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σ -ACTIONS AND SYMMETRIC TRIADS
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Abstract. For a given compact connected Lie group and an involution on it, we can
define a hyperpolar action. We study the orbit space and the properties of each orbit of the
action. The result is a natural extension of maximal torus theory.

Introduction. Let σ be an automorphism of a compact connected Lie group G. The
action of G on itself defined by g · x = gxσ(g)−1 is called a σ -action ([7]). A σ -action is
a hyperpolar action. In general an isometric action of a Lie group on a Riemannian manifold
is hyperpolar if there exists a closed flat submanifold A such that every orbit intersects A

orthogonally. Such a submanifold A is called a section. It is known that a section is a totally
geodesic submanifold ([3]). When σ is identity, then σ -action is nothing but an adjoint action
defined by x �→ gxg−1. More generally when σ is of inner type, then the σ -action is essen-
tially the same as the adjoint action (Lemma 1.4). Since there are many studies on adjoint
action, we focus our attention to the case where σ is of outer type. Moreover we mainly deal
with the σ -action when G is simple and σ is an involution of outer type. Further when G is
of classical type, we studied the σ -action in [5]. In this paper we study the orbit space of a σ -
action and the properties of each orbit such as regular, singular, minimal, austere and totally
geodesic when G is a compact connected simple Lie group with a biinvariant Riemannian
metric and σ is an involution of outer type. These are a generalization of the results in [5].
Here the notion of an austere submanifold was introduced by Harvey-Lawson ([2]), which is
a kind of minimal submanifold whose second fundamental form has a certain symmetry.

The organization of this paper is as follows: In Section 1 we mainly construct a sym-
metric triad (Σ̃,Σ,W) from a compact connected simple Lie group G and an involution σ

of outer type. Here the notion of a symmetric triad, which was introduced in [4], is a gener-
alization of that of an irreducible root system. In Section 2 we describe the orbit space of a
σ -action using the symmetric triad (Σ̃,Σ,W). We also study the each orbit.
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1. σ -action. Let G be a compact connected Lie group. Take a maximal torus T of G.
It is known that

(1.1) G =
⋃

g∈G

gT g−1.

In Subsection 1.1 we will show (1.2) in the below for a given automorphism σ . When σ is
equal to identity, the relation (1.2) reduced to (1.1). Thus (1.2) is a generalization of (1.1). In
this section we review the definition of a σ -action, and we mainly study the σ -action when σ

is an involution.
1.1. General case. In this subsection let G be a compact connected Lie group and σ

an automorphism of G. An action of G on itself defined by g · x = gxσ(g)−1 (g, x ∈ G) is
called a σ -action [7]. We define two involutions θ1 and θ2 on G × G by

θ1(g, h) = (σ−1(h) , σ (g)) , θ2(g, h) = (h, g) .

The two involutions θ1 and θ2 commute each other if and only if σ is an involution, that is,
σ 2 = 1. Denote by F(θi,G × G) the fixed point set of θi . Then

F(θ1,G × G) = {(g, σ (g)) | g ∈ G} , F (θ2,G × G) = �G = {(g, g) | g ∈ G} .

Thus a triple (G × G,F(θ1,G × G),�G) is a compact symmetric triad, that is, (G ×
G,F(θ1,G × G)) and (G × G,�G) are compact symmetric pairs. Take a biinvariant Rie-
mannian metric 〈 , 〉 on G. Then we get an action of F(θ1,G × G) on (G × G)/�G by

(g, σ (g))((a, b)ΔG) = (ga, σ (g)b)ΔG ,

which is a kind of Hermann actions. If we identify (G × G)/ΔG with G by the map (G ×
G)/ΔG → G; (a, b)�G �→ ab−1, then we can see that the Hermann action of this type is
nothing but the σ -action. Since a Hermann action is hyperpolar, a σ -action is also hyperpolar.
In order to study a section of the σ -action, we denote by g the Lie algebra of G. Define a
closed subgroup Kσ of G by Kσ = F(σ,G). Then the Lie algebra kσ of Kσ is given by

kσ = F(σ, g) = {X ∈ g | σ(X) = X} ,

where we denote the differentiation of σ by the same symbol σ . Denote by ki and mi the (+1)

and (−1)-eigenspace of θi in g × g respectively. Then

k1 = {(X, σ(X)) | X ∈ g} , k2 = {(X,X) | X ∈ g} ,

m1 = {(X,−σ(X)) | X ∈ g} , m2 = {(X,−X) | X ∈ g} .

Thus we have

k1 ∩ k2 = {(X,X) | X ∈ kσ } , m1 ∩ m2 = {(X,−X) | X ∈ kσ } ,

k1 ∩ m2 = {(X,−X) | σ(X) = −X} , k2 ∩ m1 = {(X,X) | σ(X) = −X} .

For a set X and a map φ : X → X we define F(φ, X) = {x ∈ X | φ(x) = x}. We use this notation throughout
the paper.
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Take a maximal torus A in Kσ , and denote by a the Lie algebra of A. Define a subspace â in
m1 ∩ m2 by

â = {(H,−H) | H ∈ a} .

Then â is a maximal abelian subspace of m1∩m2. Hence exp âΔG is a section of the σ -action,
where exp â = {(a, a−1) | a ∈ A} ([3]). In particular

(G × G)/ΔG =
⋃

g∈G

(g, σ (g)) exp âΔG .

If we identify (G × G)/ΔG with G, then we have

(1.2) G =
⋃

g∈G

gAσ(g)−1 .

Denote by gC the complexification of g. For α ∈ a, we define a subspace g(a, α) of gC by

g(a, α) = {X ∈ gC | [H,X] = √−1〈α,H 〉X (H ∈ a)}
and set

Σ̃ = {α ∈ a − {0} | g(a, α) 
= {0}} .

Then we have

(1.3) gC = g(a, 0) ⊕
∑

α∈Σ̃

g(a, α) .

Denote by ¯ the conjugation of gC with respect to g. If α is in Σ̃ then −α is also in Σ̃ since
g(a, α) = g(a,−α). We denote the complex linear extension of σ to gC by the same symbol
σ . The following two lemmas were proved in [5].

LEMMA 1.1 [5, Lemma 3] .

(1) [g(a, α) , g(a, β)] ⊂ g(a, α + β) .
(2) g(a, α) is σ -invariant .

Denote by z the center of g.

