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Abstract. A Gorenstein polytope of index r is a lattice polytope whose rth dilate is
a reflexive polytope. These objects are of interest in combinatorial commutative algebra and
enumerative combinatorics, and play a crucial role in Batyrev’s and Borisov’s computation of
Hodge numbers of mirror-symmetric generic Calabi-Yau complete intersections. In this paper
we report on what is known about smooth Gorenstein polytopes, i.e., Gorenstein polytopes
whose normal fan is unimodular. We classify d-dimensional smooth Gorenstein polytopes
with index larger than (d + 3)/3. Moreover, we use a modification of Øbro’s algorithm to
achieve classification results for smooth Gorenstein polytopes in low dimensions. The first
application of these results is a database of all toric Fano d-folds whose anticanonical divisor
is divisible by an integer r satisfying r ≥ d − 7. As a second application we verify that there
are only finitely many families of Calabi-Yau complete intersections of fixed dimension that
are associated to a smooth Gorenstein polytope via the Batyrev-Borisov construction.

Organization of the paper. This paper is concerned with smooth Gorenstein polytopes
and their associated toric varieties. Our main motivation is their relevance in the combinatorial
mirror symmetry construction due to Batyrev and Borisov.

The paper is organized as follows. Section 1 introduces smooth Gorenstein polytopes
and our main computational classification result (Table 1.2). In Section 2, we present the cor-
responding classification results for toric Fano manifolds. Section 3 gives the combinatorial
proof of the classification of smooth Gorenstein polytopes with large index (Theorem 3.2).
Finally, Section 4 explains our original motivation and main application: the finiteness of
generic n-dimensional Calabi-Yau complete intersections associated to smooth Gorenstein
polytopes (Corollary 4.2). Figures 1 and 2 give the complete list of their stringy Hodge num-
bers for n = 3.

1. Introduction to smooth Gorenstein polytopes.
1.1. The combinatorial setting. Let us start by introducing the notions of reflex-

ive and Gorenstein polytopes. We refer the reader to [12] and [51] for more details and
the algebro-geometric background. Let us fix a dual pair of lattices M and N . We define
MR = M ⊗Z R and its dual vectorspace NR analogously. A lattice polytope P ⊂ MR is
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the convex hull of finitely many lattice points (elements in the lattice M). If such a lattice
polytope contains the origin in its interior, then the dual polytope P ∗ is defined as

P ∗ = {y ∈ NR : 〈y, x〉 ≥ −1 for all x ∈ P } .

We remark that P ∗ does not have to be a lattice polytope anymore. A reflexive polytope
P ⊆ MR is a lattice polytope containing the origin in its interior such that P ∗ is also a lattice
polytope. A lattice polytope P is Gorenstein of index r , if rP is a reflexive polytope up to
translation by a lattice point. This index is uniquely determined. In other words, Gorenstein
polytopes of index r are in one-to-one correspondence to reflexive polytopes that are ‘divis-
ible’ by r (i.e., if v is a vertex of such a reflexive polytope P̃ , then (P̃ − v)/r is a lattice
polytope). Two lattice polytopes are considered isomorphic (or unimodularly equivalent), if
there is a lattice automorphism mapping their vertex sets onto each other. In each dimension
there exist only finitely many reflexive polytopes up to isomorphisms. They are known up to
dimension four by massive computer calculations by Kreuzer and Skarke [44, 45]. Recently,
Skarke described a procedure how to possibly extend their algorithm to Gorenstein polytopes
[59].

1.2. Classification results. A polytope is called d-polytope if its affine span is a d-
dimensional affine subspace. Such a polytope is called simple, if each vertex is contained in
precisely d edges. A d-dimensional lattice polytope P is called smooth, if P is simple and at
each vertex v the primitive edge directions v1−v, . . . , vd−v form a lattice basis. Equivalently,
the associated normal fan is unimodular, or its associated toric variety is nonsingular. We refer
to [26] for standard results in toric geometry.

Øbro described in [54] an algorithm which he used to classify all smooth reflexive poly-
topes for d ≤ 8. With an improved implementation, this was extended to d = 9 by Andreas
Paffenholz and the first author, see [47]. In this paper we apply a modified version of this al-
gorithm to compute high-dimensional smooth reflexive polytopes that are highly divisible (for
more details see Section 3.5). The outcome of these computations is summarized in Table 1.2.
The database of these polytopes can be found online [46].

The reader might have noticed certain regularities in the table, if the index r is large.
For instance, there is only one smooth Gorenstein polytope (the unimodular simplex, see
Section 3.1) that satisfies r > � d+1

2 �. These observations can be easily explained and follow
from some well-known results in toric geometry. We refer to Theorem 3.2 in Section 3.1 for
a description of all smooth Gorenstein polytopes of index r > d+3

3 .

