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AND WONG-ZAKAI APPROXIMATIONS
OF PATH-DEPENDENT STOCHASTIC DIFFERENTIAL EQUATIONS
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Abstract. We consider the rates of the L?-convergence of the Euler-Maruyama and
Wong-Zakai approximations of path-dependent stochastic differential equations under the Lip-
schitz condition on the coefficients. By a transformation, the stochastic differential equations
of Markovian type with reflecting boundary condition on sufficiently good domains are to
be associated with the equations concerned in the present paper. The obtained rates of the
LP-convergence are the same as those in the case of the stochastic differential equations of
Markovian type without boundaries.

1. Introduction. Solutions to path-dependent stochastic differential equations are
well-defined (see e.g. Chapter IV of [9]), and the existence and uniqueness of solutions hold
under the Lipschitz condition on the coefficients (see e.g. Theorem 7 of Chapter V in [12]).
In the present paper, we consider the rates of the L”-convergence of the Euler-Maruyama
and Wong-Zakai approximations of such an equation, and will obtain error estimates of the
approximations.

When we consider stochastic differential equations of Markovian type with reflecting
boundary condition, path-dependent stochastic differential equations appear. Generally, re-
flected processes are constructed by Skorohod equations. The mapping from the original
process to the reflected process is a mapping on the path spaces, depends only on the shape
of the boundary, and is called the Skorohod map. There is an equivalence between the sto-
chastic differential equations of Markovian type with reflecting boundary condition and the
path-dependent stochastic differential equations generated by the Skorohod map. Hence, the
equations considered in the present paper are the generalized version of the stochastic dif-
ferential equations of Markovian type with reflecting boundary condition whose Skorohod
map is Lipschitz continuous. We remark that the Skorohod map is not always Lipschitz con-
tinuous. The detail of stochastic differential equations with reflecting boundary condition is
discussed in Section 4.

In the present paper, we consider the Euler-Maruyama and Wong-Zakai approximations
of path-dependent stochastic differential equations. The Euler-Maruyama approximation is
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the approximation of the solutions by the processes generated by freezing the coefficients at
given times, and is one of the most standard approximations of stochastic differential equa-
tions. The almost sure convergence of the Euler-Maruyama approximation of stochastic dif-
ferential equations with the reflecting boundary condition is obtained by Pettersson [11]. The
Wong-Zakai approximation is the approximation to the stochastic differential equations by
the ordinarily differential equations obtained by piecewise linear approximation of the driv-
ing Brownian motion, and is originally introduced by Wong and Zakai [17]. It is known that
the limit equation of the Wong-Zakai approximation is the stochastic differential equation of
Stratonovich type. We remark that the limit equation of the Wong-Zakai approximation is
different from that of the Euler-Maruyama approximation. The almost sure convergence of
the Wong-Zakai approximation of stochastic differential equations with reflecting boundary
condition is obtained by Doss and Priouret [6] and Zhang [18]. The approach for the con-
vergence in distributions of the Wong-Zakai approximation of such an equation is studied in
[8] and [15]. The LP-convergence of the Euler-Maruyama and Wong-Zakai approximations
is obtained in [3]. We remark that more general approximations of path-dependent stochas-
tic differential equations are studied in [5]. We also remark that recently the equations with
reflecting boundary condition are also studied by rough-path theory (see [1] and [2]). The
argument in rough paths is closely related with the Wong-Zakai approximation.

In the present paper, we obtain the rates of the L”-convergence of the Euler-Maruyama
and the Wong-Zakai approximation of path-dependent stochastic differential equations under
the Lipschitz continuity and some conditions on the coefficients. The obtained rates of the
convergences are as follows.

< C|a|'/?,

E [”X - x™M ”g([O,T];Rd)

]1/P
E[Jx = x| 7 < ClalR + Tog N2
C([0,T];R) = g ’

where A = {0 =19 < t; < --- < ty = T} is a partition of the interval [0, T], |A| :=
maxg=0,1,... N—1(tk+1 — ), X EM is the Euler-Maruyama approximation associated with A,
and XV is the solution to the Wong-Zakai approximation equation associated with A. Note
that the limit process X is the solution to the stochastic differential equation of It6 type in
the case of the Euler-Maruyama approximation and the solution to the stochastic differential
equation of Stratonovich type in the case of the Wong-Zakai approximation, and is different by
each approximation. The rate of the L”-convergence of the Euler-Maruyama approximation
of stochastic differential equations with reflecting boundary condition on general domains is
studied by Stominski [14]. The obtained rate of the Euler-Maruyama approximation obtained
in the present paper is the same as his one for convex polyhedral domains (see Remark 4.3).
The organization of the present paper is as follows. In Section 2 we consider the rate of
the convergence of the Euler-Maruyama approximation. The argument in the section will be
done by the standard techniques of stochastic differential equations. In Section 3 we consider
the rate of the convergence of the Wong-Zakai approximation. The section is the main part
of the present paper. We will prepare some lemmas about the estimates of the oscillation of
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the solutions in each interval of the partition, and will obtain the L?-norm of the difference
between the solution to the original equation and the solution to the approximating equations.
In Section 4 we will see the relation between the obtained results in Sections 2 and 3, and sto-
chastic differential equations of Markovian type with reflecting boundary condition. Section 5
is an appendix, in which we prepare an upper estimate for the p-th moment of the maximum
of random variables.

We prepare some notations. For T > 0, w € C([0, T']; Rd) and t € [0, T'], we define
lwlle(o.1:rdy = SUPseo.1) [w(s)|Rra. Denote the total set of the d x r-matrices by R @R,

and for A = (a;;) € R? ® R” define |Algagrr = /3, > i aizj. For x € RY denote the
ith component of x by x’. Let d;j be Kronecker’s delta, i.e. §;; = 1if i = j, and §;; = 0 if
i#J.
2. Euler-Maruyama approximation. Let 7 > 0 and let £ be an R-valued random
variable. Consider the following stochastic differential equation
{ dX, =ot,X)dB; +b(t, X)dt
Xo =§
where o is an R @ R”-valued function on [0, 7] x Cp([0, TT; R4 ), bisan R4-valued function

on [0, T] x Cp([0, T]; Rd) and B is the r-dimensional Brownian motion. We assume the
Lipschitz continuity of the coefficients in the following sense.

ey

lo(t, w) —o(t, w/)|Ra’®Rr +|b(t, w) —b(t, w)|ge < Krllw — w/“C([O,t];Rd) )
t€[0,T], w,w € C([0, T]; RY)

where K7 is a constant depending on 7. Then, the solution X to (1) exists, and has the
pathwise uniqueness (see e.g. Theorem 7 of Chapter V in [12]).

We consider the Euler-Maruyama approximationto (1). Let A :={0 =1 < <--- <
ty = T} be a partition of the interval [0, T']. Define the approximations oa, ba of o, b by

2)

op(t,w) = o(tg, w), ba(t, w) := b(ty, w), t € [tx, tkt1)

fork =0,1,...,N —1,and w € C([0,T]; Rd). We consider the following stochastic
differential equation.