LEMMA 1.2 [5, Lemma 4] . span(Σ̃) = z⊥ ∩ a．

Denote by Σ the root system of kσ with respect to a. Then Σ is a reduced root system.
The multiplicity m(λ) of each λ ∈ Σ is equal to two. Denote by W(Σ) the Weyl group of Σ .

For (a, b) ∈ G × G we denote by τ(a,b) the inner automorphism defined by (a, b):
τ(a,b)(x, y) = (a, b)(x, y)(a, b)−1.

DEFINITION 1.3 ([9]) . Let (θ1, θ2) and (θ ′
1, θ

′
2) be two pairs of involutions of G×G.

Then (θ1, θ2) and (θ ′
1, θ

′
2) are equivalent if there exist an automorphism ρ ∈ Aut(G × G) of

G × G and (a, b) ∈ G × G such that

θ ′
1 = τ(a,b)ρθ1ρ

−1τ−1
(a,b) , θ ′

2 = ρθ2ρ
−1 .

In this case we write (θ1, θ2) ∼ (θ ′
1, θ

′
2). The relation ∼ is an equivalent relation.
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The following lemma means that when σ is of inner type, then the σ -action is essentially
the same as adjoint action.

LEMMA 1.4 [5, Lemma 1] . Set θ1(g, h) = (σ−1(g), σ (g)) and θ2(g, h) = (h, g).
Then (θ1, θ2) ∼ (θ2, θ2) holds if and only if σ is an inner automorphism of G.

We are interested in the case when σ is of outer type. The following lemma means that
σ -action is essentially the same as τaστ−1

a -action, where we set τax = axa−1.

LEMMA 1.5 [5, Lemma 2] . For σ ∈ Aut(G) and a ∈ G we define σ ′ ∈ Aut(G) by
σ ′ = τaστ−1

a . Set θ1(g, h) = (σ−1(h), σ (g)), θ ′
1(g, h) = (σ ′−1(h), σ ′(g)) and θ2(g, h) =

(h, g) then (θ1, θ2) ∼ (θ ′
1, θ2)．

1.2. In the case when σ is of finite order. In the sequel we assume that the order s

of σ is finite. We define a subgroup of U(1) by {ε1 = 1, ε2, . . . , εs} = {ε ∈ U(1) | εs = 1}.
Define a subspace g(a, α, εj ) of g(a, α) by

g(a, α, εj ) = {X ∈ g(a, α) | σX = εjX} .

In particular

g(a, 0, 1) = {X ∈ kCσ | [a,X] = {0}} = aC .

By Lemma 1.1,(2) we have

g(a, α) =
s∑

j=1

g(a, α, εj ) .

The following two lemmas were proved in [5].

LEMMA 1.6 [5, Lemma 5] .

(1) g(a, α, εj ) is σ -invariant .
(2) g(a, α, εj ) = g(a,−α, ε−1

j ) .
(3) [g(a, α, εi), g(a, β, εj )] ⊂ g(a, α + β, εiεj ) .

LEMMA 1.7 [5, Lemma 6] . Σ̃ is a root system of z⊥ ∩ a.

In order to study the properties of Σ̃ it is necessary to recall the finite dimensional com-
plex irreducible representations of sl(2,C). We define a basis {X, X̄,H } of sl(2,C) as fol-
lows:

X = √−1

(
0 1
0 0

)
, X̄ = √−1

(
0 0
1 0

)
, H = [X, X̄] =

(−1 0
0 1

)
.

LEMMA 1.8 [4, Lemma 4.37] . Let (ρ, Vn+1) be an (n + 1)-dimensional complex ir-
reducible representation of sl(2,C). Then there exists a basis {fk}0≤k≤n of V such that

ρ(X)fk = √−1
√

(n − k)(k + 1)fk+1 ,

ρ(X̄)fk = √−1
√

k(n − k + 1)fk−1 ,

ρ(H)fk = (n − 2k)fk .
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In the lemma above, the set Spec(ρ(H)) of eigenvalues of ρ(H) is given by

Spec(ρ(H)) = {n − 2k | 0 ≤ k ≤ n} .

Denote by Wn−2k the eigenspace of ρ(H) with eigenvalue n−2k. Then Wn−2k = Cfk . When
0 ≤ k ≤ [n/2] then the mapping

(1.4) ρ(X)n−2k : Wn−2k → W−(n−2k)

is a linear isomorphism.

LEMMA 1.9. Let α ∈ Σ̃ and X ∈ g(a, α, εj ) − {0}. When β ∈ Σ̃ and 〈α, β〉 < 0,
then ‖β‖ ≥ ‖α + β‖ and the mapping

(adX)m : g(a, β) → g(a, β + mα)

is a linear isomorphism, where we set m = − 2〈α,β〉
‖α‖2 ∈ N. In particular the linear mapping

adX : g(a, β) → g(a, β + α)

is injective. Here sαβ := β − 2 〈α,β〉
‖α‖2 α = β + mα.

PROOF. Since ‖β‖2 − ‖α + β‖2 = ‖α‖2(m − 1) ≥ 0, we have ‖β‖ ≥ ‖α + β‖. We
denote by β + nα (p ≤ n ≤ q) the α-series containing β. Then p + q = m and

〈α, β + nα〉 = −1

2
‖α‖2(p + q − 2n) (p ≤ n ≤ q) .

If we set H = 2
〈X,X̄〉‖α‖2 [X, X̄] and l = CH ⊕ CX ⊕ CX̄, then l is isomorphic to sl(2,C) as

Lie algebras and

ad(H) = (p + q − 2n)id = (m − 2n)id on g(a, β + nα) .

Thus

g(a, β) =
{
Y ∈

⊕

n∈Z
g(a, β + nα) | [H,Y ] = mY

}
,

g(a, β + mα) =
{
Y ∈

⊕

n∈Z
g(a, β + nα) | [H,Y ] = −mY

}
.

Taking this into account, we decompose

⊕

n∈Z
g(a, β + nα) =

q⊕

n=p

g(a, β + nα)

into l-irreducible representations. Then Lemma 1.8 and (1.4) imply the assertion. �

We decompose Σ̃ into irreducible root systems, and denote it by Σ̃ = Σ̃1 ∪ · · · ∪ Σ̃r .
Let gCi be a subalgebra of gC generated by

∑
α∈Σ̃i

g(a, α). Then

gCi ⊂ g(a, 0) ⊕
∑

α∈Σ̃i

g(a, α) .
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LEMMA 1.10 [5, Lemma 7] . gCi is an ideal of gC, which is not equal to {0}. When
i 
= j , then [gCi , gCj ] = {0}. In particular if g is simple then Σ̃ is an irreducible root system
of a.