1.3. Background. In this paper we report on what is known for smooth Gorenstein
polytopes of either ‘small’ dimension or ‘large’ index. Our goal is to provide the community
with a database of interesting examples. Gorenstein polytopes are of relevance in combi-
natorial commutative algebra, enumerative combinatorics and Ehrhart theory. They can be
algebraically characterized by their semigroup algebras being Gorenstein [48], and combina-
torially by their Ehrhart h∗-polynomials being symmetric [36]. They have gained increased
interest [20, 55, 57, 25, 56, 12, 13], initiated by the proof of Stanley’s conjecture on the uni-
modality of the coefficients of the Ehrhart h∗-polynomial of the Birkhoff polytope [3]. It
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d
r

13 12 11 10 9 8 7 6 5 4 3 2 1
20 0 0 1 2 5 11
19 0 0 0 2 3 7
18 0 0 0 1 2 5
17 0 0 0 0 2 3 7
16 0 0 0 0 1 2 5
15 0 0 0 0 0 2 3
14 0 0 0 0 0 1 2 5
13 0 0 0 0 0 0 2 3
12 1 0 0 0 0 0 1 2 6 27
11 1 0 0 0 0 0 2 3 14 154
10 1 0 0 0 0 1 2 6 64 3273
9 1 0 0 0 0 2 4 23 896 8229721
8 1 0 0 0 1 2 13 258 749892
7 1 0 0 0 2 4 85 72256
6 1 0 0 1 3 28 7622
5 1 0 0 2 12 866
4 1 0 1 4 124 n = 3
3 1 0 3 18
2 1 1 5
1 1 1
0 1

TABLE 1. Number of isomorphism classes of smooth Gorenstein polytopes of di-
mension d and index r .

remains an open question, whether unimodality holds for any integrally closed Gorenstein
polytope [50], cf. Definition 4.6. So far, all smooth Gorenstein polytopes we checked con-
firmed this conjecture.

2. Application to toric Fano manifolds. A Gorenstein Fano variety X is a d-dimen-
sional projective complex variety such that its anticanonical divisor −KX is an ample Cartier
divisor. The index iX of X is defined as the largest positive integer r such that there exists
some Cartier divisor D with −KX = rD. Fano varieties play an essential role as ‘building
blocks’ in the Minimal Model Program. Of special importance are Fano manifolds, i.e., non-
singular (Gorenstein) Fano varieties. They are completely known up to dimension 3. In higher
dimension, much work has been done to classify all Fano manifolds with large index. If X is
smooth, then iX ≤ d + 1 with equality only for Pd . By now, Fano manifolds with iX ≥ d − 2
or iX ≥ d+1

2 are completely known. We refer for these results to [61] and Section 2 in [1]
with the references therein.

In the toric situation more can be shown. We refer to [26, Section 8.3], and [39] for
surveys on toric Fano varieties. Isomorphism classes of toric Fano manifolds X correspond
bijectively to isomorphism classes of smooth reflexive polytopes P . Here, the index iX cor-
responds to the maximal r for which P is ‘divisible’ by r (as defined in Section 1.1). In
particular, any such X is given by a smooth Gorenstein polytope of index iX. However, note
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that several smooth Gorenstein polytopes may define the same toric Fano variety (e.g., the re-
flexive polytope associated to P3 is divisible by 1, 2 and 4). In other words, the reader should
not confuse the index iX of X with the index r of a Gorenstein polytope.

From the classification of smooth Gorenstein polytopes in Section 3.1 we can deduce the
following observation.

PROPOSITION 2.1. Let X be a toric Fano d-fold. Then iX > d+3
3 if and only if X ∼=

Pd , or X ∼= P
d
2 × P

d
2 ( for d ≥ 4 even), or

X ∼= PPd+1−r (O(a1) ⊕ · · · ⊕ O(at ) ⊕ Or−t ) ,

where a1, . . . , at is some integer partition of d + 2 − 2r for d+3
3 < r ≤ d+1

2 . In the last case,
iX = r.

Here, an integer partition of N is a multiset of nonnegative integers summing up to N .
Let us remark that the previous result seems to be folklore to experts in toric geometry, even
if we couldn’t find a reference in the literature.

By now, toric Fano manifolds are known up to dimension 9 [54, 17, 47] extending previ-
ous classifications [60, 4, 6, 58, 42]. As an application of our algorithmic results (Table 1.2)
combined with the previous proposition we can determine all non-isomorphic toric Fano man-
ifolds with iX ≥ d − 7.

COROLLARY 2.2. Let X be a toric Fano d-fold with index iX.
(1) Let iX = d (cf. [41]). Then X ∼= P1 × P1.
(2) (Toric del Pezzo manifolds, cf. [31, 32, 11]) Let iX = d − 1. Then

d 2 3 4
X # = 3 P1 × P1 × P1,PP2(O(1) ⊕ O) P2 × P2

(3) (Toric Mukai manifolds, cf. [49, 37]) Let iX = d − 2. Then

d 3 4 5 6
X # = 15 P1 × P1 × P1 × P1,PP3(O(2) ⊕ O), PP3(O(1) ⊕ O2) P3 × P3

P1 × P3,P1 × PP2(O(1) ⊕ O)

(4) Let iX = d − 3. Then

d 4 5 6 7 8
X # = 118 # = 11 # = 3 PP4(O(1) ⊕ O3) P4 × P4

(5) Let iX = d − 4. Then

d 5 6 7 8 9 10
X # = 853 # = 27 # = 4 # = 2 PP5(O(1) ⊕ O4) P5 × P5

(6) Let iX = d − 5. Then

d 6 7 8 9 10 11 12
no. of X 7590 83 12 4 2 1 1

(7) Let iX = d − 6. Then

d 7 8 9 10 11 12 13 14
no. of X 72167 256 23 6 3 2 1 1
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(8) Let iX = d − 7. Then

d 8 9 10 11 12 13 14 15 16
no. of X 749620 891 63 13 6 3 2 1 1

The database of the associated smooth Gorenstein polytopes can be found online [46].