3) { dXPM = o (t, XEMYAB, + ba(t, XPM)dt
XM =¢.
When ¢ € [#, tx+1), it holds that
k k
XPM =&+ o, XM Biry,, — By) + Y b, Xt At — 1)
1=0 =0

Hence, (3) is the equation of the Euler-Maruyama approximation to (1). Our purpose of this
section is to estimate the L”-norm of | XM — X lc(r0,77:re) With respect to the probability
measure. To give a condition on the coefficients we introduce a class of the functions on
[0,T] x C([0, TT; Rd), which is an analogue to the class introduced in [5]. For a Hilbert
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space H and a positive number K, we define a class of H-valued functions Fx (H) by the
total set of 1 : [0, T'] x Cp([0, T1; RY) — H such that
(F1) |h(t,w)|y < K fort €[0,T], w € C([0, T]; RY),
(F2) [h(t, w) — h(s, w)lg < K(/T—5 + |w( +5) = wO)lleor—sp:rd)
fors, ¢ € [0, T] such that s < ¢, and w € C([0, T]; RY),
(F3) |h(t, w)—h(t,w)|g < K||lw—wlcqo.:re fort € [0, T], w,w" € C([0, T]; RY).

REMARK 2.1. The assumptions (F1) and (F3) are given for the boundedness and the
Lipschitz continuity, respectively. The assumption (F2) is for the continuity of the functions
with respect to the time. We need (F2) for the Euler-Maruyama approximation.

The result of this section is the following theorem.

THEOREM 2.2. Leto € Fx(RY @ R") and b € Fx(R?). Let X and X™ be the
solutions to (1) and to the equation of the Euler-Maruyama approximation (3), respectively.
Then, for p € [1, 00) there exists a constant C depending on p, K, and T such that

I/p
E [HX - XEMHZ([O,T];W)] = Clal.

PROOF. In view of the magnitude relation between L”-norms, it is sufficient to prove
the case that p > 2. By the Burkholder-Davis-Gundy inequality, there exists a constant C),
depending on p and we have for ¢ € [0, T']

EM | P
E [”X -X ”C([O,t];Rd)]
K P
<2’7'E| sup / (G(M,X)—UA(M,XEM))dBu
sef0,¢]1J0 R4
K P
+2r- g sup / (b(u, X) —ba(u, XEM)) du
se[0,¢11J0 R4

. p/2
<2r7'CLE [(/ o0, X) = o a1, X)L d”) }
0

p
R4 dl/l) i|

b ]du

t
+2rE [(/ |b@u. X) — bau, X*™)
0

r
521’_1Tp/2_1c E||lo(u, X) —GA(M,XEM) d @R’
s RIQR

t
+2P—1TP—1/ E [|b(u, X) — ba(u, XEM)|]§,,]du.
0
Hence, it holds that
EM || P
E [”X -X ”C([O,t];Rd)]

t
4) <Cpr </O E [|U(u, X) —oau, XEM)|£,,®R,.]du
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t
+/ E{ b, X) —bA(u,XEM>|ﬁ§d]du)
0

fort € [0, T], where C), 1 is a constant depending on p and 7. When u € [#, fx+1), (F2) and
(F3) imply

E [|o(u, X) —oa(u, XEM)Héd@Rr:I
= E[|ow. X) = o6, X)Ly |
<27 g [|G(u, X) - o, XEM)|£,1®R,] +2r'E [|a(u, X™M) — o (s, XEM)Iﬁéd@Rr]
<2/ 'K’E [HX — XM HZ([O,u];Rd)]
+ 2P KPE [(Vu =1+ 1X™MC 4 1) = XM N0, ]
<2/ 'KPE [”X — XM ”Z([O,u];Rd):I
+ 222K (= 10" 4+ B [IXMC 4 10 = XML 0 |) -
Hence, we have
E [|a(u, X) —on(u, XEM)|£d®R,]
(5) <Cpk,T (E [“X - x™M ”g([O,u];Rd)]
= "2+ E[1XMC 40 = XML 0 ])

for u € [tx, ty41), where Cp, g 1 is a constant depending on p, K and T'. On the other hand,
foru € [, tiy1)

E[IX™MC 410 = XML (0,

= E[ sup o (tx, X"M)(By — By) + b(tr, X™M) (s — 1) ﬂ’;d]
sE[ty,u]

< op—lgp (E |: sup |Bs — Btklﬂgd:| + (u— tk)P)

SE€[tx,u]

=2 1gP ((u —u)P’E [ sup |leﬂgd:| + (u — tk)p> .

s€[0,1]
Hence, by combining this inequality with (5) we have for u € [#, t+1)
E o, X) = o, X2 g |

=27 KPE X = XM 0 pe | + Coertu — )72,
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where C), g is a constant depending on p, K and T'. From this inequality we have

t
/OE[|a(u,X)—GA(M,XEM)|£d®R,]du

N-1 Tkt1 EM. | P
= Z/ E|:|U(M,X)—UA(M,X )|Rd®Rr]d”
k=1 Ik

Tk+1

=277IKY Z / HX X o Rd)] dutCprr Z / — )" %du

fort € [0, T], where Cp, g T is a constant depending on p, K and T. Thus, we have

du

t
/0 E [|o(u, X) —oau, X" ]ﬁd@Rr]

(6) ;
I/p

-1 EM || P 2

<2? KP/O E[”X—X ||C([0’u];Rd)] du+Cp g.r|AP

fort € [0, T, where Cp, g T is a constant depending on p, K and 7. Similarly we have

t
/E[|b(u,X)—bA(u,XEM)|£d]du
) 0 . »
< 2P-lgP fo E [”X _ xEM ||g([0’u];Rd)] du + Cp k7|0

for ¢t € [0, T, where C), g r is a constant depending on p, K and T. From (4), (6) and (7)
we obtain

E [”X - x™M ”g([o,r];Rd)]
t
= CquqT'/O E [HX - XEMHZ([O,u];le)] du+ C1LI<,T|A|[)/2

fort € [0, T'], where C), k7 is a constant depending on p, K and T. By applying Gronwall’s
inequality, we obtain the assertion. g

3. Wong-Zakai approximation. Let7 > 0. Let A be a mapping from C ([0, T]; RY)
to C([0, T]; RY) such that
(A1) [A(w) — AW)llcqorrey = Kallw — w'llcqorrey fort € [0,T], w,w' €
C([0, T]; RY),
(A2) |Aw) — A)slpe < Ka (VT—5 + lw(- + ) = wlleo.r—sp:rd))
fors,t € [0, T] such thats < ¢, and w € C([0, T]; RY),
(A3) Varp 1(A(w)) < Ka(l+ lw —w(0)ll¢o,n:rey) forz € [0, T], w e C(0, T]; RY),
where Varjp ;1(w) is the total variation of w on [0, 7], and let f € Cl’z([O, T1xR4; Rd) which
has the bounded derivatives. Define the mapping I" : C([0, T']; Rd) — C([0, TT; Rd) by

(8) (Tw); == f(t,w;) + Aw);, t€[0,T], we C0,T];RY).
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We denote the derivative of f in the time parameter by % and the derivative of f in the
I-th component of the spatial parameter by % Let

d

a a
K¢ := sup sup —f(t,x) 4+ sup sup Z —fl(t,x)
10,71 xerd | 91 RY  1€[0.T] xeRd 1 |9% R
d
1 af of
+ sup sup O W(LX)— W(I’y)
1€[0.T] x,yeRd: xy =3 1% = VIR [9X x R

From (A1) and (8), we have
) ITw —Tw'llcqo,nrey < (K7 + Ka) lw —w'llcqo,:re

fort € [0, T]and w, w’ € C([0, T]; RY). This implies that I is Lipschitz continuous in the
sense of (2). From (A2) and (8), we have

(10) [(Tw); — (Tw)s|ga < (Kf + KA) (Vl —s+ lw(+s) — w(S)HC([o,t_s];]Rd))

fors,t € [0, T] such thats < ¢, and w € C([0, T]; RY).
Leto € Cp([0, T] x RY xRY; RY ®R") such that o (¢, x, y) is differentiable with respect
to x and y and that there exists a positive constant K, satisfying

ao ao
W(Iv-xlv yl) - W(SJQ, y2)

d
lo(t. x1. y1) — 0 (s, X2, D) [pagger + Y
I=1 RIGQR"

d

>

=1

do do
@, x1, y1) — (s, x2, y2) < Ko (It — sl + [x1 — x2lga + |y1 — y2lga)
ay! ay!

