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ON THE RATIONAL COHOMOLOGY OF REGULAR SURFACES
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Abstract. Let S be a surface isogenous to a product of curves of unmixed type. After
presenting several results useful to study the cohomology of S we prove a structure theorem for
the cohomology of regular surfaces isogenous to a product of unmixed type with χ(OS) = 2.
In particular we found two families of surfaces of general type with maximal Picard number.

Introduction. Surfaces isogenous to a product of curves have been introduced by
Catanese in [Ca00]. Starting from that paper they have been studied extensively, in partic-
ular in the last years. They provide an easy way to construct surfaces of general type with
fixed geometrical invariants.

Moreover surfaces isogenous to a product are in correspondence with combinatorial
structures that a finite group can admit. Via this correspondence several authors have clas-
sified these surfaces, as in [BCG08], [CP09], [Pen11], [Gle15].

In this paper we study the cohomology of surfaces isogenous to a product using alge-
braic methods, in particular group representation theory. The guiding idea behind is that the
cohomology of a surface S ∼= C×D

G
is completely determined by the action of the group G.

Although our construction is quite general we apply our result to a specific class in order to
prove the following:

THEOREM 4.1. Let S be a regular surface isogenous to a higher product of unmixed
type with χ(OS) = 2. Then there exist two elliptic curves EC and ED such that H 2(S,Q) ∼=
H 2(EC × ED,Q) as rational Hodge structures.

This paper is organized as follows: in the first section we recall all the required definitions
and results; in the second one we study the cohomology of surfaces isogenous to a product of
unmixed type, and in particular we focus on the case of regular surfaces with χ(OS) = 2. In
the third section we study in detail some special surfaces and in the fourth one we present our
main result, together with an important observation about the Picard number of the surfaces
we studied.

NOTATION AND CONVENTIONS. In this paper with curve or surface we mean a com-
plex, smooth projective manifold of complex dimension 1 or 2 respectively. For a given sur-
face S we denote by χ(OS) the holomorphic Euler characteristic, by e(S) the topological
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Euler characteristic and by ρ(S) the Picard number of S. The invariant q(S) = h1,0(S) is
called irregularity: a regular surface S is a surface with q(S) = 0.

We use also standard notation in group theory: Zn = Z/nZ is the cyclic group of order
n; Sn, An and Dn are respectively the symmetric, the alternating and the dihedral group on n
elements.

Acknowledgment. The author would like to thank his advisor Bert van Geemen for introducing
him to the subject.

1. Preliminaries and basic results. In this first section we recall all the definitions
and results we need in this paper. In particular in Section 1.4 we study in detail the group
algebra decomposition.

1.1. Surfaces isogenous to a product.

DEFINITION 1.1. A smooth surface S is said to be isogenous to a product (of curves)
if it is isomorphic to a quotient C×D

G
where C andD are curves of genus at least one andG is

a finite group acting freely on C ×D. If the genus of both curves is greater or equal than two
S is said to be isogenous to a higher product.

Let S ∼= C×D
G

be a surface isogenous to a product. The group G is identified with a
subgroup of Aut(C ×D) via the group action. We set

G0 := G ∩ (Aut (C)×Aut(D)) .

The group Aut(C)×Aut(D) is a normal subgroup of Aut(C ×D) of index one or two, thus
or G = G0 or [G : G0] = 2.

DEFINITION 1.2. Let S be a surface isogenous to a product. Then C×D
G

is a minimal
realization of S if S ∼= C×D

G
and G0 acts faithfully on both curves.

PROPOSITION 1.3 ([Ca00, Proposition 3.13]). Let S be a surface isogenous to a higher
product. Then a minimal realization exists and it is unique.

From now on whenever we refer to a surface S isogenous to a higher product we will
always assume that it is given by its minimal realization.

DEFINITION 1.4. Let S ∼= C×D
G

be a surface isogenous to a product. S is said to be of
unmixed type if G = G0, of mixed type otherwise.

We recall some well known results about surfaces isogenous to a product, in particular
about their invariants.

PROPOSITION 1.5 ([Ca00]). Let S = C×D
G

be a surface isogenous to a higher prod-
uct. Then S is minimal surface of general type.

PROPOSITION 1.6 ([Ca00, Theorem 3.4]). Let S ∼= C×D
G

be a surface isogenous to a
product. Then the following equalities hold:

• χ(OS) = (g(C)−1)(g(D)−1)
|G| ;
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• e(S) = 4χ(OS) = 4(g(C)−1)(g(D)−1)
|G| ;

• K2
S = 8χ(OS) = 8(g(C)−1)(g(D)−1)

|G| .

PROPOSITION 1.7. Let S ∼= C×D
G

be a surface isogenous to a product of unmixed
type. Then

q(S) = g (C/G)+ g (D/G) .

In this paper we focus our attention on regular surfaces isogenous to a higher product of
unmixed type with χ(OS) = 2:

PROPOSITION 1.8. Let S be a regular surface isogenous to a higher product with
χ(OS) = 2. Then the Hodge diamond is fixed:

1
0 0

1 4 1
0 0

1

Regular surfaces isogenous to a higher product of unmixed type with χ(Os) = 2 have
been studied and classified in [Gle15]: see Section 2 for the details.

1.2. Spherical system of generators. We introduce here the notion of spherical sys-
tems of generators and we relate them with ramified coverings of the sphere. We use the same
notation of [BCG08].

DEFINITION 1.9. LetG be a group and r ∈ N with r ≥ 2. An r-tuple T = [g1, . . . , gr ]
of elements inG is called spherical system of generators ofG if g1, . . . , gr is a system of gen-
erators of G and we have g1 · · · gr = IdG. We call �(T ) := r length of S.

DEFINITION 1.10. Let A = [m1, . . . ,mr ] ∈ Nr be an r-tuple of natural numbers
2 ≤ m1 ≤ · · · ≤ mr . A spherical system of generators T = [g1, . . . , gr ] is said to be of
type A = [m1, . . . ,mr ] if there is a permutation τ ∈ Sr such that ord(gi ) = mτ(i), for
i = 1, . . . , r .

PROPOSITION 1.11. Let G be a finite group acting on a curve C with C/G ∼= P1.
Then, via a monodromy representation, we associate to the covering πG : C → P1 a spherical
system of generators.

Conversely let T be a spherical system of generators of a finite group G. Then there
exist a curve C, a covering πG : C → P1 and a monodromy representation such that the
associated spherical system of generators is T .

PROOF. It follows from the Riemann Existence Theorem as explained in [Mir95, Sec-
tion III.3 and III.4]. �
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REMARK 1.1. Given a spherical system of generators T , the curve C is completely
determined by T and by the branch points B of the covering πG : C → P1. In particular the
genus can be computed using the Riemann-Hurwitz formula:

g(C) = 1 − d +
r∑
i=1

d

2mi
(mi − 1)

where A = [m1, . . . , mr ] is the type of T .