3. Classification of smooth Gorenstein polytopes of large index.
3.1. Notation and description of results. For convenience, we will denote the lattice

by Zd , as long as it is not important to differentiate between M and N .
For a positive integer d we define the unimodular d-simplex as

Sd := conv(0, e1, . . . , ed ) ,

where e1, . . . , ed is the standard lattice basis.

DEFINITION 3.1. Let P0, . . . , Pk ⊂ Rs be lattice polytopes. Then we define the Cay-
ley polytope of P0, . . . , Pk as

P0 ∗ · · · ∗ Pk := conv(P0 × e0, . . . , Pk × ek) ⊆ Rs ⊕ Rk+1 ,

where e0, . . . , ek is a lattice basis of Rk+1. Here, P0, . . . , Pk are called Cayley factors. Note
that if the dimension of the affine span aff(P0, . . . , Pk) equals s, then the Cayley polytope is
a lattice polytope of dimension s + k.

Cayley polytopes appear naturally when studying lattice polytopes that have a large
‘codegree’ and in the adjunction theory of polarized toric manifolds, we refer to [35, 28,
29, 30, 2]. Now, we can formulate the following result.

THEOREM 3.2. Let P be a smooth Gorenstein polytope of dimension d and index r .
Then r > d+3

3 if and only if
(1) P ∼= Sd (here, r = d + 1),

(2) P ∼= 2Sd with d ≥ 5 odd (here, r = d+1
2 ),

(3) P ∼= Sd
2

× Sd
2

with d ≥ 4 even (here, r = d+2
2 ),

(4) P ∼= (a1 + 1)Sd+1−r ∗ · · · ∗ (at + 1)Sd+1−r ∗ Sd+1−r ∗ · · · ∗ Sd+1−r , where
there are d+3

3 < r ≤ d+1
2 Cayley factors, and a1, . . . , at is an integer partition of

d + 2 − 2r .
Different integer partitions in (4) yield non-isomorphic Gorenstein polytopes

We will give a combinatorial proof of Theorem 3.2 in the remainder of this section.
While strictly speaking not necessary, we will often express bounds in terms of the so-

called Calabi-Yau dimension n := d + 1 − 2r , since this is closer to the point of view of
Section 4. Note that

r >
d + 3

3
⇐⇒ d > 3n + 3 .

REMARK 3.3. For the algebro-geometric reader, this is how we will proceed. It fol-
lows from Mukai’s conjecture [14, 22, 53] that large index implies Picard number ρ ≤ 2. In
the toric situation Kleinschmidt [40] showed that these Fano manifolds have to be projective
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toric bundles. It remains to use the assumption on the index to specify them and their associ-
ated reflexive polytopes. This can be done using numerical criteria. The proof presented here
follows along these lines. It is slightly longer, but more elementary and combinatorial.

3.2. Bounding the number of vertices. We denote by V(Q) the vertex set of a poly-
tope Q. Let us consider a d-dimensional simplicial reflexive polytope Q ⊂ NR (i.e., dual to
a simple reflexive polytope). Casagrande defined in [22] the number

δQ := min{〈v, u〉 : v ∈ V(Q), u ∈ V(Q∗), v /∈ Fu} ∈ Z≥0 ,

where Fu is the facet of the polytope Q corresponding to the vertex u of Q∗. Here 〈·, ·〉
denotes the inner pairing of N and M .

Casagrande showed the following result (Theorem 3(ii) in [22]). For readers with a back-
ground in algebraic geometry, this proves the validity of Mukai’s conjecture ρX(iX − 1) ≤ d

(where ρX is the Picard number) for Q-factorial Gorenstein toric Fano varieties X.

THEOREM 3.4 (Casagrande ’06). If δQ > 0, then

|V(Q)| ≤ d + d

δQ

.

The following observation is also well-known (Lemma 2 in [22]):

LEMMA 3.5. Let P be a simple Gorenstein polytope of index r . Then (rP )∗ is a sim-
plicial reflexive polytope with

δ(rP )∗ ≥ r − 1 .

From these results it is straightforward to deduce an upper bound on the number of
vertices of a simple Gorenstein polytope of small Calabi-Yau dimension.

PROPOSITION 3.6. Let P be a simple Gorenstein polytope of Calabi-Yau dimension n

and of dimension d > 3n + 3. Then (rP )∗ is a simplex or has d + 2 vertices.

PROOF. If r = 1, then n = d − 1, so 3n + 3 = 3d > d , a contradiction. Hence,
r > 1. Let us consider the simplicial reflexive polytope Q := (rP )∗. Then Theorem 3.4 and
Lemma 3.5 imply

|V(Q)| ≤ d + d

r − 1
= d + 2d

d − 1 − n
.

The statement now follows from
2d

d − 1 − n
< 3 ⇐⇒ 3n + 3 < d .

�

REMARK 3.7. Let us note that the bound is sharp: for any n ≥ 0, the smooth Goren-
stein polytope P = Sn+1 × Sn+1 × Sn+1 has dimension d = 3n + 3, Calabi-Yau dimension
n and d + 3 facets.

