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HOLOMORPHIC EQUIVALENCE PROBLEM FOR REINHARDT
DOMAINS AND THE CONJUGACY OF TORUS ACTIONS
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Abstract. In this paper, we give an answer to the holomorphic equivalence problem
for a basic class of unbounded Reinhardt domains. As an application, we show the conjugacy
of torus actions on such a class of Reinhardt domains, and discuss the relation between the
holomorphic equivalence problem for Reinhardt domains and the conjugacy of torus actions.

Introduction. Torus actions are used in various field of mathematics. Meanwhile, torus
actions themselves have very interesting properties. The conjugacy of torus actions (cf. Sec-
tion 4) is one of such properties and has fundamental importance in the study of torus actions.
When we are discussing torus actions on complex manifolds, the investigation of the conju-
gacy of torus actions has a close connection with some problem on several complex variables.
In fact, the holomorphic equivalence problem for Reinhardt domains in several complex vari-
ables is nothing but the investigation of the conjugacy of torus actions on a Reinhardt domain.
The purpose of this paper is to clarify this fact by giving an answer to the holomorphic equiv-
alence problem for a basic class of unbounded Reinhardt domains. Our results in this paper,
together with those in a sequent of papers [3], [4], [5], [6], [7], give illustrative examples of
the phenomenon that, in complex analysis, when some object admits a torus action, its torus
action direct an interplay between the analytic and algebraic structures of the object.

This paper is organized as follows. In Section 1, we recall basic concepts and results on
Reinhardt domains, and state as Theorem 1.2 a main result of this paper on the holomorphic
equivalence problem for a basic class of unbounded Reinhardt domains, which generalizes
results of [5], [6]. Our proof of Theorem 1.2 is done by making use of tube domains which
are covering manifolds of Reinhardt domains. In a sense, Reinhardt domains are rigid for
doing a change of coordinates, while tube domains are rather flexible for that. We utilize this
flexibility of tube domains. Observations on tube domains needed to prove Theorem 1.2 are
given in Section 2 together with a lemma from linear algebra. Section 3 is devoted to the
proof of Theorem 1.2. The conjugacy of torus actions on a Reinhardt domain is discussed
in Section 4. Section 5 gives a remark on automorphisms of unbounded Reinhardt domains
obtained from the proof of Theorem 1.2.
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1. Holomorphic equivalence problem for Reinhardt domains. We first collect
some notations and terminology. As a general notational convention, we denote elements
of Zn, Rn, or Cn by column vectors. When dealing with matrices, we denote by Ip and O
the unit matrix of degree p and the zero matrix, respectively. The diagonal matrix of degree n
with the i-th diagonal entry αi is denoted by diag (α1, . . . , αn). For an n× l matrixM = (vij )

with n > l and an l-tuple i1, . . . , il of indices with 1 ≤ i1 < · · · < il ≤ n, we define an l × l

matrix M(i1, . . . , il) by

M(i1, . . . , il) =
⎛
⎜⎝
vi11 · · · vi1l
...

...

vil1 · · · vil l

⎞
⎟⎠ .

The set of non-zero complex numbers is denoted by C∗. The multiplicative group of complex
numbers of absolute value 1 is denoted by U(1). An automorphism of a complex manifold
M means a biholomorphic mapping of M onto itself. The group of all automorphisms of M
is denoted by Aut(M). Two complex manifolds are said to be holomorphically equivalent if
there is a biholomorphic mapping between them.

We now recall basic concepts and results on Reinhardt domains (cf. Shimizu [3], [4]).
Write T = (U(1))n. The group T acts on Cn as a group of automorphisms by the standard
rule, i.e.,

α · z = t (α1z1, . . . , αnzn) for α = t (α1, . . . , αn) ∈ T and z = t (z1, . . . , zn) ∈ Cn.

By definition, a Reinhardt domain D in Cn is a domain in Cn which is stable under the
action of T , that is, α · D ⊂ D for all α ∈ T . The group T then acts on D as a group of
automorphisms. The subgroup of Aut(D) induced by the action of T is denoted by T (D).

An automorphism ϕ of (C∗)n is called an algebraic automorphism if the components of
ϕ are given by Laurent monomials, that is, ϕ is of the form

ϕ : (C∗)n � t (z1, . . . , zn) �−→ t (w1, . . . , wn) ∈ (C∗)n ,
wi = αiz

ai1
1 · · · zainn , i = 1, . . . , n ,

where (aij ) ∈ GL(n,Z) and (αi) ∈ (C∗)n. The set Autalg((C∗)n) of all algebraic automor-
phisms of (C∗)n forms a subgroup of Aut((C∗)n).

Let ϕ be an algebraic automorphisms of (C∗)n and write ϕ(z) = t (ϕ1(z), . . . , ϕn(z)). In
general, the components ϕ1, . . . , ϕn have zeroes or poles along each coordinate hyperplane.
If, for two domains D and D′ in Cn not necessarily contained in (C∗)n, they have no poles
on D and ϕ : D → Cn maps D biholomorphically onto D′, then we say that ϕ induces a
biholomorphic mapping of D ontoD′.

Consider a biholomorphic mapping ϕ : D → D′ between two Reinhardt domains D
onto D′ in Cn. The following proposition gives a necessary and sufficient condition for ϕ to
be equivariant with respect to the T -actions.

PROPOSITION 1.1 (cf. [4, Section 2]). The mapping ϕ is induced by an algebraic au-
tomorphism of (C∗)n if and only if ϕT (D)ϕ−1 = T (D′).
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Biholomorphic mappings between Reinhardt domains equivariant with respect to the T -
actions induce a natural equivalence relation between Reinhardt domains. In view of this
obsevation, we say that two Reinhardt domains in Cn are algebraically equivalent if there is a
biholomorphic mapping between them induced by an algebraic automorphism of (C∗)n. We
are led to the following problem.

PROBLEM (∗) (Holomorphic equivalence problem for Reinhardt domains). If two Rein-
hardt domains D and D′ in Cn are holomorphically equivalent, then are they algebraically
equivalent?

The answer to this problem is affirmative whenD andD′ are bounded [3, Section 4, The-
orem 1]. Furthermore, the proof in [3] is also valid for the class of Reinhardt domains whose
automorphism groups have the structure of Lie groups with respect to the compact-open topol-
ogy, which includes the class of Reinhardt domains that are holomorphically equivalent to
bounded domains. In the proof, we used the conjugacy of the torus actions on such Reinhardt
domains, which will be discussed in Section 4.

On the other hand, the unbounded case, that is, the case where D and D′ are not holo-
morphically equivalent to bounded domains, was treated in [5], [6], and [7], and an affirma-
tive answer to Problem (∗) was given for the two-dimensional pseudoconvex case. Besides,
arguments in [5], [6], [7] showed that a consideration of Reinhardt domains containing no
coordinate hyperplanes has basic importance for the study of Problem (∗) in the unbounded
case. When dealing with Reinhardt domains containing no coordinate hyperplanes, it seems
to be natural to put the assumption that the domains are pseudoconvex. In fact, for example,
to each pseudoconvex Reinhardt domain D in (C∗)n, there is a naturally associated integer
�(D) between 0 and n which indicates the measure of the unboundedness of D, and it holds
that D is algebraically equivalent to a bounded Reinhardt domain precisely when �(D) = 0
(see Section 2).