Rd QR

for s,¢t € [0, T], and x1, x2, y1, y2 € RY, where % is the derivative of o in the /-th com-
ponent of the first spatial parameter and g—;’l is the derivative of o in the /-th component of
the second spatial parameter. We denote the derivative of o in the time parameter by %—‘t’ Let

b € Cp([0, T] x C([0, T]; RY); R?) such that there exists a positive constant K, satisfying
|b(t, w) — b(t, w')|gs < Kpllw — w/”C([o,;];Rd) ;
fort € [0, T], and w, w’ € C([0, T]; R?). Denote

M := sup sup |o(t,x,y)|gigrr + SUP sup [b(t, w)|pd -
1€[0,T] x,yeR? 1€[0,T] weC ([0, T];RY)

Let & be an R?-valued random variable. Consider the following stochastic differential equa-
tion of the Stratonovich type

an {dX, = o(t, X;, (TX),) 0 dB; + b(t, X)dt

Xo =¢.



72 S. AIDA, T. KIKUCHI AND S. KUSUOKA

Let

: l - 4t d0jj
Ui=53>" /0 o7 (8 X, (TX) )01 (s, Xy, (T X))ds
j=11=1

r d d
o1 " oy af!
Vi=s2 0 2 /0 ay{ (s,xs,<FX>s>—8f (s, X5)omj(s, X;, (T X);)ds

xm
j=11=1 m=1

fori =1,2,...,d. Then, we have
(12) o, X, TX))odB; =0o(t,X;, TX))dB; +dU; +dV;.

In view of this expression and the assumption on ¢ and b, we have the existence of the solution
and the pathwise uniqueness of (11) as we have seen in Section 2.

For a given partition A := {0 = #tp < 1 < --- < ty = T} of the interval [0, T], we
define the piecewise linear approximation B” of B by

t— 1
———By4+1 — By), t €[ty teg1) .
Tkt1 — Ik

We define the equation of the Wong-Zakai approximation to (11) by

Bl := B, +

dXV% =o@t, XV, (TxV%))dBl + b(t, XVt

13
(13) Xo —£.

REMARK 3.1. Since B2 is the function of the bounded variation, the solution XVZ o
(13) is uniquely-determined almost surely.

The result of this section is the following theorem.

THEOREM 3.2. Let o and b as above. Let X and XV? be the solutions to (11) and to
the equation of the Wong-Zakai approximation (13), respectively. Then, for p € [1, 00) there
exists a constant C depending on p, T, d, r, Ka, K5, Kp, Ky and M, but independent of A
and N, such that

1/p
WZ || P 1/2 1/2
E [HX - X ”C([O,T];Rd)] < C|A| / (1+1ogN) 2.

It is sufficient to prove the case that p > 2. From now on, we use C’s as constants
depending on p, T, d, r, Ka, K5, Kp, K¢ and M, but independent of A and N, and we
remark that C’s can be different from line to line.

Before starting the proof of Theorem 3.2 we prepare some lemmas.

LEMMA 3.3. We have a constant

/g
E |: sup | Xy — sz|%,1:| < Cyltrpr — ul'?

s€ltk,tit1]

1/q

Wz Wz |4 1/2

E| sup [X{— X5, < Cylterr — 1]
s€ltk,tit1]
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forqe[l,o0)andk =0,1,..., N — 1, where Cy is a constant depending on g, M, K, and
Ky
PROOF. Fors € [t, tx4+1] it holds that
N N
Xs— Xy = / o, X,,('X),)dB, +/ b(u, X)du + Uy — Us, + Vs — Vyy .
179

Tk

Hence, by the standard calculation with the Burkholder-Davis-Gundy inequality, we have the
first inequality.
For s € [t, tx+1] it holds that

WZ WZ
sup X7 — X T |pa

s€ltr,trg1]
’ wZ wz,  Bun — By ’ Wz
< sup / o(u, X, ~,'X""),)———du| + sup / b(u, X" *)du
selti.trgr] 11 Te+1 — Ik RE  s€ltrter] 1V Rd
= M|By,, — Bylpd + M(try1 — 1) .
Hence, we have the second inequality. O
LEMMA 3.4. There exists a positive number ¢ > 0 depending on |0 ||eo such that
2
X;— X
Elexple sup w <C
selg,iggr] e+l — Ik
xWZ _ xWz 2
Elexple sup M <C.
S€ltk,tk+1] Tkt1 — Ik
PROOF. In the proof of Lemma 3.3, we have obtained
sup X3 — X3 Ipa < llollo| By, — Bylpe + C k1 — )
SE[tk, tr+1]
fork =0,1,..., N — 1. Hence, applying the Fernique theorem, we have the second inequal-

ity.

Foreachk =0,1,...,.N—-1,i =1,2,...,dand j = 1,2,...,r, in view of Theo-
rem 7.2" of Chapter II in [9], if necessary by extending the probability space, there exists a
one-dimensional Brownian motion B;j (t)

Biji ( / o1 (. X (FX)M)zst)‘
73

Bijk((txy1 — tx)i
S\/m sup | t]k((k+l )|

ief0, o 12 ] 1 — Ik

N .
/ oij(u, Xy, (T X),)dBj,
173
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for s € [#, tx+1] almost surely. By this inequality we have

sup | Xy — Xy |pa
SE[tk, tk1]

o
s€[tr,tr+1]

S
/ o (s Xy CX))dBy|  + |Us — U |
179 Rd

S
+|Vs — Vi Ira +/ |b(u, X)|]Rdd“)
173

N | Biji ((trs1 — tx)i)]
< Vik+1 =t ZZ sup + C(tkt1 — 1)

io1 =1 acl0 ol )] Tkl — Tk

almost surely fork = 0, 1, ..., N — 1. Therefore, by applying the Fernique theorem, we have
the first inequality. O

LEMMA 3.5. We have

E max sup  |Xs — X, |2, | < CIAIP/2 (1 +1log NYP/? |

|:k:0,1,.‘.,N—1SE[,k’tk_H] ! kIR

E max sup  [X)7 = XVHP | < CIAIPZ (1 +1og NYP/2
k=01, N=1 s tg41]

PROOF. In view of Lemma 3.4, we have the assertion by applying Proposition 5.2 to
the sequences of the random variables

X5 — X¢, Iz
sup C7thd;Ic=O,1,...,N—1 ,
SE[tk,tr41] Te41 — Ik
|XWZ _ XWZ|2
sup —— % R 01, N—1}.
s€lte 1] Te+1 — Ik

Now we start to prove Theorem 3.2. From (12) we have

dX; — X\"4) =o(t, X, (TX))dB; + (b(t, X) — b(t, XV%)) dt
(14)
+dU; +dV, — o (t, XV, (TXY%))d B .

By the integration by parts, we have for k = 0,1,...,N —1,i = 1,2,...,d and j =
1,2,...,r

Tk+1 .