3.3. Proof of Theorem 3.2. By Proposition 3.6 we only have to consider two cases
in order to prove Theorem 3.2: either P is a simplex or it has d + 2 facets.
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PROPOSITION 3.8. Let P be a smooth Gorenstein simplex of Calabi-Yau dimension n

and of dimension d ≥ 3n. Then either n < 0 and P ∼= Sd , or n = 0 and P ∼= 2Sd (with odd
d).

PROOF. In this case, XP
∼= Pd , and P ∼= kSd for some k ∈ Z≥1. Since rP ∼= (d+1)Sd ,

we get rk = d + 1. Therefore, d+1−n
2 k = d + 1. For n ≤ −1, we get k < 2, so k = 1. For

n = 0, we have k = 2, as desired. Finally, let n > 0, so k ≥ 3. In particular, k
k−2 ≤ 3. This

implies

d + 1 = k

k − 2
n ≤ 3n ,

a contradiction. �

The following statement can be deduced from [12, Theorem 2.6]. Recall that Sd is a
smooth Gorenstein polytope of index d + 1.

LEMMA 3.9. If b1, . . . , br ∈ Z>0,
∑r

i=1 bi = d + 2 − r , and r ∈ {1, . . . , d + 1}, then

P = b1Sd+1−r ∗ · · · ∗ brSd+1−r ,

is a smooth d-dimensional Gorenstein polytope of index r such that (rP )∗ has d + 2 vertices.

In our situation, the converse also holds.

PROPOSITION 3.10. Let P be a smooth Gorenstein polytope of dimension d ≥ 3n+ 3
such that (rP )∗ has d + 2 vertices. Then n ≥ −1 and there exists a unique integer partition
a1, . . . , at of n + 1 such that

P ∼= (a1 + 1)Sd+1−r ∗ · · · ∗ (at + 1)Sd+1−r ∗ Sd+1−r ∗ · · · ∗ Sd+1−r ,

where there are r Cayley factors.

Recall that we consider integer partitions as multisets (so uniqueness is up to permuta-
tion).

PROOF. By Kleinschmidt’s classification of nonsingular toric Fano varieties whose as-
sociated fan has d + 2 rays [40] (see also Section 7.3 in [26]), we can assume that the vertices
of the reflexive polytope (rP )∗ are of the following form:

e1, . . . , ed , v1 = −e1 − · · · − ek , v2 = a1e1 + · · · + akek − ek+1 − · · · − ed,

where 1 ≤ k ≤ d − 1, and ai ∈ Z≥0 for 1 ≤ i ≤ k such that m := ∑k
i=1 ai ≤ d − k .

Combinatorially, (rP )∗ is a free sum (i.e., dual to the product) of a k-dimensional sim-
plex with vertices e1, . . . , ek, v1 and a (d − k)-dimensional simplex with vertices ek+1, . . . ,

ed , v2. This implies that the vertices of rP are of the following types, where all entries not
specified are equal to −1 (here i ∈ {1, . . . , k}, j ∈ {k + 1, . . . , d}):

i j corresponding facet(s) of (rP )∗

(−1, . . . , −1, . . . , −1, . . . , −1) not containing v1 and v2
(−1, . . . , −1, . . . , d − k − m, . . . , −1) not containing v1 and ej

(−1, . . . , k, . . . , −1, . . . , −1) not containing ei and v2
(−1, . . . , k, . . . , ai (k + 1) + d − k − m, . . . , −1) not containing ei and ej
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Let us translate the first vertex v of rP into the origin. This yields the following vertices
for the lattice polytope (rP − v)/r (which is isomorphic to P ):

i j

(0, . . . , 0, . . . , 0, . . . , 0)

(0, . . . , 0, . . . ,
d+2−m−(k+1)

r
, . . . , 0)

(0, . . . , k+1
r

, . . . , 0, . . . , 0)

(0, . . . , k+1
r

, . . . , (ai−1)(k+1)+d+2−m
r

, . . . , 0)

Note that r divides k + 1, and thus d + 2 − m. By our assumption

3n + 3 ≤ d = n + 2r − 1 �⇒ n + 1 ≤ r − 1 ,

so d + 2 −m ≤ d + 2 = n+ 2r + 1 ≤ 3r − 1. Hence, d + 2 −m equals r or 2r . Furthermore,
by our assumption m ≤ d − k, so d − m + 2 > k + 1, thus,

0 <
d + 2 − m

r
− k + 1

r
≤ 1 ,

which implies d + 2 − m = 2r and k + 1 = r . Therefore, P is isomorphic to the Cayley
polytope

Sd+1−r ∗ (a1 + 1)Sd+1−r ∗ · · · ∗ (ak + 1)Sd+1−r ,

where
∑k

i=1 ai = m = n + 1. Moreover, by construction, the polytopes do not depend on
the ordering of these numbers, so by choosing t ≤ k non-zero ai’s the result follows. Finally,
different multisets of coefficients define affinely non-isomorphic Cayley polytopes, since

(−a1 + 1)e1 + · · · + (−ak + 1)ek + ek+1 + · · · + ed + v1 + v2 = 0

is the unique affine relation of the vertices of (rP )∗, see also [40]. �

PROOF OF THEOREM 3.2. If r > d+3
3 , then Proposition 3.8 implies cases (1) and (2),

while Proposition 3.10 yields (3) for n = −1 (all ai’s are equal to 0), and (4) for n ≥ 0. The
‘if’-statement follows for (4) from Lemma 3.9. �

It is a somewhat lucky coincidence that essentially the same bound appears quite natu-
rally in Propositions 3.6 and 3.10. One should also compare this with the fact [59, Lemma 2]
that any so-called basic IP weight system (the building blocks of Gorenstein polytopes in
Skarke’s classification algorithm) satisfies d ≤ 3n − 1.