Now, our main result of this paper can be stated as follows:

THEOREM 1.2. If two pseudoconvex Reinhardt domainsD and D′ in (C∗)n are holo-
morphically equivalent, then they are algebraically equivalent.

It should be remarked here that if two pseudoconvex Reinhardt domains D and D′ in
(C∗)n are holomorphically equivalent, then we have �(D) = �(D′) (see Section 2), and when
�(D) = �(D′) = 0, Theorem 1.2 is an immediate consequence of [3, Section 4, Theorem 1],
because D and D′ are algebraically equivalent to bounded Reinhardt domains.

The proof of Theorem 1.2 will be given in Section 3 after making some preparations in
Section 2. Also, in Section 4, we present an application of Theorem 1.2 to the conjugacy of
torus actions.

2. Some observations. There is a useful correspondence between Reinhardt domains
and tube domains. A tube domain TΩ in Cn is a domain in Cn given by TΩ = Ω + √−1Rn,
where Ω is a domain in Rn. We call Ω the base of TΩ . For each element η of Rn, we define
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an automorphism ση of TΩ given as a translation of Cn by ση(ζ ) = ζ + √−1η for ζ ∈ TΩ .
Now consider a mapping ord : (C∗)n → Rn defined by

ord(t (z1, . . . , zn)) =
t(

− 1

2π
log |z1| , . . . ,− 1

2π
log |zn|

)
for t (z1, . . . , zn) ∈ (C∗)n .

If D is a Reinhardt domain in (C∗)n, then ord(D) is a domain in Rn, and it is well known
that D is pseudoconvex if and only if ord(D) is a convex domain in Rn. To each Reinhardt
domain D in (C∗)n, there is associated a tube domain TΩ in Cn with Ω = ord(D). The
tube domain TΩ naturally becomes a covering manifold of D. Indeed, introduce a covering

 : Cn → (C∗)n defined by


(t(ζ1, . . . , ζn)) = t
(
e−2πζ1, . . . , e−2πζn

)
for t (ζ1, . . . , ζn) ∈ Cn .

Then we have TΩ = 
−1(D), and the restriction 
 : TΩ → D is the covering projection.
The covering transformation group for 
 : TΩ → D is given by {ση ; η ∈ Zn}. We call TΩ
the covering tube domain of D and 
 : TΩ → D the canonical covering projection. Note
that ifD is pseudoconvex, then
 : TΩ → D gives the universal covering ofD. Indeed, if D
is pseudoconvex, then TΩ is simply connected, since Ω is convex.

Let D be a pseudoconvex Reinhardt domain in (C∗)n and write Ω = ord(D). Since Ω
is convex, there exists an affine transformation f of Rn such that

(2.1) f (Ω) = Ξ(1) × Rl ,

where l is an integer between 0 and n and Ξ(1) is a convex domain in Rn−l containing no
complete straight lines (cf. [2, Section 1.4]). This implies that if, for each point ξ of Ω , we
denote by Vξ the maximal vector subspace of Rn such that ξ + Vξ ⊂ Ω , then the vector
subspaces Vξ , ξ ∈ Ω coincide with each other, and its dimension is equal to l. As a con-
sequence, l is independent of the choice of f satisfying (2.1). Therefore the integer l is an
invariant associated with D, which we denote by �(D).

Here are some observations about �(D). Let D be a pseudoconvex Reinhardt domain in
(C∗)n and write Ω = ord(D). When �(D) = 0, the domain D is algebraically equivalent
to a bounded Reinhardt domain in (C∗)n (see [2, Lemma 1.4.12]). On the other hand, when
�(D) > 0, write an affine transformation f of Rn satisfying (2.1) as f (ξ) = Lξ + b for
ξ ∈ Rn, where L ∈ GL(n,R) and b ∈ Rn. If we define an affine transformation F of Cn by
F(ζ ) = Lζ + b for ζ ∈ Cn, then we have

F(TΩ) = Tf (Ω) = TΞ(1)×R�(D) = TΞ(1) × TR�(D) = TΞ(1) × C�(D) ,

and hence TΩ is holomorphically equivalent to TΞ(1)×C�(D). Since TΩ is a covering manifold
of D, this shows that D admits a nonconstant holomorphic mapping from C�(D). Note that
�(D) = n if and only if D = (C∗)n.

The following lemma implies that �(D) is a biholomorphic invariant.
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LEMMA 2.1. Let E × Cl and E′ × Cl
′

be two domains in Cn, where both E ⊂ Cn−l
and E′ ⊂ Cn−l′ are holomorphically equivalent to bounded domains. If there exists a biholo-
morphic mapping Φ : E × Cl → E′ × Cl

′
. then l is equal to l′. Moreover, if we write each

point w ∈ Cn = Cn−l × Cl as

w =
(
w(1)

w(2)

)
, w(1) ∈ Cn−l , w(2) ∈ Cl ,

then Φ is of the form

Φ : E × Cl � w =
(
w(1)

w(2)

)
�−→

(
Φ(1)(w(1))

Φ(2)(w)

)
∈ E′ × Cl

′

for a biholomorphic mappingΦ(1) : E → E′.

PROOF. We define Σw(1) = {w(1)} × Cl for w(1) ∈ E. Since E is holomorphically
equivalent to a bounded domain, the collection {Σw(1)}w(1)∈E is the Liouville foliation on
E × Cl in the sense of [5]. Analogously, the collection {Σ ′

w′(1)}w′(1)∈E′ defined by Σ ′
w′(1) =

{w′(1)} × Cl
′

for w′(1) ∈ E′ is the Liouville foliation on E′ × Cl
′
. Note thatΣw(1) andΣ ′

w′(1)
are holomorphically equivalent to Cl and Cl

′
, respectively. By [5, Proposition 2.1], there

exists a bijection τ : E → E′ such that

(2.2) Φ(Σw(1) ) = Σ ′
τ (w(1)) for every w(1) ∈ E .

As a consequence, Φ induces a biholomorphic mapping from Σw(1) to Σ ′
τ (w(1)), which im-

plies the first assertion. The second assertion also follows from (2.2). �

COROLLARY 2.2. If two pseudoconvex Reinhardt domains D and D′ in (C∗)n are
holomorphically equivalent, then �(D) is equal to �(D′).