A,

/ o1 (s, X2, (CXV%))d B
173

Ik+1 Btj — Btj
— U[‘(S, XWZ, (FXWZ)é) k+1 kds
J s
1 Tkt1 — Ik
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Tkt1
- B]
|:(tk+1 5)0oij (s, XWZ T x WV, )Mli]

Tkl — Ik "
fet1 B/ — B/
L B R
i Tk+1 — Tk
d_ rirg y B/ _ B/
173 Tk WZ,1
+Z/ (fi+1 )———dX]
=1 k+1 — Ik

41 J J

d
d0ijj wZ wz. + Biy — B WZ\1
t s, X2, (I'X L X rXx 8
+ / (1 = )5 (5 XS, (XN = B2 (DX,

= o1 (te. X} %, CXV%), ) (B] ., — Bl)
" ey — s doijj wZ wZ '
- - X4 (TX B/ — By
+/tk P G X0 (XY B, — Bds
d 41 z _Bz],;
+> / (rk+1—s) . XY (FXWZ)>LdX;”Z”
=17 T+l — I
flert gij Wz Wz t/k-H - Btjx; WZ\1
153 RUHERE e X0 XV SV
Te41 — Ik
Hence, forn =0, 1, 2, ..., N it holds that
(15) Xi, — XV = Ii(ty) + D(ta) + I3(tn) + La(tn) + I5(ta)
where
S [ wZ wZ j
HOEDSY / (01 (s, Xs, (TX)s) — 07 (tx, X 2, (PXY9))) dBY
k=0 j=1
tn
L(ty) = f (b(s. X) — b(s, X)) ds,
0
n—1 r tkp1 ¢ _s9
k41 — 8 005 wWZ WZ J
L) = ZZ/ I — s, xV, (rx ))(B,k+1 — B}))ds,
k=0 j=1
n—1 r fks1 o; t _Btj
1) = U}, — ZZZ f (lk+1_5) S XV XY, )dewz’
k=0 j=1I1=1 +1 Ik
n—1 r fert t _Btj
o =vi -3 ) [ e -0 T XY axs, )ﬁd(rxwzﬂs
o
k=0 j=1I=1

forn=1,2,...,Nandi =1,2,...,d.
We consider the estimates of 1, I, ..., Is.
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LEMMA 3.6. Forn=20,1,..., N we have

In
E[ max |()lb, | < C |A|P/2+/ E| sup |Xu— X402, |ds) .
k=0,1,...,n ] 0 uel0,s]

In
E| max |L)ll,|<C E| sup |X, — xVZ|° | das,
I:k—(),l,...,n| 2( k)le_ - '/O |:u€[01,)s]| u u |]Rd

. ]
E[ max ‘I;(tk)‘ < C|AP
k=0,1,....n ]
PROOF. Let
®jj(s) = 0y (s, Xy, (O X)) — 03 (1, X3 2. CX YY), 5 € [trs trg1)

fori =1,2,...,d,j=1,2,...,randk =0,1,..., N — 1. Then, ®;; is adapted process
and we have

r In .
HOESY /0 ®;j (s)d B
j=1

fori =1,2,...,dandn = 0,1,2,..., N. When s € [#, tk+1), in view of the Lipschitz
continuity of o, (9) and (10) it holds that

04 )] = € (5=t [Xg = XPZ gy + |[(0X0; = CXV), [

<cC (|A|1/2 + Xy = XV g + | X% - XV

+ @ X)s — XV |ga + [TXVE), — TXY9), | 2a)

<C (|A|1/2 + sup Xy — X\ pa + sup | XJP— X7 Rd>
uel0,s] s€[tg,tiy1]

fori =1,2,...,dand j = 1,2, ..., r. From this inequality and Lemma 3.3, we have

E[|®ij(s)I"] < ClalP/? + CE [ sup | X, — XMWZ|H’;d}
uel0,s]

fors e [0,T],i =1,2,...,dand j = 1,2,...,r. Hence, by the Burkholder-Davis-Gundy
inequality

r

p
t .
If(rwﬂsE sp |3 [ @18
0

€0l |y

E max
k=0,1,....n
p/2

r I

<ce| (X [ 1egeras
; 0
j=1
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r tn
=ce| Y [iegwras
. 0
j=1

tn
§C<|A|P/2_|_/ E|: sup |XM—XMWZ|I§,1:| ds)
0 uel0,s]

fori =1,2,...,dandn =0, 1,2,..., N. Thus, we have the first inequality.
An explicit calculation implies

tn p
E[ max |12(tk)|§d} < E[(/ Ib(s, X) — b(s, XV)| ds) }
k=0,1,....,n 0
tn P
<CE / sup |Xu — XMWZ|R,1 ds
0 uegl0,s]

In
< C/ E | sup |Xu —XMWZ|]§,1 ds
0 uel0,s]

forn =0,1,..., N. Hence, we have the second inequality.
Since Jensen’s inequality implies

p
i tk+1 173
(S~ i) =1 (zl% et

Te41 — Ik
= szlB’lH—l _lep T

= TP~ IDBIH, By 1P (141 — )

p

forj=1,2,...,r, we have
: )4
E[ max ’(tk)‘ i|
k=0,1,....,n
n—1 r fes1 : 53 .
Ikl — 8 N Glj WZ WZ i
=E Xy rx B/ — B))ds
- ,’;)Z / Te+1 — Ik as (s, :( )s)( Tkt1 tk)
j=1
r )4
SCZE (Z|sz+. Bt/k|(tk+1_tk))
j=1
r n—1 -
< CZZ(”‘“ ) E [lBtk+1 szk|p]
j=1k=0
< C|A|1’/2

forn =0, 1, ..., N. Hence, the last inequality holds.
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78
Before estimating 14 and I5, we prepare the following. Fori = 1,2,...,d and j,m =
1,2,...,r,let
N-1 d
W= Y ( ) (1. X0 (CX VP,
k=0 I=1
B;’/l\tk))

( Jm(t Alip1 —EATE) — (Bmtk+1 Btj/\tk)(Bt/\tk_H

oozl d o d g af!

. § § § 2 WZ WZ WZ

v;]m = < ayl qu) (tks Xlk ) (FX )fk)axq (tks Xlk )
k=0 I=1 g=1

( jmE N byl — A T) — (Bt]/\tk_H Bt]/\tk)(Bt/\tk_H - Bthtk)) .