REMARK 1.2. Proposition 1.11 does not define a one-to-one correspondence: indeed
distinct spherical systems of generators could determine the same covering. For example
let T1 = [g1, . . . , gr ] be a spherical system of generators of G of type A and let h ∈ G.
Consider T2 = [gh1 , . . . , ghr ] where gh = h−1gh: T2 is a spherical system of generators
of type A and determines an isomorphic covering. In particular T2 determines exactly the
same covering, not only an isomorphic one, and it corresponds to a different choise of the
monodromy representation.

Let S = C×D
G

be a surface isogenous to a higher product of unmixed type with q(S) = 0.
Then by Proposition 1.7 we get two ramified coverings of the sphere f : C → P1 and
h : D → P1. Notice that, from a topological point of view, the surface S is determined by f
and h under the further condition that the groupG acts freely on the product C ×D.

DEFINITION 1.12. Let T = [g1, . . . , gr ] be a spherical system of generators ofG. We
denote by�(T ) the union of all conjugates of the cyclic subgroups generated by the elements
g1, . . . , gr :

�(T ) := �([g1, . . . , gr ]) =
⋃
g∈G

∞⋃
j=0

r⋃
i=1

{g · gji g−1} .

A pair of spherical systems of generators (T1, T2) ofG is called disjoint if

�(T1) ∩�(T2) = {IdG} .

PROPOSITION 1.13. Let T1 and T2 be two spherical systems of generators of G and
let π : C ×D → C×D

G
be the induced covering where G acts on the product via the diagonal

action. Then the following conditions are equivalent:

• π is an étale covering, i.e. the action of G is free;
• (T1, T2) is a disjoint pair of spherical systems of generators ofG.

DEFINITION 1.14. An unmixed ramification structure forG is a disjoint pair of spheri-
cal system of generators (T1, T2) ofG. Let A1 = [m(1,1), . . . ,m(1,r1)] and A2 = [m(2,1), . . . ,
m(2,r2)] be respectively an r1-tuple and an r2-tuple of natural numbers with 2 ≤ m(1,1) ≤
· · · ≤ m(1,r1) and 2 ≤ m(2,1) ≤ · · · ≤ m(2,r2). We say that the unmixed ramification structure
(T1, T2) is of type (A1, A2) if T1 is of type A1 and T2 is of type A2.
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Putting together Proposition 1.11 and Proposition 1.13 we get a correspondence between
unmixed ramification structures and surfaces isogenous to a product of unmixed type. As
already observed, this correspondence is not one-to-one, but it works well in one direction:
given an unmixed ramification structure it is uniquely defined a surface isogenous to a product
of unmixed type.

1.3. Irreducible rational representation. We recall some results about irreducible
complex representations. A full discussion with proofs can be found in [Ser77].

Let G be a finite group of order N . We denote by ρi : G → GL(Vi), i = 1, . . . , m
its irreducible complex representations, where m is the number of conjugacy classes in G.
We usually denote by ρ1 the trivial representation. Given a complex representation ρ : G →
GL(V ) we denote by nρ(ρi) the multiplicity of ρi in ρ. Then we get:

ρ = ⊕m
i=1nρ(ρi)ρi .

Let χi : G → C be the character associated to the irreducible complex representation ρi : the
character fieldKi is the field Q(χi(g))g∈G. As ρi(g) ∈ GL(V ) has finite order, its eigenvalues
are roots of unity, henceKi is a subfield of Q(ξN) where ξN is a primitive N-th root of unity.

PROPOSITION 1.15. Let G be a finite group of order N and let ρi : G → GL(Vi)

be an irreducible complex representation of G with associated character field Ki . For every
σ ∈ Gal(Ki/Q) there exists an unique irreducible complex representation ρj : G → GL(Vj )

with character χj = σ(χi). Thus for σ, ρi and ρj as above we set σ(ρi) = ρj . In the same
way we can define an action of the whole groupGalN on the irreducible complex representa-
tions.

DEFINITION 1.16. Let ρi : G → GL(Vi) be an irreducible complex representation of
G with character field Ki . The dual representation of ρi is the irreducible complex represen-
tation ρi := σ̃ (ρi) where σ̃ is the complex conjugation. We say that ρi is self-dual if ρi = ρi

or, equivalently, if Ki ⊆ R.

The action ofGalN splits the set of the irreducible complex representations into distinct
orbits such that if two irreducible complex representations ρi and ρj are in the same orbit then
Ki = Kj .

PROPOSITION 1.17. Let G be a finite group of order N and let τ : G → GL(W)

be an irreducible rational representation. Then there is a unique GalN -orbit of irreducible
complex representations

{σ(ρi)}σ∈Gal(Ki/Q), ρi : G → GL(Vi)

and a positive integer s, called Schur index of ρi , such that

τC := τ ⊗Q C = ⊕σ∈Gal(Ki/Q)s · σ(ρi) .(1)

Conversely each irreducible complex representation ρi determines an irreducible rational
representation τ : G → GL(W) such that the equality (1) holds.
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COROLLARY 1.17.1. Let ρ : G → GL(V ) be a self-dual complex representation
such that Kρ = Q. Then there exists a rational representation τ : G → GL(W) and a
positive integer s such that τ ⊗Q C = s · ρ.

Any rational representation τ : G → GL(W) can be decomposed as sum of irreducible
rational representations, exactly as it happens for the complex ones. We will write

τ = ⊕t
j=1nτ (τj )τj ,

where τj : G → GL(Wj ), j = 1, . . . , t are the irreducible rational representations of G
and nτ (τj ) is the multiplicity of τj in τ . As in the complex case, we denote by τ1 the trivial
representation.

1.4. Group algebra decomposition. We describe here the so called group algebra
decomposition. The main idea is the following: let τ : G → GL(W) be a rational repre-
sentantion and let W be a rational Hodge structure such that τ (G) ⊆ EndHod(W). Then the
action of the group algebra Q[G] induces a decomposition of W into Hodge subrepresenta-
tions. This result is well known in the contest of complex tori (see [BL04, Section 13.6]):
following the same arguments we prove it for Hodge structures.