1.3. In the case when σ is an involution. In the sequel we assume that σ is an
involution. Define a subspace mσ of g by

mσ = {X ∈ g | σ(X) = −X} .

Then g = kσ ⊕ mσ . Since a ⊂ kσ , we have [a,mσ ] ⊂ mσ．We denote by W the set of
nonzero weights of mσ with respect to a. Denote by n(α) the multiplicity of α ∈ W . Define
subspaces V (mσ ) and V ⊥(mσ ) of mσ by

V (mσ ) = {X ∈ mσ | [a,X] = {0}} ,

V ⊥(mσ ) = {X ∈ mσ | X ⊥ V (mσ )} .

LEMMA 1.11. If we set t = a ⊕ V (mσ ), then t is a Cartan subalgebra of g.

PROOF. Since a maximal abelian subalgebra in g containing a is σ -invariant, and is
contained in t, it is sufficient to prove that t is abelian. By the definition of t we have

[t, t] = [V (mσ ), V (mσ )] ⊂ kσ .

By the Jacobi identity, we have

[a, [t, t]] = [[a, V (mσ )], V (mσ )] + [V (mσ ), [a, V (mσ )]] = {0} .

The maximality of a implies that [t, t] ⊂ a. Hence t is a subalgebra of g. Since g is compact,
t is also compact. The semisimple part [t, t] of t satisfies

[[t, t], [t, t]] ⊂ [a, a] = {0} .

Hence [t, t] is abelian. Thus we get [t, t] = {0}. �

For α ∈ a we define a subspace V ⊥
α (mσ ) of V ⊥(mσ ) by

V ⊥
α (mσ ) = {X ∈ V ⊥(mσ ) | (adH)2X = −〈α,H 〉2X (H ∈ a)} .

Then we have W = {α ∈ a | V ⊥
α (mσ ) 
= {0}}, which is invariant under the multiplication by

−1 since V ⊥−α(mσ ) = V ⊥
α (mσ ). For α ∈ W we have n(α) = dim V ⊥

α (mσ ). By the definitions
of Σ̃,Σ and W we get Σ̃ = Σ ∪ W .

We recall the definition of a symmetric triad.

DEFINITION 1.12 ([4, Definition 2.2]) . Let a be a finite dimensional vector space
over R with an inner product 〈 , 〉. For α, β ∈ a set

sαβ = β − 2
〈α, β〉
‖α‖2 α .

A triple (Σ̃,Σ,W) is a symmetric triad of a, if it satisfies the following six conditions:

(1) Σ̃ is an irreducible root system of a.
(2) Σ is a root system of span(Σ).
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(3) W is a nonempty subset of a, which is invariant under the multiplication by −1, and
Σ̃ = Σ ∪ W．

(4) Σ ∩ W is a nonempty subset. If we put l = max{‖α‖ | α ∈ Σ ∩ W }, then Σ ∩ W =
{α ∈ Σ̃ | ‖α‖ ≤ l}.

(5) For α ∈ W,λ ∈ Σ − W ,

2
〈α, λ〉
‖α‖2 is odd if and only if sαλ ∈ W − Σ .

(6) For α ∈ W,λ ∈ W − Σ ,

2
〈α, λ〉
‖α‖2 is odd if and only if sαλ ∈ Σ − W .

REMARK 1.13. When (Σ̃,Σ,W) is a symmetric triad of a, then span(Σ) = a.

In fact the set of shortest roots of an irreducible root system Σ̃ spans a. The condition
(4) of Definition 1.12 implies that

span(Σ) ⊃ span(Σ ∩ W) = a .

In the sequel we assume that G is a compact connected simple Lie group. The purpose
of this section is to show the following theorem, which is a generalization of Theorem 1 in
[5]:

THEOREM 1.14. Let G be a compact connected simple Lie group, σ an involution of
G of outer type. Then the triple (Σ̃,Σ,W) defined above is a symmetric triad, and Σ is a
reduced root system of a. m(λ) = n(α) = 2 for any λ ∈ Σ and α ∈ W .

We need some lemmas to prove the theorem above.

LEMMA 1.15 [5, Lemma 8] . For α ∈ W , the subspace V ⊥
α (mσ ) is a-invariant, and

n(α) is even for any α ∈ W . If we denote by W(Σ) the Weyl group of Σ , then W is invariant
under the action of W(Σ). For s ∈ W(Σ) and α ∈ W , we have s(V ⊥

α (mσ )) = V ⊥
sα(mσ ) and

n(sα) = n(α).

LEMMA 1.16. When Σ ∩ W = ∅, then for α, β, α + β ∈ Σ̃ there exist ε1 = ±1 and
ε2 = ±1 such that

g(a, α) = g(a, α, ε1) , g(a, β) = g(a, β, ε2)

and that

g(a, α + β) = g(a, α + β, ε1ε2) .

PROOF. Since Σ ∩ W = ∅ there exist ε1, ε2, ε3 ∈ {±1} such that

g(a, α) = g(a, α, ε1) , g(a, β) = g(a, β, ε2) , g(a, α + β) = g(a, α + β, ε3) .

If 〈α, β〉 < 0 then Lemma 1.9 implies that

{0} 
= [X, g(a, β, ε2)] ⊂ g(a, α + β, ε1ε2)
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for X ∈ g(a, α, ε1) − {0}. Hence ε3 = ε1ε2. When 〈α, β〉 ≥ 0 then

〈α,−(α + β)〉 = −‖α‖2 − 〈α, β〉 ≤ −‖α‖2 < 0 .

Since there exists μ ∈ {±1} such that

g(a,−(α + β)) = g(a,−(α + β), μ) ,

using Lemma 1.9 we have

{0} 
= [X, g(a,−(α + β),μ)] ⊂ g(a,−β, ε1μ)

for X ∈ g(a, α, ε1) − {0}. Thus

g(a,−β) = g(a,−β, ε2) = g(a,−β, ε1μ) ,

which implies that μ = ε1ε2. Hence

g(a, α + β) = g(a, α + β, ε1ε2) . �

We extend the inner product 〈 , 〉 on g to a complex symmetric nondegenerate bilinear
form 〈 , 〉 on gC.