Then, we have the following lemma.
LEMMA 3.7. Forn=0,1,2,...,Nandi =1,2,...,d, we have
1
ljm 2
_max < C|AP?,
j=1m=1 ]
s
ma < .
k= OIX ZZV - ClA'
j=1m=1 i
dand j,m=1,2,...,r,let

PrROOF. Fori=1,2,...,

N-1
~jm,_ J J
Ky = Z ( jm (t AN tkp1 —t A lg) — (Bt/\tkH Bt/\tk)(Bt/\tk+1 Bthtk)) ’
k=0

d
80'"
) e XY 2 CXY2) ) 1€ ik, i) -

®ijm (1) =) ( o

=1

™ is a martingale and it holds that

Then, ﬁtj
t
i = / S ()AEI", 1 €[0.T]
0
fori =1,2,...,dand j,m =1,2,...,r. Let (ZZ/’”) be the quadratic variation of /™ for
j,m=1,2,...,r. Since It6’s formula implies

. N-1 [Alyy . I AT .
I (/ (B! — B)aB" +/ (B" — Bg)dBSf) . tel0,T]
k=0 t tAL

Nl
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for j,m=1,2,...,r, we have
2/p
\p/2TP n—l1 Tkl . Tkt p/2
E [(ﬁ/’”> } <E[{Y (2/ (B — B)*ds + 2/ (By" — B,’,’j)zds)
fn k=0 Tk Tk
n-l Tl . let1 p/2/P
<) E <2 / (B — B})%ds +2 / (B! — B! st)
k=0 i i

J=L2r SE[t, 1]

n—1 ) ) 2/p
< C max Z(I}H_] - tk)E|: sup |B! — Btjk|p:|
k=0

= ClA]

forn = 0,1,2,...,N and j,m = 1,2,...,r. Hence, by the Burkholder-Davis-Gundy
inequality we have

r r r r r - t p
ijm . ~jm
E| s, [ w| | <e S S E | mas || emorar] |
j=1m=1 j=1m=1 -
roor s ‘ p/2
<cY Y E (/ @4 ()P (") ) }
j=tm=1 L0 s
r r -
. \p/2
<C ~Jm>
cey Y e[
j=1m=1 -
< C|A|p/2
forn=0,1,2,...,Nandi = 1,2, ...,d. Similarly we obtain the proof of the estimate for
pim, O

Now we have estimates of /4 and Is, as follows.

LEMMA 3.8. It holds that

. p In
Ij(tk)‘ :|§C |A|p/2+/ E| sup |Xu—X\*2,|ds) .
0 uel0,s]

. p In
E[ max ‘Ig(tk)‘ }5 c |A|p/2(1+1og1v)ﬂ/2+/ E| sup |XM—XL‘4’VZ|£(1 ds
k=0,1,...,n 0 uel0,s]

E max
k=0,1,...,

n

forn=0,1,...,Nandi =1,2,...,d.
PrROOF. Fork=0,1,...,N,i,l=1,2,...,dand j = 1,2,...,r,itholds that
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Tk+1 J0; B,j —B,j
/ (Tk+1 (s, XJ'7, o) K g x WA
i dx k1 — 1tk
r Tr+1 Bz B/
= f (tk+1 —s)—(s W2 (rx W7y ) ke h
—gy Tkt1 — Ik
Bm — Bm
X oy (s, XV2, (X V%), )Hds
=

fler! wZ wZ Bj,, — Bti I wZ
+/ (tk+1 — s)—( X ,(CXY5) )7+ b'(s, X" )ds
Tk Tkt1 — Ik

Tk+1 fea] — 8
- Z(Bfk-H )(Btk+1 - Bm)/

w1 — 10?2
d0; do;
x [( o ,mm) (s, X%, (T x V7)) — (Wazm> (1 X7 (FXWZ),k)} ds
.

+>° ( mm) (15, Xp 2, (PX ™)y,

m=1

Tk+1 1k —
+1—§
x (Bl = BB, = )./ (tir1 — 102
k
) i1 tk+1 - 861]

(s, XV, XV )b (s, XV ds .

t
k+1 k el — I ox!

Hence, by (10), we have forn =0,1,...,Nandi =1,2,...,d

()

1 rod
52X [ (5en) 6 xe xas
i=11=1

n—1 r

d
- Z Z Z ( Ox I Ulm) (tk’ Xt\:’Z (FXWZ)lk)(Blk+| )(Btk-H - Bfrl:l)

k=0 j=1I=1 m=1
d
j=1li=1
ilef a0,
x ‘( - ,olm> (s, X3, (0 x V%), )—( o lam) (e X 2, (X V7)) ds

k+1 tk+1 — S
+c2|3,k+1 f
173

Tk+1 —

n—1 r

>
k=0

r

Ik+1 ¢ —
m k+1 — S
Zlek-H ||Btk+1_B |/
1

2
o (k1 — 1)
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—1
% kZZZ Z ( jm (1 — 1) (7%) (16, Xis (TX)g)

=1 I=1 m=1
00i; W2 w2 §
< 9x! Ulm> (e, X =, (X )’k)(Bfk+1 )(Btk+1 — B ))‘
n—1 r fer1 aal 86
ZZZ/ [( 61]) (s, X5, TX)g) — (8 az]> (tks Xy (FX)zk)}
k=0 j=1 I=1 ]
n—1 r

+CZZZZ|Bfk+1 ”Btk+1_Btnk1|

k=0 j=1I=1 m=1

M ey —s wZ wZ wZ wZ
x (s =t + X = X g + [T XYy — (DX Y)y|ga) ds
173

(k41 — 1r)?
r n—1 )
+C YD IBL,, — Bl — )
j=1k=0

n—1 r

<% /;ZZ(IHI 1)

j=1li=1
00i; d0j; WZ Wz
“ [\ 5 Ulj (s Xt (CX)g) — oyl Ulj (1, X7, (DX ™))

d
a0,
> ( ax’{ azm) (e, X2, X))

X <8jm(tk+1 - tk) (Btk+l )(Btk+] - B;[:l )‘
n—l
FCY [ ok 1 = Xl + (DX, = (TN lp0) ds
k=0 "k
n—1 r r
+CZZZ|BU<+1 ||Blk+| _Bln:'
k=0 j=1m=1
Ul gy —s WZ _ yWZ wz wz
x ————— (s =+ X = X g + (CX ) — (CXV)y, [ga) ds
(1 — 1)
r n—1 )
+C Z |Btk+] By | (1 — 1)

1 k=0

Jj=

n—1
<CY (1 — 1) (1Xy — X2 ¥lga + (D X)y — (T X V%), |a)

k=0
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n—1
Z Z Mljm —+ CZ(tk+1 — 1) (IAII/2 + sup X — kalR")
k=0

j=1m=1 selty, tr+1]

n—-1 r r

+CZZZ|Blk+I ||Blk+| Bt’z

k=0 j=1m=1
x sup (s =t + X0 = XV ga + [T XV)g — (DXV), | pa)
s€ltr,trg1]
r n—1 )
+ CZZ |sz+, By | (trs1 — 1)
j=1k=0
tn
< C/ sup | X, — XV |gads ~|— 3 ,_max Z Z ,u”m
0 uel0,s]

jlml

n—1
+CY (a1 — 1) <|A|1/2 + osup X - szlw>

k=0 s€ltp, tr+11

n—-1 r r

+CY DD 1B, - ||Btk+.—B$|(IA|”2+ sup lXYZ—X?,YZIRd)

k=0 j=1 m=1 SE[te, tr+1]

r n—1

+CZZ|Blk+| Btjk|(tk+1 — ).

j=1k=0

By taking the L”-norm of the both sides and applying Lemmas 3.3 and 3.7, Example 5.3 and
Holder’s inequality, we obtain

) pi/p
E[ max '(tk)”
k=0,1,...,n
., 1/p
§C|A|1/2+C/ sup |X, — XA, | ds
0 uel0,s]

1/p
+C Y (tkr1 — 1) |A|”2+E[ sup |Xs—sz|ﬁid}

SE[tk,tk41]

1/p
P
+CZZZE[IBM ey, e (141 sup |X§VZ—X?ZZ|Rd)}

k=0 j=1m=1 S€[tg,tk+1]

r n—1

+ CZZ £ |:|Blk+l |p] (k1 — 1)

Jj=1k=0
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1/p

In

5C|A|1/2+c/ E| sup Xy — X210, | ds
0 uel0,s]

n—1 r r

+CY Y B[, - By ]

k=0 j=1 m=1

1/(3p) 1/Gp)

3
['Btk+1 B Btrlljl p]
1/G3p)

3p
x E (|A|1/2+ sup |X§“Z—X>:/Z|Rd>

s€ltk,tit1]

1/p
5C|A|1/2+c/ sup |X, — XA, | ds.
0 uel0,s]

The desired estimate for 14 follows from this inequality.
Next we consider the estimate for /5. Note that for ¢ € [0, T']

@TxV4), —@xV), = f Pl XY %)ds

+ZZ / == (s, X} ) ju(s, X}, (CXV))d B

jlll

+Z / —( XV (s, XV ds + AXVE), — A(XWVE).