Let G be a finite group with irreducible complex representations ρi : G → GL(Vi),
i = 1, . . . , m, as in the previous section. Consider the following elements in C[G]:

pi = dim(Vi)

#G

∑
g∈G

χi(g)g ,

where χi is the character of ρi . These elements p1, . . . , pm are central idempotents in the
group algebra C[G], i.e. p2

i = pi and pig = gpi for all g ∈ G. Moreover we get:

ρ̃i (pj ) =
{
IdVi if i = j ,

0 if i �= j .
(2)

Let us consider the group algebra Q(ξN)[G] where N is the order of G and notice that
pi ∈ Q(ξN)[G] for all i = 1, . . . ,m. There is a natural action of the Galois group GalN on
Q(ξN)[G] defined by

σ
(∑

ajgj

)
=

∑
σ(aj )gj ,

where σ ∈ GalN . This action agrees with the action defined in Proposition 1.15: σ(ρi) = ρj

if and only if σ(pi) = pj .
Let τj : G → GL(Wj ) be an irreducible rational representation. By Proposition 1.17

there exists an irreducible complex representation ρi : G → GL(Vi) such that

τj = ⊕σ∈Gal(Ki/Q)s · σ(ρi) .
We define

qj =
∑

σ∈Gal(Ki/Q)
σ (pi) .
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PROPOSITION 1.18. LetG be a finite group and let τj : G → GL(Wj ), j = 1, . . . , t
be its irreducible rational representations. Then qj ∈ Q[G] for all j = 1, . . . , t and

τ̃i (qj ) =
{
IdWi if i = j ,

0 if i �= j .
(3)

PROOF. By definition qj ∈ Q(ξN)[G]. For all g ∈ G the coefficient of g in qj is given
by the equation

cg := dim(Vi)

#G

∑
σ∈Gal(Ki/Q)

σ (χi(g)) .

By hypothesis χi(g) ∈ Ki and then cg ∈ Q for all g ∈ G. In order to prove equation (3) we
have to complexify it and compare with equation (2). �

COROLLARY 1.18.1. Let τ : G → GL(W) be a rational representation. We define
Aj = Im{τ̃ (qj ) : W → W }. Then

• Aj is a rational subrepresentation and τ |Aj = mτ (τj )τj ;
• W = ⊕t

j=1Aj .

DEFINITION 1.19. Let τ : G → GL(W) be a rational representation. We call Aj the
isotypical component related to the representation τj and we call W = ⊕t

j=1Aj isotypical
decomposition of τ .

In order to avoid indices we work on a single irreducible rational representation τ : G →
GL(W). Consider D := EndG(W), the algebra of G-equivariant maps on W :

D = EndG(W) = {f ∈ End(W) : τ (g)f = f τ(g) ∀g ∈ G} .
The kernel of any element f ∈ D is a subrepresentation of W , hence, as W is irreducible, all
f ∈ D must be isomorphisms of W and then D is a skew-field (or a division algebra). We
considerW as a left vector space over D, then choosing a basis we get:

W ∼= Dk ,

where k = dimD(W). Suppose τC = ⊕σ∈Gal(Ki)s · σ(ρi), where ρi : G → GL(Vi) is an
irreducible complex representation and so

EndG(WC) = ⊕σ∈Gal(Ki)EndG(V
⊕s
i ) .

Then:

dimQW = dimCWC = s · dimC(Vi) · [Ki : Q] ,
dimQD = dimC DC = [Ki : Q] · dim(EndG(V

⊕s
i )) = [Ki : Q] · s2 ,

dimDW = k = [Ki : Q] dimC(Vi) · s
[Ki : Q] · s2 = dimC(Vi)

s
.
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Recall that the Schur index s is always a divisor of the dimension of the representation and so
k ∈ N. By definition of D, τ (g) commutes with D for all g ∈ G and so the image of τ̃ lies in
EndD(W). Moreover we observe that

dimQ(EndD(W)) = dimQD · dimDEndD(W)(4)

=(dimC(Vi))
2 · [Ki : Q] .

PROPOSITION 1.20. Let G be a finite group and τj : G → GL(Wj ), j = 1, . . . , t ,
its irreducible rational representations. We set Dj = EndG(Wj ) and τ = ⊕t

j=1τj : G →
GL(W). Then τ̃ : Q[G] → ⊕t

j=1EndDj (Wj ) is an algebra isomorphism.

PROOF. From the analogous result in the complex field we get the injectivity. Then it is
enough to prove that the two algebras have the same dimension. Of course dimQ[G] = #G.
Now from equation (4) we get

dimQ

(
⊕t
j=1EndDj (Wj )

)
= ⊕m

i=1(dimC(Vi))
2 = #G .

�

By choosing a D-basis of W we identiy EndD(W) with the algebra Mat(k,D) of ma-
trices k × k with coefficients in D. In particular in Mat(k,D) we have matrices Ei with 1 at
(i, i) and zero elsewhere. Then by the proposition above we are able to find k idempotents
w1, . . . , wk in Q[G] such that τ̃ (wi) = Ei .

REMARK 1.3. This elements w1, . . . , wk are not unique, since they depend on the
choice of a D-basis.

This construction holds for all the irreducible rational representations. Given an irre-
ducible rational representation τj : G → GL(Wj ) we denote by wj,1, . . . , wj,kj idempotent
elements of Q[G] constructed as above.

PROPOSITION 1.21. Let τ : G → GL(W) be a rational representation and let
A1, . . . , At be the isotypical components related to the irreducible rational representations

of G. For all j ∈ 1, . . . , t we define Bj = Im{τ̃ (wj,1) : W → W }. Then Aj ∼= B
⊕kj
j for all

j , j = 1, . . . , t , kj = dimDjWj .

PROOF. By construction wj,1 + · · · + wj,kj = qj for all j = 1, . . . , t . Since τ̃ (qj )
acts as the identity on Aj we get a decomposition:

Aj = Im{t̃ (wj,1)} ⊕ · · · ⊕ Im{t̃ (wj,kj )} .
Fix a Dj -basis of Wj and consider in EndDj (Wj ) ∼= Mat(kj,Dj ) the matrices Mi with 1 at
(i, 1) and zero elsewhere. These matrices provide isomorphisms between Bj = Im{t̃ (wj,1)}
and Im{t̃ (wj,i)} for all i = 2, . . . , kj . �

DEFINITION 1.22. Let τ : G → GL(W) be a rational representation. We call Bj the

isogenous component related to the representation τj and we call W ∼= ⊕t
j=1B

⊕kj
j the group

algebra decomposition of τ .
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REMARK 1.4. Unlike the isotypical components Aj , the isogenous components Bj
are not G-subrepresentations. Indeed, as observed in the proof of Proposition 1.21, the group
algebra Q[G] interchanges the isogenous components.

Now that we have defined the group algebra decomposition we relate it with the Hodge
structures. First of all we recall the following:

LEMMA 1.23 ([Voi02, Section 7.3.1]). Let W be a rational Hodge structure and let
φ ∈ EndHod(W). Then Im(φ) is a rational Hodge substructure.

PROPOSITION 1.24. Let (W, h) be a rational Hodge structure, G a finite group and
let τ : G → GL(W) be a rational representation such that τ (G) ⊂ EndHod(W). Then the
isotypical and isogenous component of τ are Hodge substructures.