LEMMA 1.17. 〈g(a, α, ε), g(a,−α,−ε)〉 = {0} for α ∈ Σ̃ and ε = ±1.

PROOF. For X ∈ g(a, α, ε) and Y ∈ g(a,−α,−ε) we have

〈X,Y 〉 = 〈σX, σY 〉 = −ε2〈X,Y 〉 = −〈X,Y 〉 .

Thus 〈X,Y 〉 = 0． �

LEMMA 1.18. If α, β ∈ Σ̃ ∪ {0} and α + β 
= 0 then 〈g(a, α), g(a, β)〉 = {0}.
PROOF. For H ∈ a,X ∈ g(a, α) and Y ∈ g(a, β) we have

0 = 〈[H,X], Y 〉 + 〈X, [H,Y ]〉 = √−1〈α + β,H 〉〈X,Y 〉 .

Take H such that 〈α + β,H 〉 
= 0. Then we have 〈X,Y 〉 = 0. �

LEMMA 1.19. n(α) = 2 for any α ∈ W .

PROOF. Since α is in W , the dimension of g(a, α,−1) is greater than or equal to one.
Combining Lemmas 1.17 and 1.18 with the nondegeneracy of 〈 , 〉 we have
〈g(a, α,−1), g(a,−α,−1)〉 
= {0}. Thus we can take E±α ∈ g(a,±α,−1) such that
〈Eα,E−α〉 = 1. Then

[Eα,E−α] ∈ [g(a, α,−1) , g(a,−α,−1)] ⊂ g(a, 0, 1) = aC .

For any H ∈ a we have

〈H, [Eα ,E−α]〉 = 〈[H,Eα], E−α〉 = √−1〈α,H 〉〈Eα,E−α〉 = √−1〈α,H 〉 ,

which implies that [Eα,E−α] = √−1α. Take Dα ∈ g(a, α,−1) such that 〈Dα,E−α〉 = 0
and set

D−1 = 0 , Dn = (adEα)nDα ∈ g(a, (n + 1)α) (n = 0, 1, 2, . . . ) .
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We will show that

[E−α,Dn] = n(n + 1)

2
‖α‖2Dn−1 (n = 0, 1, 2, . . . )

by the induction with respect to n. When n = 0, then D0 = Dα and

[E−α,D0] = [E−α,Dα] ∈ [g(a,−α,−1), g(a, α,−1)] ⊂ g(a, 0, 1) = aC .

For any H ∈ aC we have

〈[E−α,D0],H 〉 = −〈E−α, [H,Dα]〉 = −√−1〈α,H 〉〈E−α,Dα〉 = 0 .

Thus [E−α,D0] = 0. Assume that the assertion holds until n. By the Jacobi identity we have

[E−α,Dn+1] = [E−α, [Eα,Dn]]
= [[E−α,Eα],Dn] + [Eα, [E−α,Dn]]
= −√−1[α,Dn] + n(n + 1)

2
‖α‖2[Eα,Dn−1]

= (n + 1)‖α‖2Dn + n(n + 1)

2
‖α‖2Dn

= (n + 1)(n + 2)

2
‖α‖2Dn .

Hence [E−α,Dn] = n(n+1)
2 ‖α‖2Dn−1. If the dimension of g(a, α,−1) were greater than or

equal to 2, we could take Dα 
= 0 such that 〈Dα,E−α〉 = 0. Thus Dn ∈ g(a, (n+ 1)α) − {0},
which would be a contradiction. Hence dim g(a, α,−1) = 1. �

By Lemma 1.19 we get, for any α ∈ Σ̃ ,

(1.5) dim g(a, α) =
{

2 (α ∈ Σ ∩ W) ,

1 (α ∈ Σ̃ − Σ ∩ W) ,

since m(λ) = 2 for any λ ∈ Σ . We can take a fundamental system Π̃ of Σ̃ since Σ̃ is a root
system of a by Lemma 1.10. We denote by Σ̃+ the set of positive roots in Σ̃ with respect to
Π̃ . Set Σ+ = Σ ∩ Σ̃+ and W+ = W ∩ Σ̃+.

LEMMA 1.20. The following three conditions are equivalent.

(1) σ is an inner type involution of g.
(2) Σ ∩ W = ∅ .
(3) Σ ∩ W ∩ Π̃ = ∅ .

In the case above a = t holds.

PROOF. (1)⇒ (2): By the assumption there exists H ∈ g such that σ = Ad(exp H).
Take a maximal abelian subalgebra t of g containing H . Then t ⊂ kσ . Thus a = t. Since the
dimension of g(a, α) is equal to one for α ∈ Σ̃ , and g(a, α) is σ -invariant by Lemma 1.1，
(2), we have g(a, α) ⊂ kCσ or g(a, α) ⊂ mC

σ . Hence Σ ∩ W = ∅．
(2)⇒(1): By assumption for α ∈ Σ̃ there exists εα = ±1 such that

g(a, α) = g(a, α, εα) .
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Select H ∈ a as follows: For α ∈ Π̃ ,

〈α,H 〉 =
{

0 (εα = 1) ,

π (εα = −1) .

Since (adH)X = √−1〈α,H 〉X for α ∈ Π̃ and X ∈ g(a, α), we have

Ad(exp H)X = e
√−1〈α,H 〉X = εαX = σX .

Hence σ = Ad(exp H) on
∑

α∈Π̃ g(a, α). Similarly we have σ = Ad(exp H) on
∑

α∈−Π̃

g(a, α). By Lemma 1.16 we have σ = Ad(exp H) on
∑

α∈Σ̃ g(a, α). The subalgebra gener-
ated by

∑
α∈Σ̃ g(a, α)( 
= {0}) is an ideal of gC by (1.3). Hence it coincides with gC since gC

is simple. Hence σ = Ad(exp H) on gC.
It is clear that (2) implies (3). We show that the negative of (2) implies the negative of

(3). Assume that Σ ∩ W 
= ∅. Let α be in Σ+ ∩ W+. We will show that there exists β ∈ Π̃

such that 〈α, β〉 > 0 when α 
∈ Π̃ . We were to assume that 〈α, β〉 ≤ 0 for any β ∈ Π̃ .
Express α as α = ∑

β∈Π̃ mββ (mβ ≥ 0) then

‖α‖2 =
∑

β∈Π̃

mβ〈α, β〉 ≤ 0 .