3.4. Application to toric Fano manifolds. The proof of Proposition 2.1 follows di-
rectly by translating Theorem 3.2 into algebraic geometry.

LEMMA 3.11. Let s, l ∈ Z>0, and c1, . . . , cl ∈ N. Then

Ss ∗ (c1 + 1)Ss ∗ · · · ∗ (cl + 1)Ss ⊂ MR

defines a toric projective bundle

PPs (O ⊕ O(c1) ⊕ · · · ⊕ O(cl)) .

For a proof of this fact see [40] or [26, Section 7.3].
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PROOF OF PROPOSITION 2.1. Let X be a toric Fano d-fold with r := iX > d+3
3 .

Then there exists a smooth Gorenstein polytope P ⊂ MR such that the reflexive polytope
rP is associated to the anticanonical divisor −KX. Now, we apply Theorem 3.2 and the
previous Lemma. The converse statement follows from combining the previous Lemma with
Lemma 3.9. �

Let us note that we recover a result of Wiśniewski [61] in this toric setting.

COROLLARY 3.12. Let X be a toric Fano d-fold with iX ≥ d+1
2 . Then X is isomor-

phic to one of the following cases:

• P1 × P1 × P1, d = 3, and iX = 2 ,

• P
P

d+1
2

(O(1) ⊕ O d−1
2 ), d is odd, and iX = d+1

2 ,

• P
d
2 × P

d
2 , d ≥ 4 is even, and iX = d+2

2 ,

• Pd , and iX = d + 1 .

PROOF. The case d = 3 is well-known, it can also be easily checked using the data-
base. Since d > 3 is equivalent to d+1

2 > d+3
3 , the statements follow immediately from

Proposition 2.1. �

3.5. The classification algorithm for smooth Gorenstein polytopes of given index.
Let us briefly describe the modified version of the algorithm to classify smooth Fano polytopes
by Mikkel Øbro [54]. The key ingredient for his algorithm is the notion of a special facet.

DEFINITION 3.13. Let P be a reflexive polytope, a facet F of P is called special,
if the sum of all vertices v1, . . . , vk of P is a point within the cone over the facet F, i.e.,∑k

i=1 vi ∈ cone(F ) .

Clearly, every reflexive polytope has at least one special facet. Now, let P be a smooth
reflexive d-polytope so that P is divisible by r , as in Section 1.1. Then the dual polytope
P ∗ is a simplicial reflexive polytope where the vertices of each facet form a lattice basis of
Zd . Let us denote here such reflexive polytopes as dual-smooth. By applying a unimodular
transformation, we can assume that conv(e1, . . . , ed ) is a special facet of P ∗. Øbro has shown
that all remaining vertices of such a dual-smooth reflexive polytope must lie within some
explicit finite set. The original algorithm enumerates this set in a clever way to efficiently
generate all dual-smooth reflexive polytopes. Note that the vector −1 = (−1, . . . ,−1) defines
the special facet used above. Hence, by Lemma 3.5, we know that all vertices v ∈ V(P ∗) that
are not contained in this facet must evaluate to 〈v,−1〉 ≥ r − 1. Using this property we can
further restrict the set of possible vertices. By adding this condition to the original algorithm
we were able to generate a superset of all simplicial reflexive polytopes whose dual polytopes
are r-multiples of smooth Gorenstein polytopes for given dimension d and index r larger than
some r0. For d = 10 and r ≥ 3 this algorithm took about 1 hour. This should be compared to
two weeks for the original (parallelized) algorithm without additional conditions for d = 9.
Table 1.2 contains all isomorphism classes for values of d and r that we could compute so far.
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4. Smooth Gorenstein polytopes in combinatorial mirror symmetry.

4.1. The Batyrev-Borisov construction. Over the last three decades mirror symme-
try has spurred the interest in finding all possible Hodge numbers of Calabi-Yau n-folds, in
particular, for n = 3. The ‘Hodge diamond’ of a Calabi-Yau threefold is completely described
by the pair of Hodge numbers (h1,1, h1,2). So far ten thousands of these pairs have been found
[38, 21], all of them in the range of h1,1 + h1,2 ≤ 502. This can be regarded as striking ev-
idence for an affirmative answer to the following question attributed to Yau: are there only
finitely many families of irreducible Calabi-Yau n-folds? For related results in these directions
we refer to [34, 27, 24, 23, 59].

The vast amount of examples of Calabi-Yau manifolds are so-called CICY’s: (resolu-
tions of) generic complete intersection Calabi-Yau varieties in Gorenstein toric Fano varieties.
Here, reflexive polytopes play a key role and were introduced for this purpose by Batyrev [5].
To avoid confusion we adopt the notation in [5]. We will omit technical details, the interested
reader is invited to look at the survey paper [12].