PROOF. We have defined the isotypical and isogenous components of a given repre-
sentation τ : G → GL(W) as the images of opportune elements in Q[G]. Notice that
τ (G) ⊆ EndHod(W) implies τ̃ (Q[G]) ⊆ EndHod(W). Now we apply Lemma 1.23 �

We conclude this section with the following lemma:

LEMMA 1.25. Let G be a finite group and ρi : G → GL(Vi) its irreducible complex
representations. Let (W, h) be a rational Hodge structure of weight 1 and τ : G → GL(W)

a rational representation such that τ (G) ⊂ EndHod(W). Consider the induced complex
representations τC : G → GL(WC) and ρ = τ |W 1,0 : G → GL(W1,0). Then:

• nτC(ρi) = nρ(ρi)+ nρ(ρi);
• if ρi is self-dual nτC(ρi) is even.

PROOF. The subspaces W 1,0 and W 0,1 are subrepresentations of WC. It follows that if
τC|W 1,0 = ρ then τC|W 0,1 = ρ, i.e. τC = ρ ⊕ ρ. Hence the following equalities hold:

nτC(ρi) = nρ(ρi)+ nρ(ρi) ,

nρ(ρi) = nρ(ρi) .

In particular if ρi is self-dual we get nτC(ρi) = 2nρ(ρi). �

1.5. Broughton’s formula. Let C be a smooth curve of genus g(C) and let G be a
finite group of automorphisms of C. We will denote by ϕ the natural action induced by G on
the first cohomology group H 1(C,C). Let assume C/G ∼= P1 and let T = [g1, . . . , gr ] be
the spherical system of generators associated to the ramified covering f : C → C/G ∼= P1.

PROPOSITION 1.26 ([Bro87]). Let ϕ = ⊕m
i=1nϕ(ρi)ρi be the decomposition of ϕ into

irreducible complex representations. Then, with the notation as above we have:

• nϕ(ρ1) = 〈ϕ, ρ1〉 = 0,
• nϕ(ρi) = 〈ϕ, ρi 〉 = χi(1)(r − 2)− ∑r

j=1 lgj (ρi),

where χi are the characters of the irreducible complex representations ρi : G → GL(Vi) of
G, ρ1 is the trivial representation, r = �(T ) is the length of T and lgj (ρi) is the multiplicity
of the trivial character in the restriction of ρi to 〈gj 〉.
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REMARK 1.5. The same computations can be done using the Lefschetz fixed point
formula (see [GH94, Chapter 3.4]). However, since we are interested only in the first coho-
mology groups of curves, Broughton’s formula makes calculations faster and easier.

The group G induces an action not only on the complex (or real) cohomology, but also
in the rational one. These actions are connected since H 1(C,C) = H 1(C,Q) ⊗ C. We will
denote both actions with ϕ. Applying together Proposition 1.17 and Proposition 1.26 we can
compute the decomposition of ϕ into irreducible rational representations.

Notice that here we are exactly in the situation described in Proposition 1.25: the finite
group G acts on H 1(C,Q) that is a rational Hodge structure of weight 1. Moreover, since G
acts holomorphically on C, the action on the cohomology preserves the Hodge decomposition
and then

ϕ(G) ⊂ EndHod(H
1(C,Q)) .

EXAMPLE 1.1. Let G be the abelian group (Z3)
2 := (Z/3Z)2. Consider the unmixed

ramification structure (T1, T2) forG:

T1 =[(1, 1), (2, 1), (1, 1), (1, 2), (1, 1)] ,
T2 =[(0, 2), (0, 1), (1, 0), (2, 0)] ,

of type ([35], [34]). We denote by f and h the corresponding ramified coverings of P1:

f : C → C/G ∼= P1 ,

h : D → D/G ∼= P1 ,

where C and D have genus 7 and 4 respectively. The character table of G is

Id (1, 0) (2, 0) (0, 1) (0, 2) (1, 1) (2, 2) (2, 1) (1, 2)
χ1 1 1 1 1 1 1 1 1 1
χ2 1 ξ3 ξ2

3 1 1 ξ3 ξ2
3 ξ2

3 ξ3

χ3 1 ξ2
3 ξ3 1 1 ξ2

3 ξ3 ξ3 ξ2
3

χ4 1 1 1 ξ3 ξ2
3 ξ3 ξ2

3 ξ3 ξ2
3

χ5 1 ξ3 ξ2
3 ξ3 ξ2

3 ξ2
3 ξ3 1 1

χ6 1 ξ2
3 ξ3 ξ3 ξ2

3 1 1 ξ2
3 ξ3

χ7 1 1 1 ξ2
3 ξ3 ξ2

3 ξ3 ξ2
3 ξ3

χ8 1 ξ3 ξ2
3 ξ2

3 ξ3 1 1 ξ3 ξ2
3

χ9 1 ξ2
3 ξ3 ξ2

3 ξ3 ξ3 ξ2
3 1 1

By Proposition 1.17G has 5 irreducible Q-representations τ1, . . . , τ5 with:

τ1 ⊗Q C =ρ1 ,

τ2 ⊗Q C =ρ2 ⊕ ρ3 ,

τ3 ⊗Q C =ρ4 ⊕ ρ7 ,

τ4 ⊗Q C =ρ5 ⊕ ρ9 ,

τ5 ⊗Q C =ρ6 ⊕ ρ8 .
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We apply the Broughton’s formula (Proposition 1.26) to compute the decomposition of the
representaion of the groupG on H 1(C,C) and H 1(D,C). We get

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9

ϕC 0 3 3 3 1 0 3 0 1
ϕD 0 0 0 0 2 2 0 2 2

for the complex cohomology groupsH 1(C,C), H 1(D,C) and

τ1 τ2 τ3 τ4 τ5

ϕC 0 3 3 1 0
ϕD 0 0 0 2 2

for the rational cohomology groupsH 1(C,Q), H 1(D,Q).

2. On the cohomology. The cohomology of surfaces isogenous to a product has been
studied in [CLZ13] and in [CL13]. In these papers the authors focused on the complex co-
homology and they study the corresponding Albanese variety. We follow here a completely
different approach.

Let S = C×D
G

be a surface isogenous to a higher product of unmixed type. Then the
second cohomology of S depends on the cohomology of C and D and on the action of G.
First of all we need a topological lemma:

LEMMA 2.1 ([Hat02], Proposition 3G.1). Let π : X̃ → X be a (topological) covering
space of degreeN defined by an action of a groupG on X̃. Then with coefficients in a field F
whose characteristic is 0 or a prime not dividing n, the map π∗ : Hk(X,F ) → Hk(X̃, F ) is
injective with image the subgroupHk(X̃, F )G.

PROPOSITION 2.2. Let S = C×D
G

be a surface isogenous to a higher product of un-
mixed type. Then the second cohomology group of S is given by H 2(S,Q) ∼= U ⊕ Z, where

U : =
(
H 2(C,Q)⊗H 0(D,Q)

)
⊕

(
H 0(C,Q)⊗H 2(D,Q)

)
,

Z : =
(
H 1(C,Q)⊗H 1(D,Q)

)G
.

