz, yz, yw, zw, w2) .

In the case (i), we have OY (−̂KY/X) = U and OY (−JY/X) = U2.
In the case (iv), we have OY (−̂KY/X) = V and OY (−JY/X) = V2.
Then aMJ(E; X) ≥ 0 for all prime divisor E over X.

In the case (ii) and (iii), we have

ordU(̂KY/X) =min{α, γ, ζ}
ordU(JY/X) =min{2α, α + 1, γ + 1, ζ + 1, 2ζ}

therefore aMJ(U, X) = 0.
Similarly, we have

ordV (̂KY/X) =min{β, δ, η}
ordV (JY/X) =min{2β, β + 1, δ + 1, η + 1, 2η}

therefore aMJ(V, X) = 0.
So in all cases, we all have aMJ(E, X) ≥ 0. �

This lemma complete the direct proof of (iii)⇒(i) in Theorem 3.1.
Now we have two proofs that all 2-dimensional toric singularity with embedding dimen-

sion 4 is MJ-log canonical. Then it is natural to ask whether all d-dimensional toric singular-
ities with embedding dimension 2d are MJ-log canonical. (Here we note that the embedding
dimension of a d-dimensional MJ-log canonical singularity is less than or equal to 2d.)

The following is a counter example to this question.

EXAMPLE 3.7. Let σ = Cone((0, 0, 1), (2, 4, 1), (4, 6, 1), (4, 0, 1)), then we have the
Hilbert basis of the dual cone σ∨ is

Hilb(σ) = {(0, 1, 0), (2,−1, 0), (1,−1, 2), (−1, 0, 4), (0, 0, 1), (1, 0, 0)} .
Hence the embedding dimension of Xσ is 6.

On the other hand, Xσ is described as

Xσ = SpecC[x1, x2, x3, x4, x5, x6]/I

where

I = (x1x2 − x2
6, x2

5 x6 − x1 x3, x4
5 − x4x6, x2x2

5 − x3x6, x3x2
5 − x2x4, x1x2

3 − x2x4x6) .

And by Proposition 1.7,

mldMJ(X, x) = inf{3(m + 1) − dim π−1
m (x)} ≤ 12 − dim π−1

3 (x)

where

π−1
3 (x) = k[x(1), x(2), x(3)]/J3
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and J3 is generated by

x(1)
1 x(1)

2 − (x(1)
6 )2, x(1)

1 x(2)
2 + x(2)

1 x(1)
2 − 2x(1)

6 x(2)
6 ,

x(1)
1 x(1)

3 , (x(1)
5 )2x(1)

6 − x(2)
1 x(1)

3 − x(1)
1 x(2)

3 ,

x(1)
4 x(1)

6 , x(1)
2 (x(1)

5 )2 − x(1)
3 x(2)

6 − x(2)
3 x(1)

6 ,

x(1)
3 x(1)

6 , x(1)
3 (x(1)

5 )2 − x(1)
2 x(2)

4 − x(2)
2 x(1)

4 ,

x(1)
2 x(1)

4 , x(1)
1 (x(1)

3 )2 − x(1)
2 x(1)

4 x(1)
6 ,

x(2)
4 x(1)

6 + x(1)
4 x(2)

6 .

We can see that J3 ⊂ (x(1)
1 , x(1)

2 , x(1)
3 , x(1)

4 , x(1)
6 ), then we have ht(J3) ≤ 5. Hence

dim π−1
3 (x) ≥ 13, thus mldMJ(X, 0) < 0, i.e., X is not MJ-log canonical singularity at 0.
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