An s-dimensional reflexive polytope Δ ⊂ MR defines a Gorenstein toric Fano variety
X given by the fan over the faces of Δ∗. A generic anticanonical hypersurface Y in X is a
(possibly singular) Calabi-Yau variety of dimension s − 1. For s ≤ 4 it can be (crepantly)
resolved by a Calabi-Yau manifold Ŷ . Exploiting the duality of reflexive polytopes, Batyrev
showed that for s = 4 the Calabi-Yau 3-folds Ŷ , Ŷ ∗ constructed by Δ and Δ∗ in this way have
mirror-symmetric Hodge numbers: h1,1(Ŷ ) = h1,2(Ŷ ∗). For s > 4, the possibly singular Y

may not be resolvable in this way. Therefore, one considers stringy Hodge numbers h
p,q
st (Y ),

see [10, 7]. In the case that Y can be crepantly resolved by a Calabi-Yau manifold Ŷ , the
stringy Hodge numbers of Y equal the usual Hodge numbers of Ŷ .

Batyrev and Borisov generalized Batyrev’s results to complete intersections [15, 7, 9]
using the framework of Gorenstein polytopes. A generic CICY Y of dimension n = s−r in an
s-dimensional Gorenstein toric Fano variety X is given by a Minkowski decomposition of the
s-dimensional reflexive polytope Δ = Δ(1)+· · ·+Δ(r) into r lattice polytopes Δ(1), . . . ,Δ(r).
(Here, we use the notation Δ(i) for these lattice polytopes, since Δi is sometimes used to
denote the unimodular i-simplex.) More precisely, Y is defined as the compactification in X

of the intersection of the hypersurfaces given by the generic Laurent polynomials

FΔ(i) (z) :=
∑

m∈Δ(i)∩M

cmzm (for cm ∈ C∗) ,

for i = 1, . . . , r . In this combinatorially described setting, one defines the Cayley polytope

P := Δ(1) ∗ · · · ∗ Δ(r) ,

which is a Gorenstein polytope of dimension d := s + r − 1 and of index r . Note that P

has Calabi-Yau dimension d + 1 − 2r = n. Using such a combinatorial datum, Batyrev and
Borisov showed (in the notation of [12]) that the stringy E-polynomial of Y

(1) Est(Y ) :=
∑
p,q

(−1)p+q h
p,q
st (Y ) upvq
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equals Est(P ), a rather complicated combinatorial expression called the stringy E-polynomial
of P (as defined in [12] based on [16], see also [52]).

It is important to remark that not every Gorenstein polytope is given by such a Minkowski
decomposition, still, Est(P ) is always of the form (1), so stringy Hodge numbers of Goren-
stein polytopes are well-defined, see [52]. In particular, this motivates why it makes sense to
define the Calabi-Yau dimension of any Gorenstein polytope P of dimension d and index r to
be n := d +1−2r . Gorenstein polytopes also satisfy a beautiful duality, and under additional
hypotheses (the existence of a so-called nef-partition) it is possible to show that a CICY has
an analogously constructed mirror partner (on the level of stringy Hodge numbers), for more
on this see [15, 8, 7, 9, 12].

4.2. The main result. After these preparations we can state the result which origi-
nally motivated our investigations. (We remark that Est(P ) = 0, if n < 0, see [52].)

THEOREM 4.1. Let P be a smooth Gorenstein polytope of Calabi-Yau dimension n ≥
0 and of dimension d > 3n+ 3. Then Est(P ) = Est(P

′) for P ′ a smooth Gorenstein polytope
of Calabi-Yau dimension n and of dimension at most 3n+1. More precisely, Est(P ) equals the
E-polynomial of an n-dimensional Calabi-Yau manifold Y given as the complete intersection
in projective space Ps̃ of generic hypersurfaces of degrees d1, . . . , dr̃ ∈ Z≥2 with d1 + · · · +
dr̃ = s̃ + 1, where s̃ ≤ 2n + 1. Any n-dimensional generic Calabi-Yau complete intersection
associated to the Gorenstein polytope P (in the sense of Batyrev-Borisov) is isomorphic to Y .

Since there are only finitely many Gorenstein polytopes in fixed dimension, this answers
affirmatively for the special class of smooth Gorenstein polytopes Question 4.21 in [12] which
asks whether there should be (up to multiples) only finitely many stringy E-polynomials of
Gorenstein polytopes of given Calabi-Yau dimension. In particular, the validity of this purely
combinatorial conjecture for any Gorenstein polytope would imply the finiteness of stringy
Hodge numbers of all irreducible CICY’s given by the Batyrev-Borisov construction. In our
present situation the previous theorem shows even more:

COROLLARY 4.2. There are only finitely many families of (possibly singular) generic
Calabi-Yau complete intersections of dimension n that are associated to smooth Gorenstein
polytopes.

Table 1.2 gives a complete list of all smooth Gorenstein polytopes of Calabi-Yau dimen-
sion n ≤ 3 up to large d . Note that by Theorem 4.1 it is enough to consider d ≤ 12 for n = 3.
Of course, the assumption of smoothness is very strong and yields only very few Gorenstein
polytopes. The subtle issue which of the stringy Hodge numbers of these Gorenstein poly-
topes are realized by CICY’s is addressed in Section 4.4. In particular, we found 7 Hodge
numbers of Calabi-Yau 3-folds that were not yet contained in the database [38] by Benjamin
Jurke.