PROOF. We compute the second cohomology of C ×D with the Künneth formula (see
[Hat02, Theorem 3.16]) and we apply Lemma 2.1. Since G acts trivially on the zero coho-
mology and on the second cohomology of the curves C and D we get the result. �

REMARK 2.1. ConsiderH 2(S,Q) as rational Hodge structure of weight 2. ThenU,Z
≤ H 2(S,Q) are Hodge substructures. In particular the subspace U has dimension 2, and
U ⊗Q C ≤ H 1,1(S). Then, as rational Hodge structure, it is isomorphic to the Tate structure
Q2(−1). It follows that H 2(S,Q) is determined, as Hodge structure, by Z.

We recall Schur’s Lemma, a classical result of representation theory:
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LEMMA 2.3 (Schur’s lemma). Let G be a finite group and let ρi : G → GL(Vi) i =
1, . . . , m be its irreducible complex representations, where ρ1 is the trivial representation.
Then

nρi⊗ρj (ρ1) = 〈ρi ⊗ ρj , ρ1〉 =
{

1 if ρj = ρi ,

0 otherwise .

We need the corresponding result for rational representation:

PROPOSITION 2.4. Let G be a finite group and let τj : G → GL(Wj ) j = 1, . . . , t
be its irreducible rational representations, where τ1 is the trivial representation. Then the
multiplicity of the trivial representation in τj ⊗ τk is:

nτj⊗τk (τ1) =
{
s2[Ki : Q] if j = k ,

0 otherwise ,

where τj ⊗ C = s ⊕σ∈Gal(Ki/Q) σ (ρi).

PROOF. It follows fom Lemma 2.3 and Proposition 1.17. �

Let τj1 : G → GL(W1) and τj2 : G → GL(W2) be two irreducible rational representa-
tions of G. The group acts trivially on (Wj1 ⊗Wj2)

G and then

dim(Wj1 ⊗Wj2)
G = nτj1 ⊗τj2 (τ1) .

In particular dim(Wj1 ⊗Wj2)
G �= 0 if and only if j1 = j2, and in this case the dimension is

determined by Proposition 2.4.
Let S = C×D

G
be a surface isogenous to a higher product of unmixed type and let τj :

G → GL(Wj ), j = 1, . . . , t be the irreducible rational representations ofG. Let ϕC : G →
GL(H 1(C,Q)) and ϕD : G → GL(H 1(D,Q)) be the actions induced by G on the first
cohomology of curves:

ϕC = nC(τ1)τ1 ⊕ · · · ⊕ nC(τt )τt ,

ϕD = nD(τ1)τ1 ⊕ · · · ⊕ nD(τt )τt .

Then each irreducible rational representation τj determines a subspace of the rational Hodge
structure Z of dimension

nC(τj )nD(τj )nτj⊗τj (τ1) .

In particular we obtain

dimZ =
t∑

j=1

nC(τj )nD(τj )nτj⊗τj (τ1) .

Now we focus on the case of regular surfaces isogenous to a higher product with χ(OS)

= 2.
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PROPOSITION 2.5. Let S = C×D
G

be a regular surface isogenous to a higher product
with χ(OS) = 2. Then one of the following cases holds:

a) There exists an absolutely irreducible rational representation τ : G → GL(W) such
that

nC(τ) = nD(τ) = 2 ,

nC(τj ) · nD(τj ) = 0, ∀ τj different from τ .
b) There exists an irreducible rational representation τ : G → GL(W) and an irre-

ducible complex representation ρ : G → GL(V ) with τC = 2ρ such that

nC(τ) = nD(τ) = 1 ,

nC(τj ) · nD(τj ) = 0 , ∀ τj different from τ .
c) There exists an irreducible rational representation τ : G → GL(W) and an irre-

ducible complex representation ρ : G → GL(V ) with τC = ρ ⊕ ρ such that

nC(τ) = 1, nD(τ) = 2 ,

nC(τj ) · nD(τj ) = 0 , ∀ τj different from τ .
d) There exist two irreducible rational representations τj1 : G → GL(Wj1), τj2 : G →
GL(Wj2) and two irreducible complex representations ρi1 : G → GL(Vi1), ρi2 :
G → GL(Vi2) with τj1 ⊗ C = ρi1 ⊕ ρi1 , τj2 ⊗ C = ρi2 ⊕ ρi2 and j1 �= j2 such that

nC(τj1) = nC(τj2) = nD(τj1) = nD(τj2) = 1 ,

nC(τj ) · nD(τj ) = 0 , ∀ τj different from τj1, τj2 .

PROOF. For a regular surface S isogenous to a higher product with χ(OS) = 2 we
have dimZ = 4. Notice that, for all the irreducible rational representations, the number
nC(τj )nD(τj )nτj⊗τj (τ1) is even by Lemma 1.25. Then we can have at most two irreducible
rational representations τj such that nC(τj )nD(τj ) �= 0. Suppose we have only one: then,
again for Lemma 1.25, we have three possibilities:

• nC(τj ) = nD(τj ) = 2, nτj⊗τj (τ1) = 1: this is the case a;
• nC(τj ) = nD(τj ) = 1, nτj⊗τj (τ1) = 4: this is the case b;
• nC(τj ) = 2, nD(τj ) = 1, nτj⊗τj (τ1) = 2: this is the case c.

Suppose now we have contributions from two different irreducible rational representations τj1

and τj2 . Then

• nC(τji ) = nD(τji ) = 1, nτji⊗τji (τ1) = 2 for i = 1, 2: this is the case d .

�

DEFINITION 2.6. Let S = C×D
G

be a regular surface isogenous to a higher product of
unmixed type with χ(OS) = 2. We say that S is of type a, b, c or d if the corresponding case
of Proposition 2.5 holds for S.
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As already mentioned, regular surfaces isogenous to a higher product of unmixed type
with χ(OS) = 2 have been classified by Gleissner. In [Gle15] he proves that only 21 groups
admit an unmixed ramification structure such that the corresponding surface has χ(OS) = 2
and q(S) = 0. In particular 7 groups admit more than one non-isomorphic structures, and he
obtains 32 families of regular surfaces isogenous to a higher product of unmixed type with
χ(OS) = 2. A complete list can be found in Table 1 while the explicit forms of the unmixed
ramification structures can be found in [Gle15]. For all the surfaces in the list we determined
if they are of type a, b, c or d .

Let G be one of the 14 groups in the following list:

(Z2)
3 �ϕ S4, (Z2)

4 �ϕ D5, S5, (Z2)
4 �ψ D3 ,

U(4, 2), A5, S4 × Z2, D4 × (Z2)
2, (Z2)

4 �ϕ Z2 ,

S4, D4 × Z2, (Z2)
2 �ϕ Z4, (Z2)

4, (Z2)
3 .