To simplify the notation, let

1
Gijm (1, %, y) —ZZ ’y EUERL TGRS y)i(r x), tel0,Tlx,yeR
=1 g=1

fori =1,2,...,dand jym =1,2,...,r. Fork=0,1,...,N—-1,i,l =1,2,...,d and
j=1,2,...,r,itholds that
et d0ij wz, B — Bl N
(th41 L (s, XV2, (Px W2yl grx V2!
% dy eyl — t

d r Te+1 BJ B B/
- ZZ/ (1 — s) (s XWZ T xWV7), )M
g=lm=l " Tyl — Ik
af! g _ pm
x i(s, XV G (s, XV (D x W2y el T g
s q s
o Te+1 — Ik

Ti41 BJ
tk+1
+ / (tit 1 ———
I Te+1 — Ik
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afl VA d afl wzZ WZ
_ - q
x| 56 X34+ 5 (5 X3 (s, XN

feet B}, - B}
[ =9 XV XV T A (),
173

Tkl — Ik
- Bl — BB —BM /
ot k+1 k+1 e (fk+1 tk)z

Ao af!
x [( 5 — oqm> (s, XM, XV (s, X3

do [
C o ) (1, XV ,(FXWZ»k)i(tk,X,WZ) ds
al k xq k

d
J0;
+y Z ( n T oqm> (tx, X (erZ»k)i(rk, X
qg=1m=
Tk+1 tre1 — S
x (B! Bf - B") /
Tk+1 tk+1 0" (tre1 — tk)z
S g1 — 8 903 wZ wZ
+ (8]~ Bl / (s, XVZ, (P XW2),)
Bkt w Wt — i 0y
x i( XV +Z—< XV s, X%
e+l 1 — 5 d0;
+ (B}, — B]) AL P (6, XV (DX V) d Al (XY,

n teal —tx 0y

Hence, by (10), we have forn =0,1,...,Nandi =1,2,...,d

L(tn)

)
< 3 E / gijj (s, Xs, T X)s)ds
— Jo
j=1

n—1 r r

N Z Z Z Gijm (T Xt\;(vz (FXWZ)’k)(Blk+| )(Bl‘k+l o Btr;:

k=0 j=1m=1

n—1 r r

+ Z Z Z |Btk+1 ”Btk+1 — By - _t/j)2

k=0 j—=1 m=1 wo (kg
X |gijm (s, X3 2, (PXV2)g) = gijm (1, X3y 20 (DX V), ) | ds

ds

ds
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r n—1

Tie+1 tk+1 — S
33D SISV Y R
j=1k=0 t k+1 —
r n—l1 )
+CY S TIBL,, — Bl Varg 1 (AXY)
j=1k=0

n—-1 r r

ZZZ 8jm(tr1 = 1) Gijm (1, X1, (T X))

k=0 j=1m=1
— gijm (e X2 (DX V%), )(B) | — BI)(B — B
n—1 r fk+1
> Z/ (9177 (5. X (TX)5) = gij (1 X (TX))] ds
k=0 j=1

n—-1 r r

+CZZZ|Bfk+1 ||B,k+l—Bt’]'j|

85

k=0 j=1m=1
W g =S wZ Wz Wz Wz
x L (5= i+ XY = XV g+ 1T XV, — (DXVE), |5a) ds
n (k1 — )
r n—l1 r n—1 )
+CY SIBL Bl =10 +C Y > |BL — B [Varyy g, 1 (AKX ™)
j=1k=0 j=1k=0

n—1 r

< 3 20 Dt = 10 g3 e X (TX)n) = g3 (e X3, (DX V),
k=0 j=1

1 r r n—1
5122 20 D G X (TX V)

j=1m=1k=0
X <8jm(tk+1 — ) — (B,,(+I )(B,k+1 - )‘
=l
+CZ/ (s_tk+|XS _th|]Rd+|(FX)s _(FX)tthd)dS
k=0""1

n—1 r r

+CZZZ|Btk+1 ”BtkH B;r,:l|

k=0 j=1 m=1

U ey — s wZ wZ wZ wZ
x (s =+ X = X ga + |(TX )y — (DX V) |pa) ds
173

(Tk1 — 16)?
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r n—l1
+C Y STIBL — Bl (te1 — ti + Varg, g, 1 (AX V)
Jj=1k=0
n—1
< CY (w1 — 1) (IXye = X P lpa + 1T XDy — (CX V) [a) + Z Z v
k=0 j=1m=1
n—1
+CY i —t) (1812 + sup  |Xy — Xy |pa
k=0 SE[tr,trt1]

n—1 r r

+CY D > IBh., — BilIBy, — B}

k=0 j=1 m=1
x sup (s — e+ X0 = XV ga + [T XYY — (DXV)y | pa)

s€ltg,tky1]
r n—1
+CY S IBL — Bl (e — i + Varg, g, 1 (AKX V)
j=1k=0
n WZ d 1 ijm
<C i MZI[,:)pY]|X = X, “lgads + 5 _max ZZU
j=1m=1

n—1
+C Y (k1 — 1) <|A|1/2 + sup X, - X,kw)
sel

k=0 SEltp fr1]

n—-1 r r

+CY DD 1B, - llBt,cH—B,’ZI(lAl”z+ sup IXXVZ—XXZZ@

k=0 j=1m=1 s€ltk,trg1]

+C Z ( max |Btk+l B} |) (T + Varpo, 71(A(XV2))) .

By taking the L?-norm of the both sides and applying Lemmas 3.3 and 3.7, Example 5.3 and
Holder’s inequality, we obtain

p:|1/p

1/p
In
< C|A|1/2+C/ E[ sup | X, —XMWZ|H§{,} ds

E max
k=0,1,....n

0 uel0,s]

n—1 1/p
+C Y (ka1 — 1) |A|”2+E[ sup |Xs—sz|§§,,]
[

k=0 SE[tk,tk41]
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n—-1 r r

+CZZ Z E |:|Blk+l |p|Bfk+1 — B

k=0 j=1m=1
pl/p
x <|A|1/2+ sup |X§VZ—X,\2’Z|R,1):|
el

€[tk tk+11
r n—l1 . 1/p
+CZZE[( max B}, B,fk|1’>(T+Var[o,T](A(XWZ)))"}
j=1k=0
f I/p
§C|A|1/2+C/ [ sup | X, —XWZ|R{,:| ds
0 uel0,s]

n—-1 r r

i 1/Gp) 1/(3p)
+CY S BB, - BIP) E 1By, - B

k=0 j=1m=1
1/Gp)

3p
x E <|A|1/2+ sup |X}VZ—X,VkVZ|Rd)
S

sEltk, tk+1]

i|1/(2p)

2p11/@2p)
+C Z E [ Jmax |B,k+1 - Bf R E [(T + Varpo, 71(A(X V%)) ”]

1/p
|: sup | Xy —X,szlféd:| ds

In
§C|A|1/2~|—C/ E :
u€l0,s]