REMARK 4.3. Let us remark that in [59] the Kreuzer-Skarke algorithm was extended
to a potential classification procedure of Gorenstein polytopes of given d and n, however, it
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is yet unclear how computationally feasible this will be. Lists of Gorenstein polytopes with
n = 3 coming from so-called basic IP weight systems can be found on the webpage [43].

4.3. Proof of Theorem 4.1. The proof will be a direct consequence of the following
observation. It is straightforward from an algebro-geometric viewpoint, however it seems to
be quite a challenge to prove it using combinatorics only!

LEMMA 4.4. Let b2 + · · · + br = s (all these numbers being positive integers). Then

Ss ∗ b2Ss ∗ · · · ∗ brSs and b2Ss−1 ∗ · · · ∗ brSs−1

are smooth Gorenstein polytopes with the same Calabi-Yau dimension and the same stringy
E-polynomial. More precisely, the CICY’s given by Ss + b2Ss + · · · + brSs , respectively by
b2Ss−1 + · · · + brSs−1, are isomorphic.

PROOF. In this case, the Minkowski sum Ss +b2Ss +· · ·+brSs defines a generic Calabi-
Yau complete intersection Y in Ps given by generic hypersurfaces of degrees 1, b2, . . . , bs .
Identifying the generic hypersurface of degree 1 with P s−1, we note that Y can be regarded as
a generic complete intersection of hypersurfaces of degrees b2, . . . , bs in Ps−1. This finishes
the proof. �

PROOF OF THEOREM 4.1. Note that n ≥ 0 if and only if r ≤ d+1
2 , so only cases (2) and

(4) may occur in Theorem 3.2. In case (2), we have n = 0, and Est(2Sd) = 2 = Est([−1, 1]),
see e.g. Example 4.12 in [12]. Hence, it suffices to consider case (4). We may assume that
a1, . . . , at are all positive integers (since their sum equals n + 1 ≥ 1). Now, Lemma 4.4
shows that it suffices to consider t = r (note again that ai = 0 for i > t). Therefore,
n+1 = ∑r

i=1 ai ≥ r , thus d = (d+1−2r)+2r−1 = n+2r−1 ≤ n+2(n+1)−1 = 3n+1.
This proves the first statement. The second claim follows from s = d+1−r = n+r ≤ 2n+1
and the proof of Lemma 4.4.

For the last statement of the theorem, let P be a Gorenstein polytope associated to a
Minkowski decomposition Δ = Δ(1) + · · · + Δ(r) as above, i.e.,

(2) P = Δ(1) ∗ · · · ∗ Δ(r) .

Let d > 3n + 3. Again, we have two cases. If n = 0, then P ∼= 2Sd , hence r = 1 (since 2Sd

is not a Cayley polytope). Therefore, d = 2, a contradiction to d > 3n+ 3. Therefore, we are
in case (4) of Theorem 3.2, so by Definition 3.1

(3) P ∼= conv((a1 + 1)Ss × e1, . . . , (at + 1)Ss × et , Ss × et+1, . . . , Ss × er) ,

where a1, . . . , at is an integer partition of n + 1. Equation (2) implies the existence of a
surjective, affine lattice homomorphism φ : P → Sr−1. We may assume a1 > 0. Since
for every vertex of (a1 + 1)Ss × e1 every adjacent edge contains a lattice point in its relative
interior, φ((a1 + 1)Ss × e1) has to be a vertex of Sr−1. Hence, Ss × e1 lies in the fiber
space of φ. Therefore, every factor in expression (3) maps onto a vertex via φ. Since the
map is surjective and there are r factors, it follows that these two Cayley decompositions
are the same (up to a permutation of the factors). Hence, the Minkowski decomposition of
Δ equals up to permutation and translations by lattice points the Minkowski decomposition
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FIGURE 1. Stringy Hodge numbers of the duals of smooth Gorenstein polytopes with
Calabi-Yau dimension 3 and h1,1 ≤ 75.

(s + 1)Ss = (a1 + 1)Ss + · · · + (at + 1)Ss + Ss + · · · + Ss . This implies the statement (e.g.,
as in the proof of Lemma 4.4). �

In the notation of [9, 12, 59], this shows that for d > 3n + 3 the ‘reflexive Gorenstein
cone’ over P is ‘completely split’.

4.4. Realization of stringy Hodge numbers by Calabi-Yau complete intersections.
Table 1.2 combined with Theorem 3.2 gives a complete enumeration of all smooth Gorenstein
polytopes P with Calabi-Yau dimension 0 ≤ n ≤ 3. In this section, we would like to discuss
which stringy Hodge numbers of these smooth Gorenstein polytopes are possibly realized by
Calabi-Yau complete intersections.

First, let us recall that every Gorenstein polytope P has a dual Gorenstein polytope P×
of the same dimension, the same index, and the same Calabi-Yau dimension n, see [9] or [12],
satisfying the combinatorial mirror symmetry

Est(P ; u, v) = (−u)nEst(P
×; u−1, v) .

In particular, for n = 3, the stringy Hodge numbers (h1,1, h1,2) are interchanged between P

and P×, see [7, 12, 52]. Figures 1 and 2 show the complete list of pairs (h1,1, h1,2) of stringy
Hodge numbers of P× for n = 3 and d ≤ 12. Note that by Theorem 4.1 this is the complete
list for n = 3.