For all the irreducible complex representations ρ : G → GL(V ) we get Kρ ⊆ R and the
Schur index of ρ is equal 1. Therefore the corresponding surfaces S are of type a.

We verified that also the surfaces related to the groups

PSL(2,F7)× Z2, PSL(2,F7), (Z2)
3 �ϕ D4

are of type a, although these groups admit irreducible complex representations withKρ �⊆ R.

EXAMPLE 2.1. As example we study in detail the group PSL(2,F7). G := PSL

(2,F7) has 6 irreducible complex representations ρ1, . . . , ρ6 associated to the charaters χ1,

. . . , χ6:

Id 2 3 4 7a 7b
χ1 1 1 1 1 1 1
χ2 3 −1 0 1 ξ ξ

χ3 3 −1 0 1 ξ ξ

χ4 6 2 0 0 −1 −1
χ5 7 −1 1 −1 0 0
χ6 8 0 −1 0 1 1

where ξ = −1+i√7
2 . By Proposition 1.17, G has only 5 irreducible rational representations

τ1, . . . , τ5. One has

τ1 ⊗Q C =ρ1 ,

τ2 ⊗Q C =ρ2 ⊕ ρ3 ,

τ3 ⊗Q C =ρ4 ,

τ4 ⊗Q C =ρ5 ,

τ5 ⊗Q C =ρ6 .
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The group PSL(2,F7) admits two non-isomorphic unmixed structures (TC1, TD1) and (TC2,

TD2) of types ([73], [32, 4]) and ([32, 7], [43]) respectively. Since there is only one conjugacy
class of elements of order 3 and one conjugacy class of elements of order 4 in G (denoted in
the table above with 3 and 4), we can apply the Broughton’s formula to the curvesD1 andD2

easily. We get:

τ1 τ2 τ3 τ4 τ5

ϕD1 0 0 0 0 2
ϕD2 0 0 0 4 2

So, even if G has two non self-dual representations (ρ2 and ρ3), the surfaces isogenous to a
higher product associated to both (TC1, TD1) and (TC2, TD2) are of type a.

Finally surfaces related to the groups

G(128, 36), (Z2)
4 �ϕ D3, (Z2)

3 �ϕ Z4, (Z3)
2 ,

are not of type a and we will study them in the next section. The complete list, with the
corresponding type, is summarized in Table 1, at the end of this section.

THEOREM 2.7. Let S = C×D
G

be a regular surface isogenous to a higher product of
unmixed type with χ(OS) = 2 and assume that S is of type a. Then there exist two elliptic
curves EC and ED such thatH 2(S,Q) ∼= H 2(EC × ED,Q) as rational Hodge structures.

PROOF. The proof consists of two steps: in the first one we construct the two elliptic
curves EC and ED; in the second one we prove that H 2(S,Q) ∼= H 2(EC × ED,Q).

STEP 1: By hypothesis there exists an absolutely irreducible rational representation τ :
G → GL(W) such that nC(τ) = nD(τ) = 2; let dimW = n. We denote by AC and AD the
isotypical components related to τ in H 1(C,Q) and H 1(D,Q): AC and AD are, at the same
time, rational Hodge substructure andG-subrepresentations of dimension 2n and we obtain

Z ∼= (AC ⊗ AD)
G ,

where Z is the Hodge substructure defined in Proposition 2.2. Since τ is an absolutely irre-
ducible rational representation, the corresponding skew-field D is simply Q. So, by Proposi-
tion 1.21, we get AC ∼= B⊕n

C and AD ∼= B⊕n
D where BC and BD are Hodge substructures, but

no longer G-subrepresentations, of AC and AD with dimBC = dimBD = 2. Via the natural
correspondence between complex tori and Hodge structures, there exists two elliptic curves
EC and ED , defined up to isogeny, such that

BC ∼= H 1(EC,Q), BD ∼= H 1(ED,Q) ,

as rational Hodge structures.
STEP 2: The Hodge structures of weight two Z and BC ⊗ BD have the same dimension

and the same Hodge numbers; in particular dimZ2,0 = dim(BC ×BD)
2,0 = 1. The action of

G provides a Hodge homomorphismAC ⊗ AD → Z: by restriction we get a map ψ : BC ⊗
BD → Z. Consider the Hodge substructure Im(ψ). We can assume that dim Im(ψ)2,0 = 1:
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G |G| SGL g(C) g(D) type
PSL(2,F7)× Z2 336 〈336, 209〉 17 43 a
(Z2)

3 �ϕ S4 192 〈192, 995〉 49 9 a
PSL(2,F7) 168 〈168, 42〉 49 8 a
PSL(2,F7) 168 〈168, 42〉 17 22 a
(Z2)

4 �ϕ D5 160 〈160, 234〉 5 81 a
G(128, 36) 128 〈128, 36〉 17 17 b

S5 120 〈120, 34〉 9 31 a
(Z2)

4 �ϕ D3 96 〈96, 195〉 5 49 c
(Z2)

4 �ψ D3 96 〈96, 227〉 25 9 a
(Z2)

3 �ϕ D4 64 〈64, 73〉 9 17 a
U(4, 2) 64 〈64, 138〉 9 17 a
A5 60 〈60, 5〉 13 11 a
A5 60 〈60, 5〉 41 4 a
A5 60 〈60, 5〉 9 16 a
A5 60 〈60, 5〉 5 31 a

S4 × Z2 48 〈48, 48〉 5 25 a
S4 × Z2 48 〈48, 48〉 9 13 a
S4 × Z2 48 〈48, 48〉 13 9 a
S4 × Z2 48 〈48, 48〉 3 49 a

(Z2)
3 �ϕ Z4 32 〈32, 22〉 9 9 d

D4 × (Z2)
2 32 〈32, 46〉 9 9 a

(Z2)
4 �ϕ Z2 32 〈32, 27〉 17 5 a

(Z2)
4 �ϕ Z2 32 〈32, 27〉 9 9 a
S4 24 〈24, 12〉 5 13 a
S4 24 〈24, 12〉 3 25 a

D4 × Z2 16 〈16, 11〉 9 5 a
(Z2)

2 �ϕ Z4 16 〈16, 3〉 9 5 a
(Z2)

4 16 〈16, 14〉 9 5 a
D4 × Z2 16 〈16, 11〉 3 17 a
(Z3)

2 9 〈9, 2〉 7 4 c
(Z2)

3 8 〈8, 5〉 5 5 a
(Z2)

3 8 〈8, 5〉 3 9 a

TABLE 1. Complete list of groups that admit an unmixed ramification structure such that the
corresponding surfaces S isogenous to a higher product has χ(OS ) = 2 and q(S) = 0.
SGL is the pair that identifies the group in the Small Groups Library (on Magma).

otherwise we have to change the choice of BC and BD in AC and AD . If ψ is an isomorphism
we are done. Otherwise let k := dimKer(ψ). We have the decompositions:

BC ⊗ BD � P ⊕Ker(ψ), Z � Im(ψ) ⊕ Qk(−1) ,

where P is a Hodge substructure with dimP 2,0 = 1 and dimP 1,1 = 2 − k. The Hodge
structures BC ⊗ BD and Z are isomorphic since

• ψ defines an isomorphism between P and Im(ψ),
• dim ker(ψ)2,0 = 0 and then ker(ψ) � Qk(−1).