PROOF. Let TΩ and TΩ ′ be the covering tube domains ofD andD′, respectively. Since
D and D′ are pseudoconvex,
 : TΩ → D and 
 : TΩ ′ → D′ are the universal coverings
of D and D′, respectively. Since D and D′ are holomorphically equivalent, TΩ and TΩ ′ are
also holomorphically equivalent. On the other hand, as observed before Lemma 2.1, TΩ is
holomorphically equivalent to TΞ(1) × C�(D), where TΞ(1) is a tube domain in Cn−�(D) whose
base Ξ(1) is a convex domain in Rn−�(D) containing no complete straight lines, while TΩ ′
is holomorphically equivalent to T

Ξ ′(1) × C�(D
′), where T

Ξ ′(1) is a tube domain in Cn−�(D′)

whose base Ξ ′(1) is a convex domain in Rn−�(D′) containing no complete straight lines. We
thus conclude that TΞ(1) × C�(D) and T

Ξ ′(1) × C�(D
′) are holomorphically equivalent. Since

both TΞ(1) and T
Ξ ′(1) are holomorphically equivalent to bounded domains, Lemma 2.1 implies

that �(D) = �(D′). �

We denote by GL(n,Z) � Cn the group of all complex affine transformations of Cn

whose linear parts belong to GL(n,Z). We discuss the relation between Autalg((C∗)n) and
GL(n,Z) � Cn. Let Φ be any element of GL(n,Z) � Cn and write Φ(ζ ) = Aζ + β for
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ζ ∈ Cn, where A = (aij ) ∈ GL(n,Z) and β = (βi) ∈ Cn. Then we can define an element ϕ
of Autalg((C∗)n) by

ϕ : (C∗)n � t (z1, . . . , zn) �−→ t (w1, . . . , wn) ∈ (C∗)n ,

wi = e−2πβi z
ai1
1 · · · zainn , i = 1, . . . , n .

The mapping ρ : GL(n,Z)�Cn → Autalg((C∗)n) sendingΦ to ϕ is a group homomorphism.
Note that the kernel of ρ is given by {ση ; η ∈ Zn} ⊂ Aut(Cn), and ρ is compatible with the
covering projection
 : Cn → (C∗)n in the following sense:

(2.3) 
 ◦Φ = ρ(Φ) ◦
 for every Φ ∈ GL(n,Z) � Cn .

Let D and D′ be Reinhardt domains in (C∗)n, and TΩ and TΩ ′ the tube domains in Cn given
as the covering of D and D′, respectively. If Φ is an element of GL(n,Z) � Cn, then, by
(2.3), we have ρ(Φ)(D) = D′ precisely when Φ(TΩ) = TΩ ′ . As a consequence, we see that
if there exists an element Φ of GL(n,Z) � Cn such that Φ(TΩ) = TΩ ′ , then D and D′ are
algebraically equivalent.

If Φ : TΩ → TΩ ′ is a biholomorphic mapping between TΩ and TΩ ′ and there exists
A ∈ GL(n,Z) such that

(2.4) Φ(ζ + √−1m) = Φ(ζ )+ √−1Am for every ζ ∈ TΩ and every m ∈ Zn ,

then, since the covering transformation groups for 
 : TΩ → D and 
 ′ : TΩ ′ → D′ are
given by {ση ; η ∈ Zn} ⊂ Aut(TΩ) and {ση ; η ∈ Zn} ⊂ Aut(TΩ ′), respectively, it follows
that there exists a biholomorphic mapping ϕ : D → D′ with 
 ′ ◦ Φ = ϕ ◦
 . Conversely,
when D and D′ are pseudoconvex, every biholomorphic mapping ϕ : D → D′ between D
and D′ has a lifting Φ : TΩ → TΩ ′ , i.e., a biholomorphic mapping Φ : TΩ → TΩ ′ such
that 
 ′ ◦ Φ = ϕ ◦
 , satisfying (2.4) for some A ∈ GL(n,Z), because 
 : TΩ → D and

 ′ : TΩ ′ → D′ are the universal coverings of D and D′, respectively. As a consequence, we
have the following proposition, which is a useful tool in our investigation.

PROPOSITION 2.3. Let Φ : TΩ → TΩ ′ be a biholomorphic mapping of tube domains
in Cn such that the convex hulls ofΩ andΩ ′ contain no complete straight lines. Suppose that
there exist A,B ∈ GL(n,R) such that

(2.5) Φ(ζ + √−1Am) = Φ(ζ )+ √−1Bm for every ζ ∈ TΩ and every m ∈ Zn .

Then Φ is an affine transformation of Cn whose linear part belongs to GL(n,R).

PROOF. We define linear automorphismsFA andFB of Cn by FA(w) = Aw andFB(w)
= Bw for w ∈ Cn. Then FA−1(TΩ) and FB−1(TΩ ′) are tube domains in Cn. Indeed, writing
Ξ = A−1Ω and Ξ ′ = B−1Ω ′, we have FA−1(TΩ) = TΞ and FB−1(TΩ ′) = TΞ ′ . Note that,
since the convex hulls ofΩ andΩ ′ contain no complete straight lines, so do the convex hulls
of Ξ and Ξ ′. We set E = 
(TΞ) and E′ = 
(TΞ ′). By the definition of 
 , E and E′
are Reinhardt domains in (C∗)n, and TΞ and TΞ ′ are the covering tube domains of E and E′,
respectively. Applying [3, Section 6, Corollary to Theorem 2] to E and E′ yields that every
biholomorphic mapping of E onto E′ is induced by an algebraic automorphism of (C∗)n.
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Now consider a biholomorphic mapping Ψ : TΞ → TΞ ′ between TΞ and TΞ ′ given by
Ψ = FB

−1 ◦ Φ ◦ FA. Then we see from (2.5) that Ψ satisfies Ψ (w + √−1m) = Ψ (w) +√−1m for every w ∈ TΞ and every m ∈ Zn. Therefore, as observed above, there exists
a biholomorphic mapping ψ : E → E′ such that 
 ′ ◦ Ψ = ψ ◦ 
 . By the result of the
preceding paragraph,ψ is induced by an algebraic automorphism of (C∗)n. This implies that
we can find an element Ψ0 ofGL(n,Z)�Cn such that Ψ0(TΞ) = TΞ ′ and
 ′ ◦Ψ0 = ψ ◦

on TΞ . Note that both Ψ : TΞ → TΞ ′ and Ψ0 : TΞ → TΞ ′ are liftings of ψ . Replacing Ψ0 by
ση ◦ Ψ0 for some η ∈ Zn if necessary, we may assume that Ψ (w0) = Ψ0(w0) for a point w0

of TΞ . Then we have Ψ = Ψ0 by the uniqueness of lifting, i.e., Φ = FB ◦ Ψ0 ◦ FA−1. Since
FB ◦ Ψ0 ◦ FA−1 is an affine transformation of Cn, this completes the proof. �

We conclude this section with a lemma from linear algebra.

LEMMA 2.4. Let U be any real n × n matrix. Then there exists a diagonal ma-
trix diag (ε1, . . . , εn) of degree n with the i-th diagonal entry εi = ±1 such that In +
Udiag (ε1, . . . , εn) ∈ GL(n,R).

PROOF. Write In = (e1 · · · en), where {e1, . . . , en} is the standard basis of Rn. Write
U = (u1 · · · un) with u1, . . . , un ∈ Rn. Then the assertion of Lemma 2.4 is equivalent
to the assertion that there exist constants εj = ±1, j = 1, . . . , n, such that n elements
e1 +ε1u1, . . . , en+εnun of Rn are linearly independent. We prove this assertion by induction
on n.

When n = 1, our assertion simply inplies that, for any u ∈ R, we have 1 + u �= 0 or
1 − u �= 0. Clearly, this is true.