Hence we would have α = 0, which would be a contradiction. Thus when α 
∈ Π̃ there exists
β ∈ Π̃ such that 〈α, β〉 > 0．Considering α-series containing β we get α − β ∈ Σ̃+．We
will show that α − β ∈ Σ+ ∩ W+. The mapping

adX : g(a, α) → g(a, α − β)

is injective for X ∈ g(a,−β) − {0} by Lemma 1.9. In particular

adX : g(a, α,±1) → g(a, α − β)

is also injective. Since dim g(a, α − β) ≤ 2 by (1.5), we have

g(a, α − β) = [X, g(a, α, 1)] ⊕ [X, g(a, α,−1)], [X, g(a, α,±1)] 
= {0} .

Hence α − β ∈ Σ+ ∩ W+ by Lemma 1.6, (3) in both cases when β is in Σ+ or β is in W+.
By iteration we have Σ+ ∩ W+ ∩ Π̃ 
= ∅. �

LEMMA 1.21. (1) For α ∈ W and λ ∈ Σ − W ,

2
〈α, λ〉
‖α‖2

is odd if and only if sαλ ∈ W − Σ .

(2) For α ∈ W and λ ∈ W − Σ ,

2
〈α, λ〉
‖α‖2

is odd if and only if sαλ ∈ Σ − W .
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PROOF. Let α be in W and λ in (Σ − W) ∪ (W − Σ). Set m = −2 〈α,λ〉
‖α‖2 ∈ Z. We may

assume that 〈α, λ〉 
= 0. Since W is invariant under the multiplication by −1, we may assume
that 〈α, λ〉 < 0. Let X be in g(a, α,−1) − {0}. By Lemma 1.9 the mapping

(adX)m : g(a, λ) → g(a, sαλ)

is a linear isomorphism. Since λ is in (Σ − W) ∪ (W − Σ), we have

g(a, λ) = g(a, λ, ελ) where ελ =
{

1 (λ ∈ Σ − W) ,

−1 (λ ∈ W − Σ) .

Since (adX)mg(a, λ, ελ) ⊂ g(a, sαλ, (−1)mελ) by Lemma 1.6, (3), we have

g(a, sαλ) = g(a, sαλ, (−1)mελ) .

Hence we get the assertion. �

LEMMA 1.22. Let σ be an outer type involution of g. Set l = max{‖α‖ | α ∈ Σ ∩W }.
Then Σ ∩ W 
= ∅ and Σ ∩ W = {α ∈ Σ̃ | ‖α‖ ≤ l}．

PROOF. By Lemma 1.20 Σ ∩ W 
= ∅．First we show that sγ α is in Σ ∩ W for any
α ∈ Σ ∩ W and γ ∈ Σ̃ . There exists ε ∈ {±1} such that g(a, γ , ε) 
= {0}. We may assume
that γ is not proportional to α and that 〈α, γ 〉 
= 0. Since sγ α = s−γ α we may assume that

〈α, γ 〉 < 0. If we set m = − 2〈α,γ 〉
‖γ ‖2 then for X ∈ g(a, γ , ε) − {0} the mapping

(adX)m : g(a, α) → g(a, sγ α)

is a linear isomorphism by Lemma 1.9. Since (adX)mg(a, α,±1) ⊂ g(a, sγ α,±ε) the map-
ping

(adX)m : g(a, α,±1) → g(a, sγ α,±ε)

is a linear isomorphism. Thus sγ α ∈ Σ ∩ W since α is in Σ ∩ W . Since Σ̃ is an irreducible
root system, the Weyl group W(Σ̃) of Σ̃ acts on {β ∈ Σ̃ | ‖β‖ = l} transitively. Hence
{α ∈ Σ̃ | ‖α‖ = l} ⊂ Σ ∩ W．When l = min{‖α‖ | α ∈ Σ̃} then Σ ∩ W = {α ∈ Σ̃ |
‖α‖ = l} = {α ∈ Σ̃ | ‖α‖ ≤ l}, which implies the assertion. Hence we may assume that
l > min{‖α‖ | α ∈ Σ̃}. In the case when Σ̃ 
= BCr we have l = max{‖α‖ | α ∈ α̃} since
any root in Σ̃ is shortest or longest. Take γ ∈ Σ̃ such that ‖γ ‖ < l. We show that γ is in
Σ ∩ W . By [4, Lemma 4.35] there exists β ∈ Σ̃ with ‖β‖ = l such that − 2〈β,γ 〉

‖β‖2 = 1．Then

β + γ ∈ Σ̃．Since ‖β‖ = l, β is in Σ ∩ W．A simple calculation implies that

−2
〈−β, β + γ 〉

‖ − β‖2
= 2

〈β, β + γ 〉
‖β‖2

= 2 + 2
〈β, γ 〉
‖β‖2

= 2 − 1 = 1 .

Let Y ∈ g(a, β, 1) − {0} and Y ′ ∈ g(a,−β,−1) − {0}. The mappings

adY : g(a, γ ) → g(a, β + γ ) , adY ′ : g(a, β + γ ) → g(a, γ )

are linear isomorphisms by Lemma 1.9. Since

adY : g(a, γ ,±1) → g(a, β + γ,±1) , adY ′ : g(a, β + γ,±1) → g(a, γ ,∓1) ,
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we have dim g(a, γ , 1) = dim g(a, γ ,−1). Thus γ is in Σ ∩ W．When Σ̃ is of type BCr

then the assertion reduces to the case when Σ̃ is of type Br . �

PROOF OF THEOREM 1.14. The condition (1) of Definition 1.12 was proved in
Lemma 1.10. The condition (2) of Definition 1.12 was proved in Subsection 1.1. The con-
dition (3) of Definition 1.12 was already proved in this subsection. The condition (4) of
Definition 1.12 was proved in Lemma 1.22. The conditions (5) and (6) of Definition 1.12
were proved in Lemma 1.21. Thus (Σ̃,Σ,W) is a symmetric triad of a. In Subsection 1.1
we showed that Σ is reduced and m(λ) = 2 for any λ in Σ . In Lemma 1.19 we showed that
n(α) = 2 for any α in W . �

Take two maximal abelian subalgebras a and a′ of kσ . We obtain a symmetric triad
(Σ̃,Σ,W) of a and a symmetric triad (Σ̃ ′,Σ ′,W ′) of a′ in the sense of Theorem 1.14. We
study a relation between them. Since a and a′ are maximal in kσ there exists an element
k ∈ (Kσ )0, the identity component of Kσ , such that a′ = Ad(k)a. For β ∈ a′ and ε = ±1 we
have

g(a′, β) = Ad(k)g(a, Ad(k−1)β) , g(a′, β, ε) = Ad(k)g(a, Ad(k−1)β, ε) ,

which implies that

Σ̃ ′ = Ad(k)Σ̃ ′ , Σ ′ = Ad(k)Σ , W ′ = Ad(k)W .