0
+ CIAIV2(1 + log N) /2 <T +E [(Var[O,T](A(XWZ)))Z”]wm) .
Therefore, once it is shown that
(6) E[(Varoncacx¥)?]" < ¢,
the desired estimate for /5 is obtained. Let

W@t =0, X3 2 TXY) ), 1€ [k, ter)

fork =0,1,..., N — 1. The Burkholder-Davis-Gundy inequality implies

N—1 2p 1/(2p)
PNl — NI,
E| sup — 0o (&, XZ{VZ, (FXWZ)zk)(szH — By)
tel0.T1 | =y Thrl Tk R
t—1,
=E max sup | ————0 (ta, X} 2, (DX V%), )(By,,, — By,)

n=0,1...N=Lte[s, 1,11 | In+1 — In
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2p 1/2p)
n—1
+> ot X34 XV ) (By,, — By)
k=0 Rd
2 1/2p) tn 2p1/2p)
<CE B,. —B CE W (s)d By
<cu|, s, 18- mig]ver|, e |[Tvoan]
N-1 1/@2p) T p71/2p)
2
<cC (Z E[1B, - B,n|R’;]> +CE [(/ |W(s)|§d®R,ds) }
n=0 0
N—1 1/(2p)
<C (Z(tm —~ tn)P) +C
n=0
<cC.
By this inequality, (A3) and (10), we have
2p71/2p)
E [(Var[o,T](A(XWZ))) ”]
2,11/(2p)
= CE[(1 41XV = €llcqo.ryz)” |
2p1/2p)
N=1 inne By, — B, p
<C+CE| sup Y / o(s, X\ (DX WV ) =gy
te[0.T] | = YAtk Tkl — Tk R
; 2p71/C2p)
+CE| sup / b(s, XV%)ds
te[0,T] 1J0 R4
2p 1/2p)

N—1
EAtig] — AL
<C+CE| sup Ak T I
1€[0,T]

o, X2 7, (CXV%),) By, — By)
Te+1 — Ik

k=0 R4
pma Wz Wz Wz Wz
+CE | sup / (o(s, XY, (X )s) —o (e, X, 7 (X )n))
t€(0,T] k=0 YNk
2p11/C2P)
o B = Bu
Te+1 — Ik
Rd
N-1
B By, |pa
<C+CE| sup Zl 1 — Bulr
tel0.71 \ ;5 Tkl — Ik
2p11/CP)
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N—1 2p 1/2p)
<C+CE (Z 1By, — By lpa ( i1 —tx + sup  |XVF— XthVZ|Rd>>
k=0 s€[tr,te+1]
N—1 2p11/2P)
2
<C+CY E||By, — Byl ( o — i+ sup [XVZ— kavzmof)
k=0 s€ltp,trq1]
s 4p!/@P)
S C + C E I:lBtk+1 - Btkle:I
k=0
4p 1/ @P)
x E Vik+1 —tk + sup |X§VZ—X}:/Z|R(1
SE[tr, tr+11
g, 4p71/ @)
<C+C Y E[IBy, - Bulh]
k=0

1/(4p)

4

X | Vtke1 —tx + E |: [SUP ]|X§VZ - X,\Zle[;]
SE| Ik, k41

Hence, by Lemma 3.3 we obtain

1/@p)
E[(Var[O,T](A(XWZ)))Z”] !

N-—1

<C+C Z \/lk+1 — Ik <\/tk+1 — 1 +C\/tk+1 —tk>
k=0

<C.

Thus, (16) is proved. O

Now we are going to finish the proof of Theorem 3.2 by using the estimates above. From
(15), Lemmas 3.6 and 3.8 we have

R4

E[ ax |th—x,VkVZ"}

=0,1,...,n

(17) .

<C |A|1’/2(1—|-10gN)p/2+/ E| sup |Xu—X)%|0a | ds
0 uel0,s]

forn=0,1,..., N.
Fort € [t,, t,+1], (17) and Lemma 3.5 imply

E [ sup | Xy — X§V2|£d:|
s€[0,¢]
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<FE max sup |Xs - Xyz Iléd
k=0,1,....n s€ltp,tig1]

) wZ wz,p
pe |+CE| max  sup X4 —XV|0,
k=0,1,....n se[ty 1411

p
R4

<CE |:k max sup |Xs — Xy

=017 sefn, ty 1]

+ CE[ max | X, — X}'*
k=0,1,...,n

n
<C <|A|”/2(l + log N)P/? +/ E [ sup | Xy — quzlﬂ'éd] ds> )
0 uel0,s]

Hence, for ¢ € [0, T] it holds that
t
E| sup | X — Xyzhgd <C |A|p/2(1 +10gN)p/2~|—/ E| sup |Xu — X,szhgd ds| .
s€[0,¢] 0 uel0,s]

Applying Gronwall’s inequality, we obtain the estimate of Theorem 3.2.

4. Remark on the stochastic differential equations with the reflecting boundary
condition. In this section, we discuss the relation between stochastic differential equations
of the Markovian type with the reflecting boundary condition and path-dependent stochastic
differential equations, and see that the results in the present paper include some stochastic
differential equations of Markovian type with the reflecting boundary condition.

To study the reflection of stochastic processes, we usually consider the Skorohod equa-
tion. Let 7 > 0 and let D be a connected domain in R?. Denote the closure of D by D and
the boundary of D by dD. The solution to the Skorohod equation on D is defined as follows.

DEFINITION 4.1. Forgivenw e C([0, T]; RY) with wg € D, apair (£, ¢) € C([0, T1;
D) x C([0, T1; R?) is called a solution of the Skorohod equation on D, if ¢g = 0, ¢ has the
bounded variation on [0, T1],

sl:wl_i_(ﬁ[s IE[O,T],
t
Varj 11(¢) = /0 T3 p (&5 )d Var(g 51(¢), tel0,T],

and there exists n € C ([0, T]; RY) such that
n; € U{ﬁ e R% m| =1, B¢ —rn,r)N D = @}, te{sel0,T];& € dD}
r>0

¢
¢r = /(; n,d Varpg s1(¢), te[0,T]

where B(x,r) :={y € RY; [x —y| <r}forx e R and r > 0.

We remark that for ¢ € [0, T'] n, is an inward unit normal vector of d D at & . It is known
that; if the Skorohod equation has the existence and the uniqueness of the solution (£, ¢) with
respect to w, & is a sufficiently nice process to be regarded as “the reflected process of w”,
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and actually the reflected process of w is defined by £&. When the Skorohod equation has
the existence and the uniqueness of the solution, we call the mapping I" : C([0, T]; RY) —
C([0, T1; D) givenby I' : w > & the Skorohod map.