�
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3. The exceptional cases. In this section we study one by one the families of sur-
faces in Table 1 not of type a. Given a finite group G and an unmixed ramification structure
(TC, TD) forG we will use the following notation:

• f : C → P1 and h : D → P1 are the Galois covering associated to the spherical
system of generators TC and TD;

• S = C×D
G

is the surface isogenous to a product of unmixed type corresponding to the
unmixed ramification structure;

• Z < H 2(S,Q) is the 4-dimensional Hodge substructure with dimZ2,0 = 1 defined
by

Z =
(
H 1(C,Q)⊗H 1(D,Q)

)G
.

Let τ : G → GL(W) be an irreducible rational representation of G and let AC, AD be the
isotypical components of H 1(C,Q) and H 1(D,Q) related to τ . Assume that Z ∼= (AC ⊗
AD)

G: as described in the proof of Theorem 2.5 this is exactly what happens for surfaces of
type a, b and c. Let H �G be the normal subgroupH = ker(τ ). Then we get

Z =
(
H 1(C,Q)⊗H 1(D,Q)

)G
(5)

=
(
H 1(C,Q)H ⊗H 1(D,Q)H

)G/H
.

REMARK 3.1. Notice that, for a general subgroupH ≤ G, we have(
H 1(C,Q)⊗H 1(D,Q)

)H �∼=
(
H 1(C,Q)H ⊗H 1(D,Q)H

)
.

For example for H = G we get the Hodge structure Z on the left and the empty vector space
on the right, since C/G ∼= D/G ∼= P1. Equation (5) holds because our specific choice of the
subgroupH .

Using this idea (with appropriate modifications for the case d) we extend the result of
Theorem 2.7 to the remaining surfaces.

3.1. Case b. Let G be the finite groupG = G(128, 36) with presentation:

G =
〈
g1, . . . , g7

∣∣∣ g2
1 = g4 g2

2 = g5 g
g1
2 = g2g3

g
g1
3 = g3g6 g

g2
3 = g3g7 g

g2
4 = g4g6

g
g1
5 = g5g7

〉
,

where g
gj
i := g−1

j gigj ; G has order 128 and it determined by the pair 〈128, 36〉 in the Small
Groups Library on Magma. Consider the unmixed ramification structure (TC, TD) of type
([43], [43]):

TC = [g1g2g4g6, g1g4g5g6, g2g3g4g7] ,
TD = [g1g2g3g6g7, g2g5g7, g1g3g4g7] .

By direct computation we verify that the corresponding surface isogenous to a product S is of
type b, i.e. there exists an irreducible rational representation τ : G → GL(W), dimW = 4
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and an irreducible complex representation ρ : G → GL(V ), dimV = 2 with τC = 2ρ such
that

nC(τ) = nD(τ) = 1 ,

nC(τj ) · nD(τj ) = 0 ∀τj different from τ .

Let H �G be the normal subgroupH := Ker(τ): a set of generators for H is

H = 〈g7, g6, g3g4, g4g5〉 .
The quotient group G/H has order 8 and it is isomorphic to the quaternion group Q8. Con-
sider the intermediate coverings:

C
H ��

G ���
��

��
��

C′

Q8
��

P1

D
H ��

G ���
��

��
��

� D′

Q8
��

P1

The curves C′ and D′ have genus 2, by Riemann–Hurwitz formula. Moreover the quaternion
group Q8 acts on their rational cohomology by the unique irreducible rational representation
of dimension 4 and Schur index two. By the Remark 3.1 we get

H 2(S,Q) ∼= H 2 (
C′ ×D′,Q

)Q8 .

PROPOSITION 3.1. Let S be the surface isogenous to a higher product defined above.
Then H 2(S,Q) ∼= H 2(E√−2 ×E√−2,Q) where E

√−2 is the elliptic curve

E√−2 = C

Z ⊕ √−2Z
.

PROOF. Let X be a curve of genus 2 such that Q8 ≤ Aut(X) and X/Q8 ∼= P1. Then
its Jacobian is not simple, and in particular it is isogneous to the self-product of the elliptic
curve E√−2. The action of Q8 induces a Hodge morphism ψ

ψ : H 1(E√−2,Q)⊗H 1(E√−2,Q) → Z .

Now, arguing as in the step 2 of the proof of the Theorem 2.7, we conclude that

H 2(S,Q) ∼= H 2 (
C′ ×D′,Q

)Q8 ∼= H 2(E√−2 ×E√−2,Q) .

�

REMARK 3.2. The covering maps f : C → P1 and h : D → P1 have both 3 branch-
ing values. It follows that the curves C and D are determined up to isomorphism, by the
Riemann Existence Theorem. In particular the pairs (C, f ) and (D, g) are Belyi pairs and
the surface S is a Beauville surface.
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3.2. Case c. Two groups occur in this case. Let G be the finite group (Z3)
2 and

consider the unmixed ramification structure (TC, TD):

TC =[(1, 1), (2, 1), (1, 1), (1, 2), (1, 1)];
TD =[(0, 2), (0, 1), (1, 0), (2, 0)] .

This structure has been already studied in Example 1.1: notice that the corresponding surface
isogenous to a product S is of type c. In particular, using the notation of Example 1.1, there
is an irreducible rational representation τ4 : G → GL(W4) such that

• τ4 ⊗ C = ρ5 ⊕ ρ9;
• nC(τ4) = 1 and nD(τ4) = 2.

Let H be the normal subgroupH := Ker(ρ5) = Ker(ρ9): a set of generators for H is

H = 〈(2, 1)〉 .
Notice that H ∼= Z3 and also G/H ∼= Z3. Let us consider the intermediate coverings C′ =
C/H andD′ = D/H of genus g(C′) = 1 and g(D′) = 2. The curveD′ is a curve of genus 2
with an automorphism σ of order 3 such that D′/〈σ 〉 � P1. It follows that its Jacobian is not
simple and in particular it is isogenous to the self-product of an elliptic curve ED .

PROPOSITION 3.2. Let S be the regular surface isogenous to a product of unmixed
type associated to the unmixed structure (TC, TD). Then H 2(S,Q) � H 2(C′ × ED,Q),
where C′ and ED are the elliptic curves described above.