For an involution σ on G and g ∈ G we define an involution σ ′ by σ ′ = τgστ−1
g .

The symmetric subgroup Kσ ′ with respect to σ ′ is given by Kσ ′ = τgKσ = gKσ g
−1．For

a maximal abelian subalgebra a of kσ define a maximal abelian subalgebra a′ of kσ ′ , the Lie
algebra of Kσ ′ , by a′ = Ad(g)a. We obtain a symmetric triad (Σ̃,Σ,W) of a and a symmetric
triad (Σ̃ ′,Σ ′,W ′) of a′ in the sense of Theorem 1.14. We study a relation between them. For
β ∈ a′ and ε = ±1

g(a′, β) = Ad(g)g(a, Ad(g−1)β) , g(a′, β, ε) = Ad(g)g(a, Ad(g−1)β, ε) ,

which implies that

Σ̃ ′ = Ad(g)Σ̃ ′, Σ ′ = Ad(g)Σ, W ′ = Ad(g)W .

In the rest of this subsection we determine (Σ̃,Σ,W) for any given (g, kσ ). The results
are as follows:

(g, kσ ) (Σ̃,Σ,W)

(su(2m), so(2m)) (m ≥ 2) (I’-Cm)

(su(2m + 1), so(2m + 1)) (m ≥ 1) (II-BCm)

(su(2m), sp(m)) (I-Cm)

(so(2m + 2n + 2), so(2m + 1) × so(2n + 1)) (I’-Bm+n)

(e6, sp(4)) (I’-F4)

(e6, f4) (I-F4)
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We can see the set of (g, kσ )’s by the classification of symmetric spaces of compact type.
In the table above, when g is of classical type, that is g = su(N), so(N), then we can verify
the type of (Σ̃,Σ,W) by a matrix calculation ([5]). Here we used the following notation.

type Σ̃ Σ W

(I’-Cm) Cm Dm Cm

(II-BCm) BCm Bm BCm

(I-Cm) Cm Cm Dm

(I’-Bm+n) Bm+n Bm ∪ Bn (Σ̃ − Σ) ∪ {±ei}
(I-F4) F4 F4 {shortest roots in F4} ∼= D4

(Σ̃,Σ,W) = (I’-F4) means that Σ̃ = F4 and

Σ = {shortest roots in F4} ∪ {±(e1 ± e2),±(e3 ± e4)} ∼= C4 ,

W = {shortest roots in F4} ∪ {±(e1 ± e3),±(e1 ± e4),±(e2 ± e3),±(e2 ± e4)} .

Here we followed the same notations of positive roots in [1].
When g = e6 we can verify the type of (Σ̃,Σ,W) using Vogan diagrams. In order

to explain this, first let g be a compact simple Lie algebra, and σ an automorphism of g of
outer type. Take a maximal abelian subalgebra a of kσ = F(σ, g). Then t = a ⊕ V (mσ ) is
a maximal compact Cartan subalgebra of g (Lemma 1.11)．Take an invariant inner product
〈 , 〉 on g. Denote by ¯ : t → a the orthogonal projection. For α ∈ t we define a subspace gCα
of the complexification gC of g by

gCα = {X ∈ gC | [Z,X] = √−1〈α,Z〉X (Z ∈ t)} .

Then α ∈ t is called a root of g with respect to t if gCα 
= {0}. A root α is compact if gCα ⊂ kCσ ,
and α is noncompact if gCα ⊂ mC

σ . A root α is compact or noncompact if and only if α is in a.
A root α is complex if it is neither compact nor noncompact. Then

Σ ∩ W = {complex roots} , Σ = {compact roots, complex roots} ,

W = {noncompact roots, complex roots} .

The set of compact roots, noncompact roots and complex roots can be readable from the
Vogan diagram of (the dual of) (g, kσ ). And the orthogonal projection can be also readable
from the Vogan diagram (see [6] for the detail).

In the sequel we assume that (g, kσ ) = (e6, f4) or (g, kσ ) = (e6, sp(4)). In both cases we
have

t =
6∑

i=1

Rαi , a = Rα2 ⊕ Rα4 ⊕ R(α3 + α5) ⊕ R(α1 + α6)

and

α1 = α6 = 1

2
(α1 + α6) , α3 = α5 = 1

2
(α3 + α5) , α2 = α2, α4 = α4 .

Hence Σ̃ = F4．
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In the case when (g, kσ ) = (e6, f4) we get W ⊂ Σ = Σ̃ since there does not exist a
noncompact root. The set of compact roots coincide with the set of long roots in F4. The
set of the projections of complex roots coincide with the set of short roots in F4. Hence
(Σ̃,Σ,W) = (I-F4)．

In the case when (g, kσ ) = (e6, sp(4)), we get Σ ∩ W = {short roots in F4}. Hence
(Σ̃,Σ,W) = (I’-F4)．

2. The orbit spaces of σ -actions. In this section let G be a compact connected simple
Lie group and σ an involution of G of outer type. Take an adjoint invariant inner product 〈 , 〉
on the Lie algebra g of G. We use the same notation in the previous section. Take a maximal
torus A of Kσ and denote by a its Lie algebra. We denote by (Σ̃,Σ,W) the symmetric triad
of a obtained in the previous section. Since Σ is a root system of kσ with respect to a, we
have the following root space decomposition of kσ :

kσ = a ⊕
∑

λ∈Σ+
(RFλ ⊕ RGλ) ,

where, for any H ∈ a,

[H,Fλ] = 〈λ,H 〉Gλ , [H,Gλ] = −〈λ,H 〉Fλ .

Then we have

Ad(exp H)Fλ = cos(〈λ,H 〉)Fλ + sin(〈λ,H 〉)Gλ ,

Ad(exp H)Gλ = − sin(〈λ,H 〉)Fλ + cos(〈λ,H 〉)Gλ .