Suppose n > 1. Write

e1 =
(
e′1
0

)
, . . . , en−1 =

(
e′n−1

0

)
and u1 =

(
u′

1
un,1

)
, . . . , un−1 =

(
u′
n−1

un,n−1

)
,

where {e′1, . . . , e′n−1} is the standard basis of Rn−1, u′
1, . . . , u

′
n−1 ∈Rn−1 and un,1, . . . , un,n−1

∈ R. By the induction hypothesis, there exist constants εj = ±1, j = 1, . . . , n − 1, such
that n − 1 elements e′1 + ε1u

′
1, . . . , e

′
n−1 + εn−1u

′
n−1 of Rn−1 are linearly independent. We

observe that n− 1 elements e1 + ε1u1, . . . , en−1 + εn−1un−1 of Rn are linearly independent.
If n elements e1 + ε1u1, . . . , en−1 + εn−1un−1, en + un of Rn are linearly independent, then
our assertion holds for εn = 1. Assume that e1 + ε1u1, . . . , en−1 + εn−1un−1, en + un are
linearly dependent. Since e1 +ε1u1, . . . , en−1 +εn−1un−1 are linearly independent, it follows
that en + un = λ1(e1 + ε1u1) + · · · + λn−1(en−1 + εn−1un−1) for some λ1, . . . , λn−1 ∈ R,
which implies that en − un = 2en − λ1(e1 + ε1u1)− · · · − λn−1(en−1 + εn−1un−1). On the
other hand, it is readily verified that n elements e1 + ε1u1, . . . , en−1 + εn−1un−1, en of Rn

are linearly independent. We thus conclude that e1 + ε1u1, . . . , en−1 + εn−1un−1, en − un

are linearly independent, i.e., our assertion is valid for εn = −1. This completes the proof of
Lemma 2.4. �
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3. Proof of Theorem 1.2. We first note that, to prove Theorem 1.2, we may replaceD
andD′ by domains algebraically equivalent to them. Precisely speaking, if we take Reinhardt
domainsE andE′ in (C∗)n which are algebraically equivalent toD andD′, respectively, then,
to prove Theorem 1.2, it is sufficient to prove that E and E′ are algebraically equivalent.

Now, by assumption, there exists a biholomorphic mapping ϕ : D → D′. In view of
Corollary 2.2, we can set l = �(D) = �(D′). We also set k = n − l. If l = 0, then, as
remarked after Theorem 1.2 in Section 1, D and D′ are algebraically equivalent. If l = n,
thenD = D′ = (C∗)n, and, clearly,D andD′ are algebraically equivalent. Therefore suppose
that 0 < l < n. Replacing D and D′ by domains algebraically equivalent to them, we may
assume that D � t (1, . . . , 1) and D′ � t (1, . . . , 1). Let TΩ and TΩ ′ denote the covering tube
domains of D and D′, respectively. Note that Ω � t (0, . . . , 0) and Ω ′ � t (0, . . . , 0). Let
ϕ̃ : TΩ → TΩ ′ be a biholomorphic mapping given as a lifting of ϕ : D → D′. Then ϕ̃
satisfies the condition that, for some A ∈ GL(n,Z), we have

(3.1)
ϕ̃(ζ + √−1m) = ϕ̃(ζ )+ √−1Am

for every ζ ∈ TΩ and everym ∈ Zn .

We may assume that A = In in (3.1). To see this, write A−1 = (bij ). Since A−1 ∈
GL(n,Z), we can define an algebraic automorphism ψ of (C∗)n by

ψ : (C∗)n � t (z1, . . . , zn) �−→ t (w1, . . . , wn) ∈ (C∗)n ,

wi = z
bi1
1 · · · zbinn , i = 1, . . . , n .

Let D′′ be a Reinhardt domain in (C∗)n given by D′′ = ψ(D′) and TΩ ′′ the covering tube
domain of D′′. By the definition of ψ , the mapping ψ : D′ → D′′ has a lifting ψ̃ : TΩ ′ →
TΩ ′′ given by

(3.2) ψ̃(ζ ) = A−1ζ for ζ ∈ TΩ ′ .

Also, since D′ � t (1, . . . , 1) and ψ(t (1, . . . , 1)) = t (1, . . . , 1), we have D′′ � t (1, . . . , 1).
Now, as noted at the beginning of this section, to prove Theorem 1.2, we have only to prove
that D and D′′ are algebraically equivalent. Then, for the biholomorphic mapping ψ ◦ ϕ :
D → D′′, its lifting ψ̃ ◦ ϕ : TΩ → TΩ ′′ satisfies

ψ̃ ◦ ϕ(ζ + √−1m) = ψ̃ ◦ ϕ(ζ )+ √−1m

for every ζ ∈ TΩ and every m ∈ Zn ,

because of (3.1), (3.2), and the fact that ψ̃ ◦ ϕ(ζ ) = ψ̃ ◦ ϕ̃(ζ ) for ζ ∈ TΩ . Therefore we may
replace (3.1) by

(3.3)
ϕ̃(ζ + √−1m) = ϕ̃(ζ )+ √−1m

for every ζ ∈ TΩ and every m ∈ Zn .
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For further discussion, we need a method of simultaneous permutation of coordinates. To
explain this, let τ be a permutation of the set {1, . . . , n}. We define an algebraic automorphism
fτ of (C∗)n given as a permutation of coordinates by

fτ : (C∗)n � t (z1, . . . , zn) �−→ t (w1, . . . , wn) ∈ (C∗)n ,
wi = zτ(i) , i = 1, . . . , n .

Clearly, fτ : (C∗)n → (C∗)n has a lifting Fτ : Cn → Cn given by

Fτ : Cn � t (ζ1, . . . , ζn) �−→ t (ω1, . . . , ωn) ∈ Cn ,

ωi = ζτ(i) , i = 1, . . . , n .

Note that Fτ (TΩ) and Fτ (TΩ ′) are the covering tube domains of fτ (D) and fτ (D′), respec-
tively. Now consider a biholomorphic mapping fτ ◦ ϕ ◦ fτ−1 : fτ (D) → fτ (D

′) between
Reinhardt domains fτ (D) and fτ (D′) in (C∗)n. Then a lifting

(
fτ ◦ ϕ ◦ fτ−1

)∼ : Fτ (TΩ) →
Fτ (TΩ ′) of fτ ◦ ϕ ◦ fτ−1 : fτ (D) → fτ (D

′) is given by

(3.4)
(
fτ ◦ ϕ ◦ fτ−1)∼(ζ ) = Fτ ◦ ϕ̃ ◦ Fτ−1(ζ ) for ζ ∈ Fτ (TΩ) .

It follows from (3.3) and (3.4) that the lifting
(
fτ ◦ ϕ ◦ fτ−1)∼ : Fτ (TΩ) → Fτ (TΩ ′) satisfies(

fτ ◦ ϕ ◦ fτ−1)∼(ζ + √−1m) = (
fτ ◦ ϕ ◦ fτ−1)∼(ζ )+ √−1m

for every ζ ∈ Fτ (TΩ) and every m ∈ Zn .