To compute the stringy Hodge numbers of these polytopes we implemented the for-
mula for the stringy E-polynomial described in [12, Definition 4.8] in the polymake frame-
work [33], using an interface to Normaliz [18, 19] for the Ehrhart h∗-polynomials.

REMARK 4.5. We note that for n = 3 the 12-dimensional smooth Gorenstein polytope
P from Remark 3.7 has Hodge-pair (2, 52) which did not appear for any of the polytopes of
lower dimension, indicating that the bound 3n + 3 in Theorem 4.1 could indeed be sharp.
However, for general n we cannot rule out that the stringy E-polynomial of this polytope
might appear for some smooth Gorenstein polytope of lower dimension. In fact, for n =
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FIGURE 2. Stringy Hodge numbers of the duals of smooth Gorenstein polytopes with
Calabi-Yau dimension 3 and h1,1 > 75.

3 there exists a 6-dimensional (non-smooth) Gorenstein polytope with this pair of Hodge
numbers [43].

As it turns out, all of these ‘virtual’ stringy Hodge numbers indeed equal the Hodge
numbers of Calabi-Yau manifolds. To prove this, let us recall the definition of being integrally
closed.

DEFINITION 4.6. A d-dimensional lattice polytope P ⊆ Rd is integrally closed, if the
semigroup of lattice points in the cone CP := R≥0(P × {1}) ⊂ Rd+1 is generated by lattice
points in CP ∩ Rd × {1}.

PROPOSITION 4.7. Let P be a Gorenstein polytope of Calabi-Yau dimension n. If P is
integrally closed, then there exists a Calabi-Yau variety Y ∗ of dimension n such that Est(P

×)

equals the stringy E-polynomial of Y ∗. Moreover, if n ≤ 3, then we can assume that Y ∗ is
smooth.

PROOF. As follows from [12, Cor.2.12], P× is a Cayley polytope of length r , say, P× =
∇1∗· · ·∗∇r in the notation of [12]. Therefore, e.g. by [12, Thm.2.6], ∇1+· · ·+∇r =: Q ⊂ NR

is a reflexive polytope of dimension s := d + 1 − r . In particular, there exists an associated
generic n-dimensional CICY Y ∗ in the Gorenstein Fano toric variety X∗ associated to Q. By
the very definition of the stringy E-polynomial of Gorenstein polytopes, Est(Y

∗) = Est(P
×).

Let n ≤ 3. Let us recall the argument given in [5]. We choose a maximal projective
crepant partial desingularization (MPCP) X̂∗ of X∗ in the sense of [5]. This induces an MPCP
from a CICY Ŷ ∗ in X̂∗ to Y ∗, where Ŷ ∗ is again a Calabi-Yau variety whose stringy E-
polynomial equals Est(Y

∗). Note that the cones of dimension ≤ 3 of the fan corresponding
to X̂∗ are unimodular, so the toric strata of X̂∗ of dimension ≥ s − 3 are smooth (e.g., [5,
Thm.2.2.9]). Since Ŷ ∗ is generic of dimension ≤ 3, it avoids toric strata of dimension < s−3,
hence Ŷ ∗ is smooth. �

There is a famous open conjecture: Smooth polytopes are integrally closed. We verified
it for all smooth Gorenstein polytopes we could compute. In particular, by Theorem 4.1 this
observation implies:
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COROLLARY 4.8. All stringy E-polynomials of duals of smooth Gorenstein polytopes
with Calabi-Yau dimension n ≤ 3 equal the E-polynomial of some Calabi-Yau manifold of
dimension n in a Gorenstein toric Fano variety of dimension s ≤ 2n + 2.

PROOF. It remains to consider the case s ≥ 2n + 3, hence r = s − n ≥ n + 3, thus
d = s + r − 1 ≥ 3n + 5, in which case Theorem 4.1 implies the statement. �

REMARK 4.9. Among the Hodge numbers listed in Figures 1 and 2 the pairs

(84, 0), (85, 1), (52, 2), (69, 1), (65, 1), (55, 2), (63, 2)

are not yet contained in the online database ‘Calabi-Yau 3-fold explorer’ by Benjamin Jurke
[38]. The associated smooth Gorenstein polytopes P can be found on the webpage [46].
We note that for the first five of these pairs Gorenstein polytopes with these stringy Hodge
numbers can also be found in [43].

REMARK 4.10. Among the stringy Hodge-numbers of the smooth Gorenstein poly-
topes themselves (i.e., not their duals), only the pairs (1, 69) and (1, 85) are not contained in
the database of known Hodge numbers of Calabi-Yau 3-folds [38]. However, all three cor-
responding dual Gorenstein polytopes P× are neither integrally closed, nor do they contain
a special (r − 1)-simplex (in the sense of [12]). Hence, we cannot deduce whether there are
CICY’s associated to these smooth Gorenstein polytopes P .

REMARK 4.11. The complete intersection Calabi-Yau manifolds described in Theo-
rem 4.1 are given by a so-called nef-partition, see [15, 12]. In particular, there exist Calabi-
Yau manifolds with mirror-symmetric Hodge numbers. This does not have to be the case in
general. For instance, there is a generic CICY with Hodge numbers (84, 0) (see Remark 4.9),
however, there is no CICY with Hodge numbers (0, 84). We refer to [9] for more on this
rigidity-phenomenon.
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