Since W is the set of nonzero weights of mσ with respect to a and n(α) = 2 for any α ∈ W ,
we have the following weight space decomposition of mσ :

mσ = V (mσ ) ⊕ V ⊥(mσ ) , V ⊥(mσ ) =
∑

α∈W+
(RXα ⊕ RYα) ,

where, for any H ∈ a,

[H,Xα] = 〈α,H 〉Yα , [H,Yα] = −〈α,H 〉Xα .

Then we have

Ad(exp H)Xα = cos(〈α,H 〉)Xα + sin(〈α,H 〉)Yα,

Ad(exp H)Yα = − sin(〈α,H 〉)Xα + cos(〈α,H 〉)Yα .

For H ∈ g we denote by OH = ⋃
g∈G g exp(2H)σ(g)−1 the orbit of σ -action through

exp 2H . Since A is a section of σ -action, we may assume that H is in a. The tangent space
of OH at exp 2H is given by

dLexp(−2H)Texp 2H(OH)

= {Ad(exp(−2H))X − σ(X) | X ∈ g}
=

∑

λ∈Σ+
〈λ,H 〉
∈πZ

(RFλ ⊕ RGλ) ⊕
∑

α∈W+
〈α,H 〉
∈ π

2 +πZ

(RXα ⊕ RYα) ⊕ V (mσ ) ,
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where Lg : G → G; x �→ gx is a left translation. The normal space of OH at exp 2H is
given by

dLexp(−2H)T
⊥

exp 2H(OH) = a ⊕
∑

λ∈Σ+
〈λ,H 〉∈πZ

(RFλ ⊕ RGλ) ⊕
∑

α∈W+
〈α,H 〉∈ π

2 +πZ

(RXα ⊕ RYα) .

In [4] we defined that H is a regular point if

〈λ,H 〉 
∈ πZ (λ ∈ Σ) , 〈α,H 〉 
∈ π

2
+ πZ (α ∈ W) .

Thus we get the following Proposition:

PROPOSITION 2.1. The orbit OH is regular if and only if H is a regular point.

The orbit O0 = ⋃
g∈G gσ(g)−1 through the identity element is the image of G/Kσ by a

Cartan embedding Fσ : G/Kσ → G; gKσ �→ gσ(g)−1.
We will review the definition of a reflective submanifold, which was introduced by Le-

ung.

DEFINITION 2.2 ([8]) . Let M̃ be a complete Riemannian manifold. A connected
component of the fixed point set of an involutive isometry F of M̃ is called a reflective sub-
manifold. F is called a reflection.

REMARK 2.3. O0 is a reflective submanifold of G.

PROOF. The tangent and normal spaces of O0 at the identity element e are given by

Te(O0) = {X − σ(X) | X ∈ g} = mσ , T ⊥
e (O0) = kσ .

The mapping F : G → G; x �→ σ(x−1) is the identity on O0. The differential of F is −1 on
T ⊥

e (O0). Hence F is a reflection. �

DEFINITION 2.4 ([4]) . Let (Σ̃,Σ,W) be a symmetric triad of a. Then H ∈ a is a
totally geodesic point if 〈α,H 〉 ∈ π

2 Z for any α ∈ Σ̃ .

PROPOSITION 2.5. If H is a totally geodesic point, then the orbit OH is a reflective
submanifold.

PROOF. By the assumption, 〈α, 4H 〉 ∈ 2πZ for any α ∈ Σ̃ . Hence Ad(exp(4H)) = 1,
which implies that exp 4H is in the center of G. If we set σ ′(g) = exp(2H)σ(g) exp(−2H)

then σ ′ is an involution of G. Since OH exp(−2H) = ⋃
g∈G gσ ′(g−1), by the remark above

OH exp(−2H) is a reflective submanifold. Hence OH is also reflective. �

The isotropy subgroup GH of the σ -action at exp 2H is given by

GH = {g ∈ G | g exp 2H = (exp 2H)σ(g)}
= {g ∈ G | (exp(−2H))g exp(2H) = σ(g)} .
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The group GH is σ -invariant, and its Lie algebra gH is given by

gH = {X ∈ g | Ad(exp(−2H))X = σ(X)}
= a ⊕

∑

λ∈Σ+
〈λ,H 〉∈πZ

(RFλ ⊕ RGλ) ⊕
∑

α∈W+
〈α,H 〉∈ π

2 +πZ

(RXα ⊕ RYα)

= dL−1
exp 2HT ⊥

exp 2H(OH) .

The subspace a is a maximal abelian subalgebra of gH . Hence

gH =
⋃

g∈GH

Ad(g)a =
⋃

g∈GH

Ad(σ (g))a .

The action of GH on the normal space T ⊥
exp 2H(OH) is given as follows: For g ∈ GH , and

X ∈ gH ,

g∗dLexp 2HX = d

dt
g exp 2H exp tXσ(g)−1

|t=0 = dLexp 2XAd(σ (g))X .

Hence as representation spaces we have the following isomorphism:

[GH � T ⊥
exp 2H(OH)] ∼= [GH

Ad◦σ
� gH ] .

Thus

(2.1) T ⊥
exp 2H(OH) =

⋃

g∈GH

g∗dLexp 2Ha .

The notion of austere submanifold was first given by Harvey-Lawson.

DEFINITION 2.6 ([2]) . Let M be a submanifold of a Riemannian manifold M̃ . We
denote the shape operator of M by A. Then M is called an austere submanifold, if for each
x ∈ M and for each normal vector ξ ∈ T ⊥

x (M), the set of eigenvalues with their multiplicities
of Aξ is invariant under the multiplication by −1.

It is obvious that an austere submanifold is a minimal submanifold.

DEFINITION 2.7 ([4]) . Let (Σ̃,Σ,W) be a symmetric triad of a. For each λ ∈ Σ

and α ∈ W set m(λ) = n(α) = 2. For H ∈ a we define a mean curvature vector mH ∈ a of
H by

mH = −
∑

λ∈Σ+
〈λ,H 〉
∈ π

2 Z

m(λ) cot(〈λ,H 〉)λ +
∑

α∈W+
〈α,H 〉
∈ π

2 Z

n(α) tan(〈α,H 〉)α

= −2
∑

λ∈Σ+
〈λ,H 〉
∈ π

2 Z

cot(〈λ,H 〉)λ + 2
∑

α∈W+
〈α,H 〉
∈ π

2 Z

tan(〈α,H 〉)α .
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(1) H ∈ a is an austere point if the subset
{
−λ cot(〈λ,H 〉) | λ ∈ Σ+, 〈λ,H 〉 
∈ π

2
Z

}

∪
{
α tan(〈α,H 〉) | α ∈ W+, 〈α,H 〉 
∈ π

2
Z

}

of a is invariant under the multiplication by −1.
(2) H ∈ a is a minimal point if mH = 0.