This shows that if necessary for our argument, we can take fτ (D), fτ (D′), Fτ (TΩ), Fτ (TΩ ′),
fτ ◦ϕ ◦fτ−1 : fτ (D) → fτ (D

′),
(
fτ ◦ ϕ ◦ fτ−1)∼ : Fτ (TΩ) → Fτ (TΩ ′) asD,D′, TΩ , TΩ ′ ,

ϕ : D → D′, ϕ̃ : TΩ → TΩ ′ without changing the condition (3.3). We call this procedure a
simultaneous permutation of coordinates.

Before proceeding to the next step, we make a few preparations from linear algebra. Let
{v1, . . . , vl} and {v̄1, . . . , v̄l} be two sets of linearly independen l elements of Rn, and let
{v1, . . . , vl}R and {v̄1, . . . , v̄l}R denote the vector subspaces of Rn spanned by {v1, . . . , vl}
and {v̄1, . . . , v̄l}, respectively. We define n × l matrices M and M by M = (v1 · · · vl) and
M = (v̄1 · · · v̄l ). Then we have {v1, . . . , vl}R = {v̄1, . . . , v̄l}R if and only if there exists an
element P of GL(l,R) such that M = MP . Now, let V be an l-dimensional vector subspace
of Rn. For each basis {v1, . . . , vl} of V , we define an n×l matrixM byM = (v1 · · · vl). Then
M is of rank l, that is, there exists an l-tuple i1, . . . , il of indices with 1 ≤ i1 < · · · < il ≤ n

such that detM(i1, . . . , il) �= 0. We call M a representative of matrix expressions of V
or simply a representative of V . By what we stated above, any representative M of V is
obtained from one representative M of V by M = MP , where P ∈ GL(l,R). Note that
when M and M are two representatives of V , for every l-tuple i1, . . . , il of indices with
1 ≤ i1 < · · · < il ≤ n, we have detM(i1, . . . , il) �= 0 if and only if detM(i1, . . . , il) �= 0.

Turning to the proof of the theorem, let V denote the maximal l-dimensional vector sub-
space of Rn contained in Ω and let M be a representative of matrix expressions of V . Simi-
larly, let V ′ denote the maximal l-dimensional vector subspace of Rn contained in Ω ′ and let
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M ′ be a representative of matrix expressions of V ′. The following lemma plays an important
role in our proof. Note that the proof of the lemma depends crucially on the condition (3.3).

LEMMA 3.1. There exists an l-tuple i1, . . . , il of indices with 1 ≤ i1 < · · · < il ≤ n

such that detM(i1, . . . , il) �= 0 and detM ′(i1, . . . , il) �= 0.

PROOF. Suppose contrarily that, for every l-tuple i1, . . . , il of indices with 1 ≤ i1 <

· · · < il ≤ n, we have detM(i1, . . . , il) = 0 or detM ′(i1, . . . , il) = 0.
Since rankM ′ = l, by a suitable simultaneous permutation of coordinates, M ′ has the

form

(3.5) M ′ =
(
M ′(1)

M ′(2)

)
,

where M ′(2) is an l × l matrix and detM ′(2) �= 0. Write

M =
(
M(1)

M(2)

)
,

where M(2) is an l × l matrix. Since detM ′(k + 1, . . . , n) = detM ′(2) �= 0, our hypothesis
yields that 0 = detM(k + 1, . . . , n) = detM(2), or rankM(2) < l. We set r = l − rankM(2),
and write

(3.6) M(2) =
(
M
(2)
11 M

(2)
12

M
(2)
21 M

(2)
22

)
,

where M(2)
22 is an r × r matrix. By taking another representative of V as M if necessary, we

have

rank

(
M
(2)
11

M
(2)
21

)
= l − r .

Therefore we may assume that detM(2)
11 �= 0 in (3.6) after a suitable simultaneous permutation

of coordinates from the k+1-th through the n-th. Then, again by taking another representative
of V as M if necessary, we have M(2)

11 = Il−r and M(2)
12 = O . Since rankM(2) = l − r , it

follows that M(2)
22 = O , so that

M(2) =
(
Il−r O

M
(2)
21 O

)
.

Note that M ′ still has the form (3.5) with detM ′(2) �= 0.
We look into M(1). Since rankM = l, by a suitable simultaneous permutation of coor-

dinates from the first through the k-th,M(1) has the form

M(1) =
(
M
(1)
11 M

(1)
12

M
(1)
21 M

(1)
22

)
,
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where M(1)
22 is an r × r matrix and

(3.7) det

(
M
(1)
21 M

(1)
22

Il−r O

)
�= 0 .

Since detM(1)
22 �= 0 as a consequence of (3.7), by taking another representative of V as M if

necessary, we have M(1)
22 = Ir and M(1)

21 = O . Moreover, again by taking another representa-
tive of V as M , we conclude that M has the form

(3.8) M =

⎛
⎜⎜⎜⎜⎝
M
(1)
12 M

(1)
11

Ir O

O Il−r
O M

(2)
21

⎞
⎟⎟⎟⎟⎠ .

Note that we have necessarily k ≥ r . We set s = k − r . Note also that M ′ still has the form
(3.5) with detM ′(2) �= 0.

We look into M ′. Since detM ′(2) �= 0, by taking another representative of V ′ as M ′ if
necessary, we haveM ′(2) = Il . Write

(3.9) M ′ =

⎛
⎜⎜⎜⎜⎝
M ′(1)

11 M ′(1)
12

M ′(1)
21 M ′(1)

22

Il−r O

O Ir

⎞
⎟⎟⎟⎟⎠ ,

where M ′(1)
22 is an r × r matrix. Since detM(s + 1, . . . , n − r) �= 0 by (3.8), our hypothesis

yields that detM ′(s + 1, . . . , n− r) = 0. Therefore, in (3.9), we have

det

(
M ′(1)

21 M ′(1)
22

Il−r O

)
= 0 .

This implies that detM ′(1)
22 = 0.

We now define elements L and L′ of GL(n,R) by

L =

⎛
⎜⎜⎜⎜⎝
Is −M(1)

12 −M(1)
11 O

O O −M(2)
21 Ir

O Ir O O

O O Il−r O

⎞
⎟⎟⎟⎟⎠ and L′ =

⎛
⎜⎜⎜⎜⎝
Is O −M ′(1)

11 −M ′(1)
12

O Ir −M ′(1)
21 −M ′(1)

22

O O Il−r O

O O O Ir

⎞
⎟⎟⎟⎟⎠ .

It is readily verified that

(3.10) LM =
(
O

Il

)
and L′M ′ =

(
O

Il

)
.

Write Ξ = LΩ and Ξ ′ = L′Ω ′. Then (3.10) implies that

(3.11) Ξ = Ξ(1) × Rl and Ξ ′ = Ξ ′(1) × Rl ,
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where Ξ(1) and Ξ ′(1) are convex domains in Rk containing no complete straight lines. We
define automorphisms FL and FL′ of Cn given as linear transformations by

(3.12) FL(ζ ) = Lζ for ζ ∈ Cn and FL′(ζ ) = L′ζ for ζ ∈ Cn.