Originally the problem of stochastic differential equations with the reflecting boundary
condition was considered on half spaces. In the case that D is a half space Ri = {x =
(xl, x2, ..., xd) e R4 x! > 0}, the Skorohod equation has the existence and the uniqueness
of the solution and the Skorohod map is given by

(Tw), = (w} -

inf (wi A 0), wtz, R wfl)
s€[0,]
(see e.g. [4], [6] or [7].) In particular, the Skorohod map is Lipschitz continuous. The case
of general domains was studied by Tanaka [16]. He showed the existence and the uniqueness
of the solution in the case that the domain is in a certain class, which includes the convex
domains. Later, Tanaka’s result was extended to the cases of more general domains by Lions
and Sznitman [10] and Saisho [13]. It is known that even in the cases of such a general domain
the Skorohod map is (1/2)-Holder continuous (see Theorem 1.1 in [10]). On the other hand, it
is also known that, even if the Skorohod equation has the existence and the uniqueness of the
solution, there exist some domains such that the Skorohod map is not Lipschitz continuous
(see Proposition 4.1 in [7]). Note that a necessary and sufficient condition for the Skorohod
map to be Lipschitz continuous is also obtained in [7]. The boundary condition mentioned
above is of a simple type of the reflection. We remark that the cases of the more general
boundary conditions, for example the oblique reflecting boundary condition and the boundary
condition of the Wentzell type, are also studied (see [10] and Section 7 of Chapter IV in [9]).
Now we see the relation between stochastic differential equations with the reflecting
boundary condition and path-dependent stochastic differential equations. Let D be a con-
nected domain in R such that the Skorohod equation on D has the existence and the unique-
ness of the solution, and denote the Skorohod map by I'. Consider a stochastic differential
equation with the reflecting boundary condition,

(18) { dXt ZG(I,Xt)dBt+b(t, X;)d[-'-d@t

Xo =xeD

where ® plays the role of the reflection of X on dD, i.e. I'(X — ®) = X. On the other hand,
consider a path-dependent stochastic differential equation

dY; =o(t, (TY))dB; +b(t, (TY),)dr

(19) { Yo =xeD.

Then, there is a one-to-one correspondence between solutions to (18) and (19). Indeed, if Y
is a solution to (19), X defined by X = I'Y satisfies (18). While, if X is a solution to (18),
then Y defined by

t

t
Y; :x+/ a(s,XS)dBS—i—/ b(s, Xs)ds, te]0,T]
0 0
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satisfies (19). Hence, there is the equivalence between solving (18) and (19). The equivalence
is originally introduced in the case of half spaces by Anderson and Orey (see Proposition 1 of
(4D.

In view of this fact, the results obtained in the present paper are applicable to the sto-
chastic differential equations of Markovian type with the reflecting boundary condition whose
Skorohod map is Lipschitz continuous. Indeed, the assumptions on the coefficients in Sec-
tion 2 are checked as follows.

PROPOSITION 4.2. Let I' be the Skorohod map and assume that I is Lipschitz contin-
uous. If o is an R? @ R” -valued bounded Lipschitz continuous function on [0, T] x R?, then
h(t, w) := o (t, (Tw),) satisfies (F1), (F2) and (F3) in Section 2 with a certain constant K.

PROOF. From the boundedness of o and the Lipschitz continuity of ¢ and I, (F1) and
(F3) are immediately obtained with a certain constant K. To see (F2), let s € [0, T'] and fix s.
Let (£, ¢) be the solution to the Skorohod equation with respect to w. Then, it is easy to see
that ((- As), ¢ (- A's)) is the solution to the Skorohod equation with respect to w(- A s). This
fact implies that for ¢ € [s, T']
& — &slpa = [(Tw)r — (Tw(- A $))s|ga
= ITHw —w( A e qo,0;rd

where ||I"|| is the Lipschitz constant of I'. Hence we have
(20) [(Tw); — Tw)slga = ITIw( +5) —wS)lleo,i—s):rRY)

for s,t € [0,T] such that s < ¢, and w € C([0, T]; Rd). From this inequality and the
Lipschitz continuity of o we obtain (F2). o

REMARK 4.3. Theorem 2.2 in [7] implies that the Skorohod map is Lipschitz contin-
uous if the domain is a convex polyhedron. Hence, this fact, Theorem 2.2 and Proposition 4.2
yields the same rate of the convergence as Theorem 3 in [14].

Now we think of the assumptions on the coefficients in Section 3.

PROPOSITION 4.4. LetI' be the Skorohod map and assume that I is Lipschitz contin-
uous. Then, A(w); := (IC'w); — wy satisfies (A1) and (A2) in Section 3 with a certain constant
K 4, and satisfies (8) with f(t,x) :=x fort € [0, T] and x € R4,

PROOF. It is easy to see that A satisfies (Al). From (20) we have for s < ¢, and
w e C([0, T]; RY)

|AW) — AWslga < (14 ITDIwC + ) = w) leo.r—spere)
Hence, (A2) also holds. O

Even if the Skorohod map is Lipschitz continuous, it is difficult to see that the map A
defined in Proposition 4.4 satisfies (A3). However, some sufficient conditions on the domains
for (A3) have been concerned (see Lemma 2.6 in [16]). In particular, (A3) is satisfied when
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D is a half space. This fact immediately follows from the explicit form of the Skorohod map.
These cases are to be examples of the result in Section 3.

5. Appendix. In this section, we consider an upper estimate for the p-th moment of
the maximum of random variables.

PROPOSITION 5.1. Let ¢ be a non-negative, strictly increasing and convex function on
[0, 00), and { X} be a sequence of random variables such that E[¢ (| Xk|)] < oo for k € N.
Then,

B[, max x| <07t (5] max oaxn]) <o (Z El (|Xk|)])

k=1

forn € N where ¢~ (t) := inf{s € [0, 00); ¢ (s) > t}.

PROOF. Since
max |Xg| )= max XiD),
¢ (k_l,z,...,nl |) k:1,2,...,n¢(| D

by Jensen’s inequality we have

. (E [k_rlr,l?,).(..,n |Xk|D <E [‘/’ (k_rf,lf’f,,n |Xk|>:|

=E |:k=III}2a,)E.,n¢ (|Xk|):| .

Therefore, we obtain the first inequality. The second inequality is obvious. O

PROPOSITION 5.2. Let {Xy} be a sequence of random variables. Then,

p
E Xel? | < 0,p— 1} +|log| E | X
s 0| <m0 p =107+ o (£, o e

n p
< max{0, p — 1} + |:10g (Z E I:e|xk:|>:|

k=1

forn € Nand p € (0, 00).

PROOF. Define a function f on [0, c0) by
Fo = exp (7))

and let xg := max{0, p — 1}?. Then, it is easy to see that f is strictly increasing on [0, c0)
and convex on [xg, 00). Hence, by Proposition 5.1 we have forn € N
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P
E[ max |Xk|> . max | Xyl zx(l/f’}
k .. k 2

shyenns
=F| max |Xy|P I}, max | Xy
|:k_1,2,...,n | | [xo/p’OO) k=1,2,...,n | |

(= (o bty (s 01)) )
(o)

r(E] max f(|Xk|P)D

IA

| k=1,2,

p
10g< [ max e'xk:|>:|
k=1,2,...,n

On the other hand, forn € N

p
E |:< max |Xk|) ;o max | Xi| < x(l)/pi| < max{0, p — 1}7.
k=1,2,....n k=1,2,...,n

Therefore, we obtain the first inequality. The second inequality is obvious. O

EXAMPLE 5.3. Let B be the one-dimensional Brownian motion, A = {0 =1 < #; <
- < ty = T} be a partition of the interval [0, T], and p € [2, oo) Then, it holds that

p/2

2 (P p/2 1
¢ [k—o,lll,l.a.l.),(zv—l B = Btklp} <2718 (5 - 1) +|;log2+logN

forn € Nand p € (0,00). Indeed, applying Proposition 5.2 to the sequence of random

variables 1B —By we have
4(tk1—t) |

2 p/2
E max 1Bui = By
k=0,1,..N—1 \ 4(txy1 — tx)

5(5_1) [mg(NZO [ (Hﬂ)]p/z
=(§—1)p/ + (1ogvam) "™
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