PROOF. By Remark 3.1 we have H 2(S,Q) ∼= H 2(C′ ×D′,Q)G and we have already
observed that the cohomology groupH 1(D′,Q) decomposes as sum of two Hodge substruc-
tures, both of dimension 2. Now we conclude with the same arguments used in the proof of
Theorem 2.7. �

The case of the group G = (Z2)
4 �ϕ D3 follows in a similar way. This group has 14

irreducible complex representations with Schur index 1: 12 are self-dual while the remaining
two are in the same Galois-orbit. So we have an irreducible rational representation τ : G →
GL(W) such that τ ⊗ C decompose as sum of two irreducible complex representations. We
set H = Ker(τ) and we proceed as before.

3.3. Case d. Let G be the group G = (Z2)
3 �ϕ Z4 where ϕ : Z4 → Aut(Z3

2) �
GL(3,F2) is defined by

ϕ(1) =
⎛
⎝1 0 0

0 1 0
1 0 1

⎞
⎠ .

Consider the unmixed ramification structure (TC, TD) of G of type ([22, 42], [22, 42]):
TC = [((1, 0, 0), 2), ((1, 1, 1), 2), ((0, 1, 0), 1), ((0, 0, 1), 3)] ,
TD = [((1, 1, 0), 0), ((1, 0, 0), 0), ((1, 0, 0), 3), ((1, 1, 1), 1)] .

We construct the groupG in [Magma]:
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H:=CyclicGroup(4);
K:=SmallGroup(8,5);
A:=AutomorphismGroup(K);
M:=hom<K->K|[K.1->K.1*K.3, K.2->K.2, K.3->K.3]>;
Phi:=hom<H->A|[H.1->M]>;
G,a,b:=SemidirectProduct(K,H,Phi);
G1:=a(K.1);
G2:=a(K.2);
G3:=a(K.3);
G4:=b(H.1);

With this notation the unmixed ramification structure is given by:

TC = [g1g
2
4 , g1g2g3g

2
4 , g2g4, g3g

3
4 ], TD = [g1g2, g1, g1g

3
4 , g1g2g3g4] .

By direct calculation we see that the surface S is of type d . We denote by τj1 : G → GL(Wj1),
τj2 : G → GL(Wj2) the two irreducible rational representations such that

nC(τj1) = nC(τj2) = nD(τj1) = nD(τj2) = 1 ,

nC(τj ) · nD(τj ) = 0, ∀j different from j1, j2 .

We set H1 := ker(τj1) and H2 := ker(τj2) of G. A set of generators for H1 and H2 are

H1 = 〈((1, 0, 0), 0), ((0, 0, 1), 0), ((0, 1, 0), 2)〉 = 〈g1, g3, g2g
2
4 〉 ,

H2 = 〈((1, 1, 0), 0), ((0, 0, 1), 0), ((0, 1, 0), 2)〉 = 〈g1g2, g3, g2g
2
4 〉 .

We observe that:

• G/H1 ∼= G/H2 ∼= Z4;
• the curves C1 := C/H1, C2 := C/H2,D1 := D/H1 andD2 := D/H2 have genus 1.

Consider the intermediate coverings:

C
Hi ��

G ���
��

��
��

� Ci

Z4
��

P1

D
Hi ��

G ���
��

��
��

� Di

Z4
��

P1

Since Ci and Di , i = 1, 2 are elliptic curves with an automorphism of order 4 they are all
isogenous to

Ei = C

Z ⊕ iZ
.

By Remark 3.1 we get

Z =
(
H 1(C1,Q)⊗H 1(D1,Q)

)G ⊕
(
H 1(C2,Q)⊗H 1(D2,Q)

)G
.

PROPOSITION 3.3. Let S be the surface isogenous to a higher product defined above.
Then H 2(S,Q) = H 2(Ei ×Ei,Q), as rational Hodge structures.
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PROOF. We have already observed that

Z =
(
H 1(C1,Q)⊗H 1(D1,Q)

)G ⊕
(
H 1(C2,Q)⊗H 1(D2,Q)

)G
.

Up to exchange of C1 × D1 with C2 × D2, we can assume that the Hodge structure W :=
(H 1(C1,Q)⊗H 1(D1,Q))

G has dimension 2 and dimW 2,0 = dimW 0,2 = 1. Now following
the same idea of the proof of Theorem 2.7 we get:

H 2(S,Q) ∼= H 2(C1 ×D1,Q) ∼= H 2(Ei × Ei,Q) .

�

REMARK 3.3. Consider, as in the proof of Theorem 2.7, the Hodge morphism ψ :
H 1(C1,Q)⊗H 1(D1,Q) → Z. Here it is clear that ψ is not an isomorphism since its image
Im(ψ) has dimension 2.

4. Conclusion.

THEOREM 4.1. Let S be a regular surface isogenous to a higher product of unmixed
type with χ(OS) = 2. Then there exist two elliptic curves EC and ED such that H 2(S,Q) ∼=
H 2(EC × ED,Q) as rational Hodge structures.

PROOF. It follows from Theorem 2.7 and the analysis, case by case, of the previous
section. �

REMARK 4.1. In general the Theorem does not imply the existence of intermediate
covering of the curves C, D. More precisely there are no subgroups HC, HD of G such
that C/HC ∼= EC , C/HD ∼= ED where EC, ED are elliptic curves such that H 2(S,Q) ∼=
H 2(EC × ED,Q). See the following example.

EXAMPLE 4.1. Consider once more the unmixed ramification structure studied in Ex-
ample 1.1 and in Section 3.2. Let G be the abelian group (Z3)

2 and let TD be the spherical
system of generators

TD = [(0, 2), (0, 1), (1, 0), (2, 0)] ,
such that the corresponding curve D has genus 4. Consider all the 6 subgroups of G. By
[Magma] we verify that for all subgroups H ≤ G the quotient curve D/H has genus 0, 2 or
4. In particular there is not any subgroupH such that D/H is an elliptic curve.

4.1. About the Picard number. Let S be a regular surfaces isogenous to a higher
product of unmixed type with χ(OS) = 2. We can compute ρ(S), the Picard number of S,
using Theorem 4.1. Let EC and ED be the elliptic curves such that H 2(EC × ED,Q) ∼=
H 2(S,Q): we get ρ(S) = ρ(EC ×ED). The Picard number of an Abelian surface of product
type E1 × E2 is

ρ(E1 × E2) =

⎧⎪⎪⎨
⎪⎪⎩

4 if E1 ∼ E2 has complex multiplication ,

3 if E1 ∼ E2 but they do not have CM ,

2 otherwise .
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A surface S is said to be a surface with maximal Picard number if ρ(S) = h1,1(S): this
kind of surfaces are studied in a recent work of Beauville [Bea14] where a lot of examples are
constructed. As already observed a regular surface S isogenous to a higher product of unmixed
type with χ(OS) = 2 has h1,1(S) = 4. It follows that the surfaces studied in Sections 3.1 and
3.3 are examples of surfaces with maximal Picard number.
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