It follows from (3.11) that

(3.13)
FL(TΩ) = TΞ = TΞ(1) × TRl = TΞ(1) × Cl

and FL′(TΩ ′) = TΞ ′ = T
Ξ ′(1) × TRl = T

Ξ ′(1) × Cl .

Consider a biholomorphic mappingΦ : TΞ → TΞ ′ given byΦ = FL′ ◦ ϕ̃ ◦FL−1. Then,
by (3.3), Φ satisfies

(3.14)
Φ(w + √−1Lm) =Φ(w)+ √−1L′m

for every w ∈ TΞ and everym ∈ Zn .

On the other hand, because of (3.13), an application of Lemma 2.1 to Φ yields that if each
point w ∈ Cn = Ck × Cl is written as

w =
(
w(1)

w(2)

)
, w(1) ∈ Ck, w(2) ∈ Cl ,

then Φ has the form

(3.15)

Φ : TΞ = TΞ(1) × Cl � w =
(
w(1)

w(2)

)

�−→
(
Φ(1)(w(1))

Φ(2)(w)

)
∈ T

Ξ ′(1) × Cl = TΞ ′ ,

where Φ(1) : TΞ(1) � w(1) �→ Φ(1)(w(1)) ∈ T
Ξ ′(1) gives a biholomorphic mapping of TΞ(1)

onto T
Ξ ′(1) . Therefore we see from (3.14) that Φ(1) satisfies

(3.16)
Φ(1)(w(1) + √−1L(1)m) = Φ(1)(w(1))+ √−1L′(1)m

for every w(1) ∈ TΞ(1) and every m ∈ Zn ,

where

L(1) =
(
Is −M(1)

12 −M(1)
11 O

O O −M(2)
21 Ir

)
and L′(1) =

(
Is O −M ′(1)

11 −M ′(1)
12

O Ir −M ′(1)
21 −M ′(1)

22

)
.

Write L(1) = (uij ) and L′(1) = (u′
ij ). Then we have form = (m1, . . . ,mn) ∈ Zn,

(3.17)

L(1)m = t (d1, . . . , dk) ,{
di = mi +∑k

j=s+1 uijmj +∑n−r
j=k+1 uijmj , i = 1, . . . , s ,

di = ml+i +∑n−r
j=k+1 uijmj , i = s + 1, . . . , k ,
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and

(3.18)

L′(1)m = t (d ′
1, . . . , d

′
k) ,⎧⎨

⎩
d ′
i = mi +∑n−r

j=k+1 u
′
ijmj +∑k

j=s+1 u
′
i,l+jml+j , i = 1, . . . , s ,

d ′
i = mi +∑n−r

j=k+1 u
′
ijmj +∑k

j=s+1 u
′
i,l+jml+j , i = s + 1, . . . , k.

We show thatΦ(1)is an affine transformation of Ckwhose linear part belongs toGL(k,R).
In (3.16), write

m = t (m1, . . . ,mn) and m(1) = t (m1, . . . ,ms,ms+1, . . . ,mk) ,

and put

mi = 0 for i = k + 1, . . . , n− r and ml+i = εimi for i = s + 1, . . . , k ,

where εi = ±1, i = s + 1, . . . , k. Then (3.17) shows that

(3.19) L(1)m =
(
Is P

O Q

)
m(1) ,

where Q is an r × r matrix given by Q = diag (εs+1, . . . , εk). On the other hand, (3.18)
shows that

(3.20) L′(1)m =
(
Is P ′
O Q′

)
m(1) ,

where Q′ is an r × r matrix given by Q′ = Ir + Ndiag (εs+1, . . . , εk), N being some r × r

matrix independent of εi, i = s + 1, . . . , k. Note that, by Lemma 2.4, a suitable choice of
εi, i = s + 1, . . . , k yields that Q′ is a nonsingular r × r matrix. When εi, i = s + 1, . . . , k
are chosen so, k × k matrices C and C′ given by

C =
(
Is P

O Q

)
and C′ =

(
Is P ′
O Q′

)

are nonsingular, and, by (3.16), (3.19), and (3.20), Φ(1) satisfies

Φ(1)(w(1) + √−1Cm(1)) = Φ(1)(w(1))+ √−1C′m(1)

for every w(1) ∈ TΞ(1) and every m(1) ∈ Zk .

Since the bases Ξ(1) and Ξ ′(1) of the tube domains TΞ(1) and T
Ξ ′(1) are convex domains in

Rk containing no complete straight lines, it follows from Proposition 2.3 that Φ(1) is an affine
transformation of Ck whose linear part belongs to GL(k,R).

What we have shown in the preceding paragraph implies that Φ(1) is given by

(3.21) Φ(1)(w(1)) = Uw(1) + β(1) for w(1) ∈ TΞ(1) ,

where U ∈ GL(k,R) and β(1) ∈ Ck . In (3.16), write

m = t (m1, . . . ,mn) and m(0) = t (m1, . . . ,ms,mn−r+1, . . . ,mn) ,
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and put mi = 0 for i = s + 1, . . . , n− r . Then (3.17) shows that

(3.22) L(1)m = m(0) .

On the other hand, (3.18) shows that

(3.23) L′(1)m =
(
Is −M ′(1)

12

O −M ′(1)
22

)
m(0) .

Note that detM ′(1)
22 = 0. Therefore a k × k matrixD′ given by

D′ =
(
Is −M ′(1)

12

O −M ′(1)
22

)

is singular, and, by (3.16), (3.22), and (3.23),Φ(1) satisfies

Φ(1)(w(1) + √−1m(0)) = Φ(1)(w(1))+ √−1D′m(0)

for every w(1) ∈ TΞ(1) and everym(0) ∈ Zk .

It follows from (3.21) and this relation that Um(0) = D′m(0) for every m(0) ∈ Zk , and hence
that U = D′. SinceD′ is a singular k× k matrix, this contradicts the fact that U ∈ GL(k,R),
and the proof of Lemma 3.1 is completed. �

Lemma 3.1 implies that, after a suitable simultaneous permutation of coordinates, we
may assume that M and M ′ have the form

M =
(
M(1)

M(2)

)
and M ′ =

(
M ′(1)

M ′(2)

)
,

where M(2) and M ′(2) are l × l matrices and satisfy the condition that detM(2) �= 0 and
detM ′(2) �= 0. Then, by taking another representatives of V and V ′ asM andM ′ if necessary,
we have M(2) = Il and M ′(2) = Il .

We now define elements L and L′ of GL(n,R) by

L =
(
Ik −M(1)

O Il

)
and L′ =

(
Ik −M ′(1)

O Il

)
.

It is readily verified that

(3.24) LM =
(
O

Il

)
and L′M ′ =

(
O

Il

)
.