After some preparations we will show the following theorem:

THEOREM 2.8. For the orbit OH ⊂ G (H ∈ a), we have the following:

(1) OH ⊂ G is totally geodesic if and only if H is a totally geodesic point.
(2) OH ⊂ G is austere if and only if H is an austere point.
(3) OH ⊂ G is minimal if and only if H is a minimal point.

In [4] the totally geodesic points and austere points were classified. Hence we can clas-
sify the totally geodesic orbits and austere orbits. The orbit space can be identified with a
simplex in a. The simplex is a closure of a cell. We can stratify a cell and see that each strata
has a unique minimal point ([4, Theorem 2.24])．

For X ∈ g we define a Killing vector field X∗ on G by

X∗
x = d

dt
(exp tX)xσ(exp tX)−1|t=0 ∈ Tx(G) .

Then X∗ is tangent to OH at each point in OH . We denote by h the second fundamental form
of OH ⊂ G at g = exp 2H .

LEMMA 2.9. For X,Y ∈ g,

2dL−1
g h(X∗, Y ∗) = −[Ad(g−1)X, σ(Y )]⊥ − [Ad(g−1)Y, σ (X)]⊥ ,

where we denote by Z⊥ the dL−1
g T ⊥

g (OH )-component of Z ∈ g with respect to the decompo-

sition g = dL−1
g Tg (OH ) ⊕ dL−1

g T ⊥
g (OH ).

PROOF. We denote by XL and XR the left invariant and the right invariant vector field
on G corresponding to X ∈ g = Te(G) respectively. Then XL and XR are Killing vector
fields, and we have

X∗ = XR − σ(X)L .

For X,Y ∈ g we have

∇XLYL = 1

2
[XL, YL] = 1

2
[X,Y ]L ,

∇XRYR = 1

2
[XR, YR] = −1

2
[X,Y ]R ,
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where we denote by ∇ the Levi-Civita connection on G. Hence we have

∇X∗Y ∗ = ∇XR−σ(X)L(YR − σ(Y )L)

=
(

−1

2
[X,Y ]R + 1

2
[σ(X), σ (Y )]L

)
− ∇XRσ(Y )L − ∇σ(X)LYR

= −1

2
[X,Y ]∗ − ∇XRσ(Y )L − ∇YRσ (X)L .

Here we used the relation [σ(X)L, YR] = 0. By a formula of Koszul,

2〈XL,∇ZRYL〉 = 〈[YL,XL], ZR〉 = 〈[Y,X]L,ZR〉
for X,Y,Z ∈ g. Evaluating at x ∈ G and using the invariance of metric, we get

2〈XL,∇ZRYL〉x = −〈XL
x , dLx [Y, Ad(x−1)Z]〉 .

Hence

(∇ZRYL)x = 1

2
dLx [Ad(x−1)Z, Y ] .

Thus

(∇X∗Y ∗)x = −1

2
[X∗, Y ∗]x − 1

2
dLx[Ad(x−1)X, σ(Y )] − 1

2
dLx [Ad(x−1)Y, σ (X)] .

Since [X,Y ]∗ is tangent to OH , we get the assertion. �

LEMMA 2.10. Let ξ be in a. We denote by AdLgξ the shape operator of OH ⊂ G

with respect to the normal vector dLgξ . The set of eigenvalues with multiplicities of AdLgξ is
given by

{
−〈ξ, λ〉

2
cot(〈λ,H 〉) (multiplicity = 2) | λ ∈ Σ+, 〈λ,H 〉 
∈ πZ

}

∪
{ 〈ξ, α〉

2
tan(〈α,H 〉) (multiplicity = 2) | α ∈ W+, 〈α,H 〉 
∈ π

2
+ πZ

}

∪{0 (multiplicity = dim V (mσ )} .

PROOF. For λ ∈ Σ+ with 〈λ,H 〉 
∈ πZ we have

AdLgξF ∗
λ = −〈ξ, λ〉 cot(〈λ,H 〉)

2
F ∗

λ , AdLgξG∗
λ = −〈ξ, λ〉 cot(〈λ,H 〉)

2
G∗

λ ,

where (F ∗
λ )g and (G∗

λ)g are abbreviated as F ∗
λ and G∗

λ respectively. For α ∈ W+ with
〈α,H 〉 
∈ π

2 + πZ we have

AdLgξX∗
α = 〈ξ, α〉 tan(〈α,H 〉)

2
X∗

α , AdLgξ Y ∗
α = 〈ξ, α〉 tan(〈α,H 〉)

2
Y ∗

α .

And AdLgξX∗ = 0 for X ∈ V (mσ ). Hence we get the assertion. �
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PROOF OF THEOREM 2.8. (1) By (2.1) the orbit OH ⊂ G is totally geodesic if and
only if AdLgξ = 0 for each ξ ∈ a. The assertion follows from Lemma 2.10.

(2) By (2.1) the orbit OH ⊂ G is austere if and only if the set of eigenvalues of AdLgξ

is invariant under the multiplication by −1 for each ξ ∈ a. Using Lemma 2.10 we get the
assertion in a similar way of the proof of [4, Cor. 4.29].

(3) By Lemma 2.9 h(X∗,X∗) = 0 for X ∈ V (mσ )．For λ ∈ Σ+ with 〈λ,H 〉 
∈ πZ, we
have

dL−1
g h(F ∗

λ , F ∗
λ ) = dL−1

g h(G∗
λ,G

∗
λ) = − sin(2〈λ,H 〉)λ ,

F ∗
λ ⊥ G∗

λ, ‖F ∗
λ ‖2 = ‖G∗

λ‖2 = 4 sin2(〈λ,H 〉) .

For α ∈ W+ with 〈α,H 〉 
∈ π
2 + πZ, we have

dL−1
g h(X∗

α,X∗
α) = dL−1

g h(Y ∗
α , Y ∗

α ) = sin(2〈α,H 〉)α ,

X∗
α ⊥ Y ∗

α , ‖X∗
α‖2 = ‖Y ∗

α ‖2 = 4 cos2(〈α,H 〉) .

If we denote by m̃H the mean curvature vector of OH ⊂ G at exp 2H , then m̃H = 1
2dLgmH .

Thus we get the assertion. �
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