Write Ξ = LΩ and Ξ ′ = L′Ω ′. Then (3.24) implies that Ξ = Ξ(1) × Rl and Ξ ′ =
Ξ ′(1) × Rl , where Ξ(1) and Ξ ′(1) are convex domains in Rk containing no complete straight
lines. We define automorphisms FL and FL′ of Cn given as linear transformations by (3.12).
Then we have (3.13).
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Consider a biholomorphic mapping Φ : TΞ → TΞ ′ given by Φ = FL′ ◦ ϕ̃ ◦ FL−1.
Then, as in the proof of Lemma 3.1, we have (3.14) and (3.15). It follows from (3.14) that the
mapping Φ(1) given in (3.15) satisfies

(3.25)
Φ(1)(w(1) + √−1L(1)m) = Φ(1)(w(1))+ √−1L′(1)m

for every w(1) ∈ TΞ(1) and everym ∈ Zn ,

where

(3.26) L(1) = (
Ik −M(1)

)
and L′(1) =

(
Ik −M ′(1)

)
.

We show that Φ(1) is a translation of Ck . In (3.25), write m = t (m1, . . . ,mn) and
m(1) = t (m1, . . . ,mk), and put mi = 0 for i = k + 1, . . . , n. Then, by (3.26), we have
L(1)m = m(1) and L′(1)m = m(1), and henceΦ(1) satisfies

(3.27)
Φ(1)(w(1) + √−1m(1)) = Φ(1)(w(1))+ √−1m(1)

for every w(1) ∈ TΞ(1) and every m(1) ∈ Zk .

Since the bases Ξ(1) and Ξ ′(1) of the tube domains TΞ(1) and T
Ξ ′(1) are convex domains in

Rk containing no complete straight lines, it follows from Proposition 2.3 that Φ(1) is an affine
transformation of Ck whose linear part belongs to GL(k,R), so that Φ(1) is given by

(3.28) Φ(1)(w(1)) = Uw(1) + β(1) for w(1) ∈ TΞ(1) ,

where U ∈ GL(k,R) and β(1) ∈ Ck . Substituting (3.28) into (3.27) yields that Um(1) = m(1)

for every m(1) ∈ Zk , which implies that U = Ik , or Φ(1) is a translation of Ck .
Since Φ(1) is given by

(3.29) Φ(1)(w(1)) = w(1) + β(1) for w(1) ∈ TΞ(1) ,

we see from (3.25) that L(1)m = L′(1)m for every m ∈ Zn, which implies that L(1) = L′(1).
Consequently, we have L = L′. On the other hand, since Φ(1)(TΞ(1)) = T

Ξ ′(1) and since Φ(1)

is given by (3.29), it follows that if we define a translation S of Cn by S(w) = w + β for
w ∈ Cn, where t β = (tβ(1), 0, . . . , 0), then S(TΞ ) = TΞ ′ , so that S(FL(TΩ)) = FL′(TΩ ′).
Therefore we obtain TΩ ′ = FL′−1(S(FL(TΩ))) = FL

−1(S(FL(TΩ))). Since FL−1 ◦ S ◦ FL :
TΩ → TΩ ′ is given by a translation of Cn, which is an element ofGL(n,Z)�Cn, we conclude
that D and D′ are algebraically equivalent. This completes the proof of Theorem 1.2.

4. Conjugacy of torus actions. As a closely related problem to Problem (∗) stated
in Section 1, we have the following problem.

PROBLEM (∗∗). Suppose that T = (U(1))n acts on a Reinhardt domain D in Cn not
necessarily by the standard rule stated in Section 1, but by the abstract rule that to each α ∈ T
is associated a biholomorphic mapping z �→ α · z of D onto itself such that:

(1) αβ · z = α · (β · z) for z ∈ D and α, β ∈ T ;
(2) the mapping (α, z) �→ α · z is a C1-mapping of the product manifold T ×D ontoD.
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Suppose further that T acts effectively on D, or the unit element of the group T is the only
element of T which leaves each z ∈ D fixed. If we denote again by T the subgroup of
Aut(D) induced by the action of T , then does there exist an element ϕ of Aut(D) such that
ϕT ϕ−1 = T (D)?

Dealing with, as an illustrative example, a Reinhardt domain whose automorphism group
has the structure of a Lie group with respect to the compact-open topology, we explain the
connection between Problem (∗) and Problem (∗∗). To begin with, we reproduce from [3] a
result that an affirmative answer to Problem (∗∗) is given for such a Reinhardt domain.

THEOREM 4.1. LetD be a Reinhardt domain whose automorphism group Aut(D) has
the structure of a Lie group with respect to the compact-open topology. If T is a torus in the
Lie group Aut(D), that is, a connected compact abelian subgroup of the Lie group Aut(D),
then there exists an element g of Aut(D) such that gT g−1 ⊂ T (D). Consequently, any n-
dimensional torus in Aut(D) is conjugate to T (D) under an inner automorphism of Aut(D).

SKETCH OF PROOF. The point is the fact that T (D) is a maximal torus in Aut(D).
Indeed, let T ′ be a torus in Aut(D) containing T (D), and take any element f = t (f1, . . . , fn)

of T ′, where f1, . . . , fn are holomorphic functions on D. Since f commutes with every
element of T (D), it follows that the functions f1, . . . , fn satisfy the condition that, for i =
1, . . . , n,

fi(
t (α1z1, . . . , αnzn)) = αifi(z)

for all z = t (z1, . . . , zn) ∈ D and all α1, . . . , αn ∈ U(1) .

By the uniqueness of Laurent expansions, we see from this fact that f is given by f (z) =
t (γ1z1, . . . , γnzn) for z = t (z1, . . . , zn) ∈ D, where γ1, . . . , γn ∈ C∗. If we write γ (f ) =
t (γ1, . . . , γn), then the mapping γ of T ′ into (C∗)n sending f to γ (f ) is a continuous group
homomorphism between the Lie groups T ′ and (C∗)n. The assumption that T ′ is a torus in
Aut(D) containing T (D) implies that γ (T ′) is a torus in (C∗)n containing (U(1))n. Since
(U(1))n is a maximal torus in (C∗)n, we obtain γ (T ′) = (U(1))n, and therefore T ′ = T (D),
which shows that T (D) is a maximal torus in Aut(D). Once we know that T (D) is a maximal
torus in Aut(D), the assertion of Theorem 4.1 is an immediate consequence of the conjugacy
theorems in the theory of Lie groups. �

By a well-known theorem of H. Cartan, if a Reinhardt domain D in Cn is holomorphi-
cally equivalent to a bounded domain, then Aut(D) has the structure of a Lie group with
respect to the compact-open topology, and hence Theorem 4.1 applies. We observe that the
above proof of Theorem 4.1 relies heavily on the fact that Aut(D) is small in the sense that
Aut(D) is a space of finite dimension. Therefore, when Aut(D) is not small, another approach
to Problem (∗∗) is needed. Actually, if D is not holomorphically equivalent to a bounded do-
main, then Aut(D) is in general very big, and far from being of finite dimension.

As an immediate consequence of Theorem 4.1, we obtain an affirmative answer to Prob-
lem (∗) for Reinhardt domains as in Theorem 4.1 (cf. [3, Section 4, Theorem 1]). Indeed,
let D and D′ be two Reinhardt domains in Cn whose automorphism groups Aut(D) and
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Aut(D′) have the structure of Lie groups with respect to the compact-open topology. If D
and D′ are holomorphically equivalent, and if ϕ : D → D′ is a biholomorphic mapping
between D and D′, then ϕT (D)ϕ−1 is an n-dimensional torus in Aut(D′), and hence an ap-
plication of Theorem 4.1 to T (D′) and ϕT (D)ϕ−1 yields that T (D′) = g(ϕT (D)ϕ−1)g−1 =
(g ◦ ϕ)T (D)(g ◦ ϕ)−1 for some g ∈ Aut(D′). By Proposition 1.1, we see from this fact that
the biholomorphic mapping g ◦ ϕ : D → D′ between D and D′ is induced by an algebraic
automorphism of (C∗)n, or D and D′ are algebraically equivalent.

Now, consider Problem (∗∗) for the unbounded case where a Reinhardt domainD in Cn

is not holomorphically equivalent to a bounded domain. The case ofD = Ck × (C∗)n−k was
treated in Barrett, Bedford, and Dadok [1]. On the other hand, combined with a result of [1],
Theorem 1.2 has the following consequence.

THEOREM 4.2. LetD be a pseudoconvex Reinhardt domain in (C∗)n with 0 < �(D) <

n. Suppose that a subgroup T of Aut(D) is given as in Problem (∗∗). Then there exists an
element ϕ of Aut(D) such that ϕT ϕ−1 = T (D).

PROOF. By [1], there exists a biholomorphic mappingψ ofD onto a Reinhardt domain
D′ in Cn such that

(4.1) ψT ψ−1 = T (D′) .
ThenD′ is contained in (C∗)n, because the pseudoconvex Reinhardt domainsD andD′ must
be homeomorphic. Note thatD′ satisfies 0 < �(D′) < n. SinceD andD′ are holomorphically
equivalent, we see by Theorem 1.2 that there exists an algebraic automorphism θ of (C∗)n
such that θ(D) = D′. Then we have

(4.2) θT (D)θ−1 = T (D′) .
It follows from (4.1) and (4.2) that ψT ψ−1 = T (D′) = θT (D)θ−1, and hence that (θ−1 ◦
ψ)T (θ−1 ◦ ψ)−1 = T (D). Since θ−1 ◦ ψ is a biholomorphic mapping of D onto D, or an
automorphism of D, this concludes the assertion of Theorem 4.2. �

5. A remark on automorphisms of unbounded Reinhardt domains. We first ob-
serve that if ϕ : D → D′ is a biholomorphic mapping between two Reinhardt domainsD and
D′ in (C∗)n, and if it has a lifting ϕ̃ : TΩ → TΩ ′ , where TΩ and TΩ ′ are the covering tube
domains ofD and D′, respectively, then an element A of GL(n,Z) for which we have

ϕ̃(ζ + √−1m) = ϕ̃(ζ )+ √−1Am for every ζ ∈ TΩ and every m ∈ Zn

is uniquely determined by ϕ independently of the choice of the lifting ϕ̃. We denote this
element A of GL(n,Z) by A(ϕ).

Now, for a pseudoconvex Reinhardt domain D in (C∗)n with �(D) > 0, we define a
subgroup Aut(D)◦ of Aut(D) by

Aut(D)◦ = {ϕ ∈ Aut(D) ; A(ϕ) = In} .
In this section, by making use of our argument in the proof of Theorem 1.2, we give a descrip-
tion of automorphisms of D belonging to Aut(D)◦ when 0 < �(D) < n.
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Let D be a pseudoconvex Reinhardt domain in (C∗)n with 0 < �(D) < n and write
l = �(D) and k = n− l. We denote by TΩ the covering tube domain ofD and assume that Ω
contains the origin. Let V denote the maximal l-dimensional vector subspace of Rn contained
in Ω and let M be a representative of matrix expressions of V . After a suitable permutation
of coordinates, we may assume that M has the form

M =
(
M(1)

M(2)

)
,

whereM(2) is an l×l matrix and satisfies detM(2) �= 0. Then, by taking another representative
of V as M if necessary, we have M(2) = Il . We define an element L of GL(n,R) by

L =
(
Ik −M(1)

O Il

)
,

and write Ξ = LΩ . Then we have Ξ = Ξ(1) × Rl , where Ξ(1) is a convex domain in Rk

containing no complete straight lines. Therefore, for an automorphism FL of Cn defined by
FL(ζ ) = Lζ for ζ ∈ Cn, we have FL(TΩ) = TΞ = TΞ(1) × Cl .

Let ϕ be any element of Aut(D)◦. Let ϕ̃ be an automorphism of TΩ given as a lifting
of ϕ and set Φ = FL ◦ ϕ̃ ◦ FL−1. Then, by the condition A(ϕ) = In, the automorphism Φ

of TΞ satisfies (3.14) with TΞ ′ = TΞ and L′ = L. On the other hand, Φ has the form (3.15)
with TΞ ′ = TΞ and T

Ξ ′(1) = TΞ(1) , whereΦ(1) : TΞ(1) � w(1) �→ Φ(1)(w(1)) ∈ TΞ(1) gives an
automorphism of TΞ(1) , while, for each fixed w(1) ∈ TΞ(1) , the mapping

Cl � w(2) �→ Φ(2)
(
w(1)

w(2)

)
∈ Cl

gives an automorphism of Cl . As a consequence of (3.14) with TΞ ′ = TΞ and L′ = L, the
mapping Φ(1) satisfies (3.25) with T

Ξ ′(1) = TΞ(1) and L′(1) = L(1). By the same argument
as in the proof of Theorem 1.2, we see from this relation that Φ(1) is a translation of Ck, or
Φ(1) is given by Φ(1)(w(1)) = w(1) + β(1) for w(1) ∈ TΞ(1) . Since the base Ξ(1) of TΞ(1) is
a convex domain in Rk containing no complete straight lines, it follows that β(1) ∈ √−1Rk .
We observe that Φ(2) satisfies

Φ(2)(w + √−1Lm) = Φ(2)(w)+ √−1m(2) for every w ∈ TΞ and every m ∈ Zn ,

where we write m(2) = t (mk+1, . . . ,mn) for m = t (m1, . . . ,mn).
As a consequence of our observations above, we know how to construct an element of

Aut(D)◦ from an element of Aut((C∗)l)◦. To see this, let θ be any element of Aut((C∗)l)◦
and take an element θ̃ of Aut(Cl ) given as a lifting of θ . We define an automorphism Φ of
TΞ by putting Φ(1)(w(1)) = w(1) and Φ(2)(w) = θ̃ (w(2)) in (3.15) with TΞ ′ = TΞ and
T
Ξ ′(1) = TΞ(1) . Then, noting that

Φ(2)(w + √−1Lm) = θ̃ (w(2) + √−1m(2))

= θ̃ (w(2))+ √−1m(2) = Φ(2)(w)+ √−1m(2)

for every w ∈ TΞ and every m ∈ Zn ,
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we see that Φ satisfies (3.14) with TΞ ′ = TΞ and L′ = L. Therefore the automorphism
FL

−1 ◦Φ ◦ FL of TΩ satisfies

FL
−1 ◦Φ ◦ FL(ζ + √−1m) =FL−1 ◦Φ ◦ FL(ζ )+

√−1m

for every ζ ∈ TΩ and every m ∈ Zn ,

and induces an automorphism ϕ ofD with A(ϕ) = In.
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